// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s // rdar://13784901 struct S0 { int x; static const int test0 = __alignof__(x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} static const int test1 = __alignof__(S0::x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} auto test2() -> char(&)[__alignof__(x)]; // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} }; struct S1; // expected-note 5 {{forward declaration}} extern S1 s1; const int test3 = __alignof__(s1); // expected-error {{invalid application of 'alignof' to an incomplete type 'S1'}} struct S2 { S2(); S1 &s; int x; int test4 = __alignof__(x); // ok int test5 = __alignof__(s); // expected-error {{invalid application of 'alignof' to an incomplete type 'S1'}} }; const int test6 = __alignof__(S2::x); const int test7 = __alignof__(S2::s); // expected-error {{invalid application of 'alignof' to an incomplete type 'S1'}} // Arguably, these should fail like the S1 cases do: the alignment of // 's2.x' should depend on the alignment of both x-within-S2 and // s2-within-S3 and thus require 'S3' to be complete. If we start // doing the appropriate recursive walk to do that, we should make // sure that these cases don't explode. struct S3 { S2 s2; static const int test8 = __alignof__(s2.x); static const int test9 = __alignof__(s2.s); // expected-error {{invalid application of 'alignof' to an incomplete type 'S1'}} auto test10() -> char(&)[__alignof__(s2.x)]; static const int test11 = __alignof__(S3::s2.x); static const int test12 = __alignof__(S3::s2.s); // expected-error {{invalid application of 'alignof' to an incomplete type 'S1'}} auto test13() -> char(&)[__alignof__(s2.x)]; }; // Same reasoning as S3. struct S4 { union { int x; }; static const int test0 = __alignof__(x); static const int test1 = __alignof__(S0::x); auto test2() -> char(&)[__alignof__(x)]; };