//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tool implements a just-in-time compiler for LLVM, allowing direct // execution of LLVM bitcode in an efficient manner. // //===----------------------------------------------------------------------===// #include "JIT.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/ModuleProvider.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineCodeInfo.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MutexGuard.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Config/config.h" using namespace llvm; #ifdef __APPLE__ // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead // of atexit). It passes the address of linker generated symbol __dso_handle // to the function. // This configuration change happened at version 5330. # include # if defined(MAC_OS_X_VERSION_10_4) && \ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ __APPLE_CC__ >= 5330)) # ifndef HAVE___DSO_HANDLE # define HAVE___DSO_HANDLE 1 # endif # endif #endif #if HAVE___DSO_HANDLE extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); #endif namespace { static struct RegisterJIT { RegisterJIT() { JIT::Register(); } } JITRegistrator; } extern "C" void LLVMLinkInJIT() { } #if defined(__GNUC__) && !defined(__ARM__EABI__) // libgcc defines the __register_frame function to dynamically register new // dwarf frames for exception handling. This functionality is not portable // across compilers and is only provided by GCC. We use the __register_frame // function here so that code generated by the JIT cooperates with the unwinding // runtime of libgcc. When JITting with exception handling enable, LLVM // generates dwarf frames and registers it to libgcc with __register_frame. // // The __register_frame function works with Linux. // // Unfortunately, this functionality seems to be in libgcc after the unwinding // library of libgcc for darwin was written. The code for darwin overwrites the // value updated by __register_frame with a value fetched with "keymgr". // "keymgr" is an obsolete functionality, which should be rewritten some day. // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we // need a workaround in LLVM which uses the "keymgr" to dynamically modify the // values of an opaque key, used by libgcc to find dwarf tables. extern "C" void __register_frame(void*); #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 # define USE_KEYMGR 1 #else # define USE_KEYMGR 0 #endif #if USE_KEYMGR namespace { // LibgccObject - This is the structure defined in libgcc. There is no #include // provided for this structure, so we also define it here. libgcc calls it // "struct object". The structure is undocumented in libgcc. struct LibgccObject { void *unused1; void *unused2; void *unused3; /// frame - Pointer to the exception table. void *frame; /// encoding - The encoding of the object? union { struct { unsigned long sorted : 1; unsigned long from_array : 1; unsigned long mixed_encoding : 1; unsigned long encoding : 8; unsigned long count : 21; } b; size_t i; } encoding; /// fde_end - libgcc defines this field only if some macro is defined. We /// include this field even if it may not there, to make libgcc happy. char *fde_end; /// next - At least we know it's a chained list! struct LibgccObject *next; }; // "kemgr" stuff. Apparently, all frame tables are stored there. extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It /// probably contains all dwarf tables that are loaded. struct LibgccObjectInfo { /// seenObjects - LibgccObjects already parsed by the unwinding runtime. /// struct LibgccObject* seenObjects; /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. /// struct LibgccObject* unseenObjects; unsigned unused[2]; }; /// darwin_register_frame - Since __register_frame does not work with darwin's /// libgcc,we provide our own function, which "tricks" libgcc by modifying the /// "Dwarf2 object list" key. void DarwinRegisterFrame(void* FrameBegin) { // Get the key. LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); assert(LOI && "This should be preallocated by the runtime"); // Allocate a new LibgccObject to represent this frame. Deallocation of this // object may be impossible: since darwin code in libgcc was written after // the ability to dynamically register frames, things may crash if we // deallocate it. struct LibgccObject* ob = (struct LibgccObject*) malloc(sizeof(struct LibgccObject)); // Do like libgcc for the values of the field. ob->unused1 = (void *)-1; ob->unused2 = 0; ob->unused3 = 0; ob->frame = FrameBegin; ob->encoding.i = 0; ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; // Put the info on both places, as libgcc uses the first or the the second // field. Note that we rely on having two pointers here. If fde_end was a // char, things would get complicated. ob->fde_end = (char*)LOI->unseenObjects; ob->next = LOI->unseenObjects; // Update the key's unseenObjects list. LOI->unseenObjects = ob; // Finally update the "key". Apparently, libgcc requires it. _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); } } #endif // __APPLE__ #endif // __GNUC__ /// createJIT - This is the factory method for creating a JIT for the current /// machine, it does not fall back to the interpreter. This takes ownership /// of the module provider. ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP, std::string *ErrorStr, JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode) { return JIT::createJIT(MP, ErrorStr, JMM, OptLevel, GVsWithCode); } ExecutionEngine *JIT::createJIT(ModuleProvider *MP, std::string *ErrorStr, JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode) { // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) return 0; // Pick a target either via -march or by guessing the native arch. TargetMachine *TM = JIT::selectTarget(MP, ErrorStr); if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; // If the target supports JIT code generation, create a the JIT. if (TargetJITInfo *TJ = TM->getJITInfo()) { return new JIT(MP, *TM, *TJ, JMM, OptLevel, GVsWithCode); } else { if (ErrorStr) *ErrorStr = "target does not support JIT code generation"; return 0; } } JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji, JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode) : ExecutionEngine(MP), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode) { setTargetData(TM.getTargetData()); jitstate = new JITState(MP); // Initialize JCE JCE = createEmitter(*this, JMM); // Add target data MutexGuard locked(lock); FunctionPassManager &PM = jitstate->getPM(locked); PM.add(new TargetData(*TM.getTargetData())); // Turn the machine code intermediate representation into bytes in memory that // may be executed. if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) { llvm_report_error("Target does not support machine code emission!"); } // Register routine for informing unwinding runtime about new EH frames #if defined(__GNUC__) && !defined(__ARM_EABI__) #if USE_KEYMGR struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); // The key is created on demand, and libgcc creates it the first time an // exception occurs. Since we need the key to register frames, we create // it now. if (!LOI) LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); InstallExceptionTableRegister(DarwinRegisterFrame); #else InstallExceptionTableRegister(__register_frame); #endif // __APPLE__ #endif // __GNUC__ // Initialize passes. PM.doInitialization(); } JIT::~JIT() { delete jitstate; delete JCE; delete &TM; } /// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously /// removed the last ModuleProvider, we need re-initialize jitstate with a valid /// ModuleProvider. void JIT::addModuleProvider(ModuleProvider *MP) { MutexGuard locked(lock); if (Modules.empty()) { assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); jitstate = new JITState(MP); FunctionPassManager &PM = jitstate->getPM(locked); PM.add(new TargetData(*TM.getTargetData())); // Turn the machine code intermediate representation into bytes in memory // that may be executed. if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { llvm_report_error("Target does not support machine code emission!"); } // Initialize passes. PM.doInitialization(); } ExecutionEngine::addModuleProvider(MP); } /// removeModuleProvider - If we are removing the last ModuleProvider, /// invalidate the jitstate since the PassManager it contains references a /// released ModuleProvider. Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) { Module *result = ExecutionEngine::removeModuleProvider(MP, E); MutexGuard locked(lock); if (jitstate->getMP() == MP) { delete jitstate; jitstate = 0; } if (!jitstate && !Modules.empty()) { jitstate = new JITState(Modules[0]); FunctionPassManager &PM = jitstate->getPM(locked); PM.add(new TargetData(*TM.getTargetData())); // Turn the machine code intermediate representation into bytes in memory // that may be executed. if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { llvm_report_error("Target does not support machine code emission!"); } // Initialize passes. PM.doInitialization(); } return result; } /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, /// and deletes the ModuleProvider and owned Module. Avoids materializing /// the underlying module. void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) { ExecutionEngine::deleteModuleProvider(MP, E); MutexGuard locked(lock); if (jitstate->getMP() == MP) { delete jitstate; jitstate = 0; } if (!jitstate && !Modules.empty()) { jitstate = new JITState(Modules[0]); FunctionPassManager &PM = jitstate->getPM(locked); PM.add(new TargetData(*TM.getTargetData())); // Turn the machine code intermediate representation into bytes in memory // that may be executed. if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { llvm_report_error("Target does not support machine code emission!"); } // Initialize passes. PM.doInitialization(); } } /// run - Start execution with the specified function and arguments. /// GenericValue JIT::runFunction(Function *F, const std::vector &ArgValues) { assert(F && "Function *F was null at entry to run()"); LLVMContext &Context = F->getContext(); void *FPtr = getPointerToFunction(F); assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); const FunctionType *FTy = F->getFunctionType(); const Type *RetTy = FTy->getReturnType(); assert((FTy->getNumParams() == ArgValues.size() || (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && "Wrong number of arguments passed into function!"); assert(FTy->getNumParams() == ArgValues.size() && "This doesn't support passing arguments through varargs (yet)!"); // Handle some common cases first. These cases correspond to common `main' // prototypes. if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { switch (ArgValues.size()) { case 3: if (FTy->getParamType(0) == Type::Int32Ty && isa(FTy->getParamType(1)) && isa(FTy->getParamType(2))) { int (*PF)(int, char **, const char **) = (int(*)(int, char **, const char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]), (const char **)GVTOP(ArgValues[2]))); return rv; } break; case 2: if (FTy->getParamType(0) == Type::Int32Ty && isa(FTy->getParamType(1))) { int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]))); return rv; } break; case 1: if (FTy->getNumParams() == 1 && FTy->getParamType(0) == Type::Int32Ty) { GenericValue rv; int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); return rv; } break; } } // Handle cases where no arguments are passed first. if (ArgValues.empty()) { GenericValue rv; switch (RetTy->getTypeID()) { default: llvm_unreachable("Unknown return type for function call!"); case Type::IntegerTyID: { unsigned BitWidth = cast(RetTy)->getBitWidth(); if (BitWidth == 1) rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); else if (BitWidth <= 8) rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); else if (BitWidth <= 16) rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); else if (BitWidth <= 32) rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); else if (BitWidth <= 64) rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); else llvm_unreachable("Integer types > 64 bits not supported"); return rv; } case Type::VoidTyID: rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); return rv; case Type::FloatTyID: rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); return rv; case Type::DoubleTyID: rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); return rv; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: llvm_unreachable("long double not supported yet"); return rv; case Type::PointerTyID: return PTOGV(((void*(*)())(intptr_t)FPtr)()); } } // Okay, this is not one of our quick and easy cases. Because we don't have a // full FFI, we have to codegen a nullary stub function that just calls the // function we are interested in, passing in constants for all of the // arguments. Make this function and return. // First, create the function. FunctionType *STy=Context.getFunctionType(RetTy, false); Function *Stub = Function::Create(STy, Function::InternalLinkage, "", F->getParent()); // Insert a basic block. BasicBlock *StubBB = BasicBlock::Create("", Stub); // Convert all of the GenericValue arguments over to constants. Note that we // currently don't support varargs. SmallVector Args; for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { Constant *C = 0; const Type *ArgTy = FTy->getParamType(i); const GenericValue &AV = ArgValues[i]; switch (ArgTy->getTypeID()) { default: llvm_unreachable("Unknown argument type for function call!"); case Type::IntegerTyID: C = Context.getConstantInt(AV.IntVal); break; case Type::FloatTyID: C = Context.getConstantFP(APFloat(AV.FloatVal)); break; case Type::DoubleTyID: C = Context.getConstantFP(APFloat(AV.DoubleVal)); break; case Type::PPC_FP128TyID: case Type::X86_FP80TyID: case Type::FP128TyID: C = Context.getConstantFP(APFloat(AV.IntVal)); break; case Type::PointerTyID: void *ArgPtr = GVTOP(AV); if (sizeof(void*) == 4) C = Context.getConstantInt(Type::Int32Ty, (int)(intptr_t)ArgPtr); else C = Context.getConstantInt(Type::Int64Ty, (intptr_t)ArgPtr); // Cast the integer to pointer C = Context.getConstantExprIntToPtr(C, ArgTy); break; } Args.push_back(C); } CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(), "", StubBB); TheCall->setCallingConv(F->getCallingConv()); TheCall->setTailCall(); if (TheCall->getType() != Type::VoidTy) ReturnInst::Create(TheCall, StubBB); // Return result of the call. else ReturnInst::Create(StubBB); // Just return void. // Finally, return the value returned by our nullary stub function. return runFunction(Stub, std::vector()); } void JIT::RegisterJITEventListener(JITEventListener *L) { if (L == NULL) return; MutexGuard locked(lock); EventListeners.push_back(L); } void JIT::UnregisterJITEventListener(JITEventListener *L) { if (L == NULL) return; MutexGuard locked(lock); std::vector::reverse_iterator I= std::find(EventListeners.rbegin(), EventListeners.rend(), L); if (I != EventListeners.rend()) { std::swap(*I, EventListeners.back()); EventListeners.pop_back(); } } void JIT::NotifyFunctionEmitted( const Function &F, void *Code, size_t Size, const JITEvent_EmittedFunctionDetails &Details) { MutexGuard locked(lock); for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details); } } void JIT::NotifyFreeingMachineCode(const Function &F, void *OldPtr) { MutexGuard locked(lock); for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { EventListeners[I]->NotifyFreeingMachineCode(F, OldPtr); } } /// runJITOnFunction - Run the FunctionPassManager full of /// just-in-time compilation passes on F, hopefully filling in /// GlobalAddress[F] with the address of F's machine code. /// void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { MutexGuard locked(lock); class MCIListener : public JITEventListener { MachineCodeInfo *const MCI; public: MCIListener(MachineCodeInfo *mci) : MCI(mci) {} virtual void NotifyFunctionEmitted(const Function &, void *Code, size_t Size, const EmittedFunctionDetails &) { MCI->setAddress(Code); MCI->setSize(Size); } }; MCIListener MCIL(MCI); RegisterJITEventListener(&MCIL); runJITOnFunctionUnlocked(F, locked); UnregisterJITEventListener(&MCIL); } void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { static bool isAlreadyCodeGenerating = false; assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); // JIT the function isAlreadyCodeGenerating = true; jitstate->getPM(locked).run(*F); isAlreadyCodeGenerating = false; // If the function referred to another function that had not yet been // read from bitcode, but we are jitting non-lazily, emit it now. while (!jitstate->getPendingFunctions(locked).empty()) { Function *PF = jitstate->getPendingFunctions(locked).back(); jitstate->getPendingFunctions(locked).pop_back(); // JIT the function isAlreadyCodeGenerating = true; jitstate->getPM(locked).run(*PF); isAlreadyCodeGenerating = false; // Now that the function has been jitted, ask the JITEmitter to rewrite // the stub with real address of the function. updateFunctionStub(PF); } // If the JIT is configured to emit info so that dlsym can be used to // rewrite stubs to external globals, do so now. if (areDlsymStubsEnabled() && isLazyCompilationDisabled()) updateDlsymStubTable(); } /// getPointerToFunction - This method is used to get the address of the /// specified function, compiling it if neccesary. /// void *JIT::getPointerToFunction(Function *F) { if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Check if function already code gen'd MutexGuard locked(lock); // Now that this thread owns the lock, check if another thread has already // code gen'd the function. if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Make sure we read in the function if it exists in this Module. if (F->hasNotBeenReadFromBitcode()) { // Determine the module provider this function is provided by. Module *M = F->getParent(); ModuleProvider *MP = 0; for (unsigned i = 0, e = Modules.size(); i != e; ++i) { if (Modules[i]->getModule() == M) { MP = Modules[i]; break; } } assert(MP && "Function isn't in a module we know about!"); std::string ErrorMsg; if (MP->materializeFunction(F, &ErrorMsg)) { llvm_report_error("Error reading function '" + F->getName()+ "' from bitcode file: " + ErrorMsg); } // Now retry to get the address. if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; } if (F->isDeclaration()) { bool AbortOnFailure = !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage(); void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); addGlobalMapping(F, Addr); return Addr; } runJITOnFunctionUnlocked(F, locked); void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); return Addr; } /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { MutexGuard locked(lock); void *Ptr = getPointerToGlobalIfAvailable(GV); if (Ptr) return Ptr; // If the global is external, just remember the address. if (GV->isDeclaration()) { #if HAVE___DSO_HANDLE if (GV->getName() == "__dso_handle") return (void*)&__dso_handle; #endif Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName()); if (Ptr == 0 && !areDlsymStubsEnabled()) { llvm_report_error("Could not resolve external global address: " +GV->getName()); } addGlobalMapping(GV, Ptr); } else { // If the global hasn't been emitted to memory yet, allocate space and // emit it into memory. Ptr = getMemoryForGV(GV); addGlobalMapping(GV, Ptr); EmitGlobalVariable(GV); // Initialize the variable. } return Ptr; } /// recompileAndRelinkFunction - This method is used to force a function /// which has already been compiled, to be compiled again, possibly /// after it has been modified. Then the entry to the old copy is overwritten /// with a branch to the new copy. If there was no old copy, this acts /// just like JIT::getPointerToFunction(). /// void *JIT::recompileAndRelinkFunction(Function *F) { void *OldAddr = getPointerToGlobalIfAvailable(F); // If it's not already compiled there is no reason to patch it up. if (OldAddr == 0) { return getPointerToFunction(F); } // Delete the old function mapping. addGlobalMapping(F, 0); // Recodegen the function runJITOnFunction(F); // Update state, forward the old function to the new function. void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); TJI.replaceMachineCodeForFunction(OldAddr, Addr); return Addr; } /// getMemoryForGV - This method abstracts memory allocation of global /// variable so that the JIT can allocate thread local variables depending /// on the target. /// char* JIT::getMemoryForGV(const GlobalVariable* GV) { char *Ptr; // GlobalVariable's which are not "constant" will cause trouble in a server // situation. It's returned in the same block of memory as code which may // not be writable. if (isGVCompilationDisabled() && !GV->isConstant()) { llvm_report_error("Compilation of non-internal GlobalValue is disabled!"); } // Some applications require globals and code to live together, so they may // be allocated into the same buffer, but in general globals are allocated // through the memory manager which puts them near the code but not in the // same buffer. const Type *GlobalType = GV->getType()->getElementType(); size_t S = getTargetData()->getTypeAllocSize(GlobalType); size_t A = getTargetData()->getPreferredAlignment(GV); if (GV->isThreadLocal()) { MutexGuard locked(lock); Ptr = TJI.allocateThreadLocalMemory(S); } else if (TJI.allocateSeparateGVMemory()) { if (A <= 8) { Ptr = (char*)malloc(S); } else { // Allocate S+A bytes of memory, then use an aligned pointer within that // space. Ptr = (char*)malloc(S+A); unsigned MisAligned = ((intptr_t)Ptr & (A-1)); Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0); } } else if (AllocateGVsWithCode) { Ptr = (char*)JCE->allocateSpace(S, A); } else { Ptr = (char*)JCE->allocateGlobal(S, A); } return Ptr; } void JIT::addPendingFunction(Function *F) { MutexGuard locked(lock); jitstate->getPendingFunctions(locked).push_back(F); } JITEventListener::~JITEventListener() {}