//===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARMTargetStreamer class. // //===----------------------------------------------------------------------===// #include "llvm/ADT/MapVector.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCContext.h" using namespace llvm; namespace { // A class to keep track of assembler-generated constant pools that are use to // implement the ldr-pseudo. class ConstantPool { typedef SmallVector, 4> EntryVecTy; EntryVecTy Entries; public: // Initialize a new empty constant pool ConstantPool() {} // Add a new entry to the constant pool in the next slot. // \param Value is the new entry to put in the constant pool. // // \returns a MCExpr that references the newly inserted value const MCExpr *addEntry(const MCExpr *Value, MCContext &Context); // Emit the contents of the constant pool using the provided streamer. void emitEntries(MCStreamer &Streamer); // Return true if the constant pool is empty bool empty(); }; } namespace llvm { class AssemblerConstantPools { // Map type used to keep track of per-Section constant pools used by the // ldr-pseudo opcode. The map associates a section to its constant pool. The // constant pool is a vector of (label, value) pairs. When the ldr // pseudo is parsed we insert a new (label, value) pair into the constant pool // for the current section and add MCSymbolRefExpr to the new label as // an opcode to the ldr. After we have parsed all the user input we // output the (label, value) pairs in each constant pool at the end of the // section. // // We use the MapVector for the map type to ensure stable iteration of // the sections at the end of the parse. We need to iterate over the // sections in a stable order to ensure that we have print the // constant pools in a deterministic order when printing an assembly // file. typedef MapVector ConstantPoolMapTy; ConstantPoolMapTy ConstantPools; public: AssemblerConstantPools() {} ~AssemblerConstantPools() {} void emitAll(MCStreamer &Streamer); void emitForCurrentSection(MCStreamer &Streamer); const MCExpr *addEntry(MCStreamer &Streamer, const MCExpr *Expr); private: ConstantPool *getConstantPool(const MCSection *Section); ConstantPool &getOrCreateConstantPool(const MCSection *Section); }; } // // ConstantPool implementation // // Emit the contents of the constant pool using the provided streamer. void ConstantPool::emitEntries(MCStreamer &Streamer) { if (Entries.empty()) return; Streamer.EmitCodeAlignment(4); // align to 4-byte address Streamer.EmitDataRegion(MCDR_DataRegion); for (EntryVecTy::const_iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { Streamer.EmitLabel(I->first); Streamer.EmitValue(I->second, 4); } Streamer.EmitDataRegion(MCDR_DataRegionEnd); Entries.clear(); } const MCExpr *ConstantPool::addEntry(const MCExpr *Value, MCContext &Context) { MCSymbol *CPEntryLabel = Context.CreateTempSymbol(); Entries.push_back(std::make_pair(CPEntryLabel, Value)); return MCSymbolRefExpr::Create(CPEntryLabel, Context); } bool ConstantPool::empty() { return Entries.empty(); } // // AssemblerConstantPools implementation // ConstantPool * AssemblerConstantPools::getConstantPool(const MCSection *Section) { ConstantPoolMapTy::iterator CP = ConstantPools.find(Section); if (CP == ConstantPools.end()) return 0; return &CP->second; } ConstantPool & AssemblerConstantPools::getOrCreateConstantPool(const MCSection *Section) { return ConstantPools[Section]; } static void emitConstantPool(MCStreamer &Streamer, const MCSection *Section, ConstantPool &CP) { if (!CP.empty()) { Streamer.SwitchSection(Section); CP.emitEntries(Streamer); } } void AssemblerConstantPools::emitAll(MCStreamer &Streamer) { // Dump contents of assembler constant pools. for (ConstantPoolMapTy::iterator CPI = ConstantPools.begin(), CPE = ConstantPools.end(); CPI != CPE; ++CPI) { const MCSection *Section = CPI->first; ConstantPool &CP = CPI->second; emitConstantPool(Streamer, Section, CP); } } void AssemblerConstantPools::emitForCurrentSection(MCStreamer &Streamer) { const MCSection *Section = Streamer.getCurrentSection().first; if (ConstantPool *CP = getConstantPool(Section)) { emitConstantPool(Streamer, Section, *CP); } } const MCExpr *AssemblerConstantPools::addEntry(MCStreamer &Streamer, const MCExpr *Expr) { const MCSection *Section = Streamer.getCurrentSection().first; return getOrCreateConstantPool(Section).addEntry(Expr, Streamer.getContext()); } // // ARMTargetStreamer Implemenation // ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S) : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {} ARMTargetStreamer::~ARMTargetStreamer() {} // The constant pool handling is shared by all ARMTargetStreamer // implementations. const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr) { return ConstantPools->addEntry(Streamer, Expr); } void ARMTargetStreamer::emitCurrentConstantPool() { ConstantPools->emitForCurrentSection(Streamer); } // finish() - write out any non-empty assembler constant pools. void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); } // The remaining callbacks should be handled separately by each // streamer. void ARMTargetStreamer::emitFnStart() { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitFnEnd() { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitCantUnwind() { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitHandlerData() { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitPad(int64_t Offset) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitRegSave(const SmallVectorImpl &RegList, bool isVector) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitUnwindRaw( int64_t StackOffset, const SmallVectorImpl &Opcodes) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::switchVendor(StringRef Vendor) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitTextAttribute(unsigned Attribute, StringRef String) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute, unsigned IntValue, StringRef StringValue) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitArch(unsigned Arch) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitObjectArch(unsigned Arch) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitFPU(unsigned FPU) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::finishAttributeSection() { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) { llvm_unreachable("unimplemented"); } void ARMTargetStreamer::AnnotateTLSDescriptorSequence( const MCSymbolRefExpr *SRE) { llvm_unreachable("unimplemented"); }