//===- MergeFunctions.cpp - Merge identical functions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass looks for equivalent functions that are mergable and folds them. // // A hash is computed from the function, based on its type and number of // basic blocks. // // Once all hashes are computed, we perform an expensive equality comparison // on each function pair. This takes n^2/2 comparisons per bucket, so it's // important that the hash function be high quality. The equality comparison // iterates through each instruction in each basic block. // // When a match is found the functions are folded. If both functions are // overridable, we move the functionality into a new internal function and // leave two overridable thunks to it. // //===----------------------------------------------------------------------===// // // Future work: // // * virtual functions. // // Many functions have their address taken by the virtual function table for // the object they belong to. However, as long as it's only used for a lookup // and call, this is irrelevant, and we'd like to fold such implementations. // // * switch from n^2 pair-wise comparisons to an n-way comparison for each // bucket. // // * be smarter about bitcast. // // In order to fold functions, we will sometimes add either bitcast instructions // or bitcast constant expressions. Unfortunately, this can confound further // analysis since the two functions differ where one has a bitcast and the // other doesn't. We should learn to peer through bitcasts without imposing bad // performance properties. // // * emit aliases for ELF // // ELF supports symbol aliases which are represented with GlobalAlias in the // Module, and we could emit them in the case that the addresses don't need to // be distinct. The problem is that not all object formats support equivalent // functionality. There's a few approaches to this problem; // a) teach codegen to lower global aliases to thunks on platforms which don't // support them. // b) always emit thunks, and create a separate thunk-to-alias pass which // runs on ELF systems. This has the added benefit of transforming other // thunks such as those produced by a C++ frontend into aliases when legal // to do so. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mergefunc" #include "llvm/Transforms/IPO.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include #include using namespace llvm; STATISTIC(NumFunctionsMerged, "Number of functions merged"); namespace { /// MergeFunctions finds functions which will generate identical machine code, /// by considering all pointer types to be equivalent. Once identified, /// MergeFunctions will fold them by replacing a call to one to a call to a /// bitcast of the other. /// struct MergeFunctions : public ModulePass { static char ID; // Pass identification, replacement for typeid MergeFunctions() : ModulePass(ID) {} bool runOnModule(Module &M); }; } char MergeFunctions::ID = 0; INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false); ModulePass *llvm::createMergeFunctionsPass() { return new MergeFunctions(); } // ===----------------------------------------------------------------------=== // Comparison of functions // ===----------------------------------------------------------------------=== namespace { class FunctionComparator { public: FunctionComparator(TargetData *TD, Function *F1, Function *F2) : F1(F1), F2(F2), TD(TD) {} // Compare - test whether the two functions have equivalent behaviour. bool Compare(); private: // Compare - test whether two basic blocks have equivalent behaviour. bool Compare(const BasicBlock *BB1, const BasicBlock *BB2); // getDomain - a value's domain is its parent function if it is specific to a // function, or NULL otherwise. const Function *getDomain(const Value *V) const; // Enumerate - Assign or look up previously assigned numbers for the two // values, and return whether the numbers are equal. Numbers are assigned in // the order visited. bool Enumerate(const Value *V1, const Value *V2); // isEquivalentOperation - Compare two Instructions for equivalence, similar // to Instruction::isSameOperationAs but with modifications to the type // comparison. bool isEquivalentOperation(const Instruction *I1, const Instruction *I2) const; // isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic. bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); bool isEquivalentGEP(const GetElementPtrInst *GEP1, const GetElementPtrInst *GEP2) { return isEquivalentGEP(cast(GEP1), cast(GEP2)); } // isEquivalentType - Compare two Types, treating all pointer types as equal. bool isEquivalentType(const Type *Ty1, const Type *Ty2) const; // The two functions undergoing comparison. Function *F1, *F2; TargetData *TD; typedef DenseMap IDMap; IDMap Map; DenseMap Domains; DenseMap DomainCount; }; } /// Compute a number which is guaranteed to be equal for two equivalent /// functions, but is very likely to be different for different functions. This /// needs to be computed as efficiently as possible. static unsigned long ProfileFunction(const Function *F) { const FunctionType *FTy = F->getFunctionType(); FoldingSetNodeID ID; ID.AddInteger(F->size()); ID.AddInteger(F->getCallingConv()); ID.AddBoolean(F->hasGC()); ID.AddBoolean(FTy->isVarArg()); ID.AddInteger(FTy->getReturnType()->getTypeID()); for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) ID.AddInteger(FTy->getParamType(i)->getTypeID()); return ID.ComputeHash(); } /// isEquivalentType - any two pointers are equivalent. Otherwise, standard /// type equivalence rules apply. bool FunctionComparator::isEquivalentType(const Type *Ty1, const Type *Ty2) const { if (Ty1 == Ty2) return true; if (Ty1->getTypeID() != Ty2->getTypeID()) return false; switch(Ty1->getTypeID()) { default: llvm_unreachable("Unknown type!"); // Fall through in Release mode. case Type::IntegerTyID: case Type::OpaqueTyID: // Ty1 == Ty2 would have returned true earlier. return false; case Type::VoidTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: return true; case Type::PointerTyID: { const PointerType *PTy1 = cast(Ty1); const PointerType *PTy2 = cast(Ty2); return PTy1->getAddressSpace() == PTy2->getAddressSpace(); } case Type::StructTyID: { const StructType *STy1 = cast(Ty1); const StructType *STy2 = cast(Ty2); if (STy1->getNumElements() != STy2->getNumElements()) return false; if (STy1->isPacked() != STy2->isPacked()) return false; for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) return false; } return true; } case Type::UnionTyID: { const UnionType *UTy1 = cast(Ty1); const UnionType *UTy2 = cast(Ty2); // TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc. if (UTy1->getNumElements() != UTy2->getNumElements()) return false; for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) { if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i))) return false; } return true; } case Type::FunctionTyID: { const FunctionType *FTy1 = cast(Ty1); const FunctionType *FTy2 = cast(Ty2); if (FTy1->getNumParams() != FTy2->getNumParams() || FTy1->isVarArg() != FTy2->isVarArg()) return false; if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) return false; for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) return false; } return true; } case Type::ArrayTyID: { const ArrayType *ATy1 = cast(Ty1); const ArrayType *ATy2 = cast(Ty2); return ATy1->getNumElements() == ATy2->getNumElements() && isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); } case Type::VectorTyID: { const VectorType *VTy1 = cast(Ty1); const VectorType *VTy2 = cast(Ty2); return VTy1->getNumElements() == VTy2->getNumElements() && isEquivalentType(VTy1->getElementType(), VTy2->getElementType()); } } } /// isEquivalentOperation - determine whether the two operations are the same /// except that pointer-to-A and pointer-to-B are equivalent. This should be /// kept in sync with Instruction::isSameOperationAs. bool FunctionComparator::isEquivalentOperation(const Instruction *I1, const Instruction *I2) const { if (I1->getOpcode() != I2->getOpcode() || I1->getNumOperands() != I2->getNumOperands() || !isEquivalentType(I1->getType(), I2->getType()) || !I1->hasSameSubclassOptionalData(I2)) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) if (!isEquivalentType(I1->getOperand(i)->getType(), I2->getOperand(i)->getType())) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast(I1)) return LI->isVolatile() == cast(I2)->isVolatile() && LI->getAlignment() == cast(I2)->getAlignment(); if (const StoreInst *SI = dyn_cast(I1)) return SI->isVolatile() == cast(I2)->isVolatile() && SI->getAlignment() == cast(I2)->getAlignment(); if (const CmpInst *CI = dyn_cast(I1)) return CI->getPredicate() == cast(I2)->getPredicate(); if (const CallInst *CI = dyn_cast(I1)) return CI->isTailCall() == cast(I2)->isTailCall() && CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I2)->getAttributes().getRawPointer(); if (const InvokeInst *CI = dyn_cast(I1)) return CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes().getRawPointer() == cast(I2)->getAttributes().getRawPointer(); if (const InsertValueInst *IVI = dyn_cast(I1)) { if (IVI->getNumIndices() != cast(I2)->getNumIndices()) return false; for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) if (IVI->idx_begin()[i] != cast(I2)->idx_begin()[i]) return false; return true; } if (const ExtractValueInst *EVI = dyn_cast(I1)) { if (EVI->getNumIndices() != cast(I2)->getNumIndices()) return false; for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) if (EVI->idx_begin()[i] != cast(I2)->idx_begin()[i]) return false; return true; } return true; } /// isEquivalentGEP - determine whether two GEP operations perform the same /// underlying arithmetic. bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2) { // When we have target data, we can reduce the GEP down to the value in bytes // added to the address. if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { SmallVector Indices1(GEP1->idx_begin(), GEP1->idx_end()); SmallVector Indices2(GEP2->idx_begin(), GEP2->idx_end()); uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), Indices1.data(), Indices1.size()); uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), Indices2.data(), Indices2.size()); return Offset1 == Offset2; } if (GEP1->getPointerOperand()->getType() != GEP2->getPointerOperand()->getType()) return false; if (GEP1->getNumOperands() != GEP2->getNumOperands()) return false; for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) return false; } return true; } /// getDomain - a value's domain is its parent function if it is specific to a /// function, or NULL otherwise. const Function *FunctionComparator::getDomain(const Value *V) const { if (const Argument *A = dyn_cast(V)) { return A->getParent(); } else if (const BasicBlock *BB = dyn_cast(V)) { return BB->getParent(); } else if (const Instruction *I = dyn_cast(V)) { return I->getParent()->getParent(); } return NULL; } /// Enumerate - Compare two values used by the two functions under pair-wise /// comparison. If this is the first time the values are seen, they're added to /// the mapping so that we will detect mismatches on next use. bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) { // Check for function @f1 referring to itself and function @f2 referring to // itself, or referring to each other, or both referring to either of them. // They're all equivalent if the two functions are otherwise equivalent. if (V1 == F1 || V1 == F2) if (V2 == F1 || V2 == F2) return true; // TODO: constant expressions with GEP or references to F1 or F2. if (isa(V1)) return V1 == V2; if (isa(V1) && isa(V2)) { const InlineAsm *IA1 = cast(V1); const InlineAsm *IA2 = cast(V2); return IA1->getAsmString() == IA2->getAsmString() && IA1->getConstraintString() == IA2->getConstraintString(); } // We enumerate constants globally and arguments, basic blocks or // instructions within the function they belong to. const Function *Domain1 = getDomain(V1); const Function *Domain2 = getDomain(V2); // The domains have to either be both NULL, or F1, F2. if (Domain1 != Domain2) if (Domain1 != F1 && Domain1 != F2) return false; IDMap &Map1 = Domains[Domain1]; unsigned long &ID1 = Map1[V1]; if (!ID1) ID1 = ++DomainCount[Domain1]; IDMap &Map2 = Domains[Domain2]; unsigned long &ID2 = Map2[V2]; if (!ID2) ID2 = ++DomainCount[Domain2]; return ID1 == ID2; } // Compare - test whether two basic blocks have equivalent behaviour. bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) { BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); do { if (!Enumerate(F1I, F2I)) return false; if (const GetElementPtrInst *GEP1 = dyn_cast(F1I)) { const GetElementPtrInst *GEP2 = dyn_cast(F2I); if (!GEP2) return false; if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) return false; if (!isEquivalentGEP(GEP1, GEP2)) return false; } else { if (!isEquivalentOperation(F1I, F2I)) return false; assert(F1I->getNumOperands() == F2I->getNumOperands()); for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { Value *OpF1 = F1I->getOperand(i); Value *OpF2 = F2I->getOperand(i); if (!Enumerate(OpF1, OpF2)) return false; if (OpF1->getValueID() != OpF2->getValueID() || !isEquivalentType(OpF1->getType(), OpF2->getType())) return false; } } ++F1I, ++F2I; } while (F1I != F1E && F2I != F2E); return F1I == F1E && F2I == F2E; } bool FunctionComparator::Compare() { // We need to recheck everything, but check the things that weren't included // in the hash first. if (F1->getAttributes() != F2->getAttributes()) return false; if (F1->hasGC() != F2->hasGC()) return false; if (F1->hasGC() && F1->getGC() != F2->getGC()) return false; if (F1->hasSection() != F2->hasSection()) return false; if (F1->hasSection() && F1->getSection() != F2->getSection()) return false; if (F1->isVarArg() != F2->isVarArg()) return false; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (F1->getCallingConv() != F2->getCallingConv()) return false; if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) return false; assert(F1->arg_size() == F2->arg_size() && "Identical functions have a different number of args."); // Visit the arguments so that they get enumerated in the order they're // passed in. for (Function::const_arg_iterator f1i = F1->arg_begin(), f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { if (!Enumerate(f1i, f2i)) llvm_unreachable("Arguments repeat"); } // We need to do an ordered walk since the actual ordering of the blocks in // the linked list is immaterial. Our walk starts at the entry block for both // functions, then takes each block from each terminator in order. As an // artifact, this also means that unreachable blocks are ignored. SmallVector F1BBs, F2BBs; SmallSet VisitedBBs; // in terms of F1. F1BBs.push_back(&F1->getEntryBlock()); F2BBs.push_back(&F2->getEntryBlock()); VisitedBBs.insert(F1BBs[0]); while (!F1BBs.empty()) { const BasicBlock *F1BB = F1BBs.pop_back_val(); const BasicBlock *F2BB = F2BBs.pop_back_val(); if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB)) return false; const TerminatorInst *F1TI = F1BB->getTerminator(); const TerminatorInst *F2TI = F2BB->getTerminator(); assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(F1TI->getSuccessor(i))) continue; F1BBs.push_back(F1TI->getSuccessor(i)); F2BBs.push_back(F2TI->getSuccessor(i)); } } return true; } // ===----------------------------------------------------------------------=== // Folding of functions // ===----------------------------------------------------------------------=== // Cases: // * F is external strong, G is external strong: // turn G into a thunk to F (1) // * F is external strong, G is external weak: // turn G into a thunk to F (1) // * F is external weak, G is external weak: // unfoldable // * F is external strong, G is internal: // address of G taken: // turn G into a thunk to F (1) // address of G not taken: // make G an alias to F (2) // * F is internal, G is external weak // address of F is taken: // turn G into a thunk to F (1) // address of F is not taken: // make G an alias of F (2) // * F is internal, G is internal: // address of F and G are taken: // turn G into a thunk to F (1) // address of G is not taken: // make G an alias to F (2) // // alias requires linkage == (external,local,weak) fallback to creating a thunk // external means 'externally visible' linkage != (internal,private) // internal means linkage == (internal,private) // weak means linkage mayBeOverridable // being external implies that the address is taken // // 1. turn G into a thunk to F // 2. make G an alias to F enum LinkageCategory { ExternalStrong, ExternalWeak, Internal }; static LinkageCategory categorize(const Function *F) { switch (F->getLinkage()) { case GlobalValue::InternalLinkage: case GlobalValue::PrivateLinkage: case GlobalValue::LinkerPrivateLinkage: return Internal; case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::ExternalWeakLinkage: case GlobalValue::LinkerPrivateWeakLinkage: return ExternalWeak; case GlobalValue::ExternalLinkage: case GlobalValue::AvailableExternallyLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::AppendingLinkage: case GlobalValue::DLLImportLinkage: case GlobalValue::DLLExportLinkage: case GlobalValue::CommonLinkage: return ExternalStrong; } llvm_unreachable("Unknown LinkageType."); return ExternalWeak; } static void ThunkGToF(Function *F, Function *G) { if (!G->mayBeOverridden()) { // Redirect direct callers of G to F. Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); for (Value::use_iterator UI = G->use_begin(), UE = G->use_end(); UI != UE;) { Value::use_iterator TheIter = UI; ++UI; CallSite CS(*TheIter); if (CS && CS.isCallee(TheIter)) TheIter.getUse().set(BitcastF); } } Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", G->getParent()); BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); SmallVector Args; unsigned i = 0; const FunctionType *FFTy = F->getFunctionType(); for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); AI != AE; ++AI) { if (FFTy->getParamType(i) == AI->getType()) { Args.push_back(AI); } else { Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB)); } ++i; } CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB); CI->setTailCall(); CI->setCallingConv(F->getCallingConv()); if (NewG->getReturnType()->isVoidTy()) { ReturnInst::Create(F->getContext(), BB); } else if (CI->getType() != NewG->getReturnType()) { Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB); ReturnInst::Create(F->getContext(), BCI, BB); } else { ReturnInst::Create(F->getContext(), CI, BB); } NewG->copyAttributesFrom(G); NewG->takeName(G); G->replaceAllUsesWith(NewG); G->eraseFromParent(); } static void AliasGToF(Function *F, Function *G) { // Darwin will trigger llvm_unreachable if asked to codegen an alias. return ThunkGToF(F, G); #if 0 if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage()) return ThunkGToF(F, G); GlobalAlias *GA = new GlobalAlias( G->getType(), G->getLinkage(), "", ConstantExpr::getBitCast(F, G->getType()), G->getParent()); F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); GA->takeName(G); GA->setVisibility(G->getVisibility()); G->replaceAllUsesWith(GA); G->eraseFromParent(); #endif } static bool fold(std::vector &FnVec, unsigned i, unsigned j) { Function *F = FnVec[i]; Function *G = FnVec[j]; LinkageCategory catF = categorize(F); LinkageCategory catG = categorize(G); if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) { std::swap(FnVec[i], FnVec[j]); std::swap(F, G); std::swap(catF, catG); } switch (catF) { case ExternalStrong: switch (catG) { case ExternalStrong: case ExternalWeak: ThunkGToF(F, G); break; case Internal: if (G->hasAddressTaken()) ThunkGToF(F, G); else AliasGToF(F, G); break; } break; case ExternalWeak: { assert(catG == ExternalWeak); // Make them both thunks to the same internal function. F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", F->getParent()); H->copyAttributesFrom(F); H->takeName(F); F->replaceAllUsesWith(H); ThunkGToF(F, G); ThunkGToF(F, H); F->setLinkage(GlobalValue::InternalLinkage); } break; case Internal: switch (catG) { case ExternalStrong: llvm_unreachable(0); // fall-through case ExternalWeak: if (F->hasAddressTaken()) ThunkGToF(F, G); else AliasGToF(F, G); break; case Internal: { bool addrTakenF = F->hasAddressTaken(); bool addrTakenG = G->hasAddressTaken(); if (!addrTakenF && addrTakenG) { std::swap(FnVec[i], FnVec[j]); std::swap(F, G); std::swap(addrTakenF, addrTakenG); } if (addrTakenF && addrTakenG) { ThunkGToF(F, G); } else { assert(!addrTakenG); AliasGToF(F, G); } } break; } break; } ++NumFunctionsMerged; return true; } // ===----------------------------------------------------------------------=== // Pass definition // ===----------------------------------------------------------------------=== bool MergeFunctions::runOnModule(Module &M) { bool Changed = false; std::map > FnMap; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; FnMap[ProfileFunction(F)].push_back(F); } TargetData *TD = getAnalysisIfAvailable(); bool LocalChanged; do { LocalChanged = false; DEBUG(dbgs() << "size: " << FnMap.size() << "\n"); for (std::map >::iterator I = FnMap.begin(), E = FnMap.end(); I != E; ++I) { std::vector &FnVec = I->second; DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n"); for (int i = 0, e = FnVec.size(); i != e; ++i) { for (int j = i + 1; j != e; ++j) { bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare(); DEBUG(dbgs() << " " << FnVec[i]->getName() << (isEqual ? " == " : " != ") << FnVec[j]->getName() << "\n"); if (isEqual) { if (fold(FnVec, i, j)) { LocalChanged = true; FnVec.erase(FnVec.begin() + j); --j, --e; } } } } } Changed |= LocalChanged; } while (LocalChanged); return Changed; }