summaryrefslogtreecommitdiff
path: root/docs/LanguageExtensions.rst
blob: 7a4b31e7acc09b9a475e2dd91e69b26a19ccc7db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
=========================
Clang Language Extensions
=========================

.. contents::
   :local:
   :depth: 1

.. toctree::
   :hidden:

   ObjectiveCLiterals
   BlockLanguageSpec
   Block-ABI-Apple
   AutomaticReferenceCounting   

Introduction
============

This document describes the language extensions provided by Clang.  In addition
to the language extensions listed here, Clang aims to support a broad range of
GCC extensions.  Please see the `GCC manual
<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
these extensions.

.. _langext-feature_check:

Feature Checking Macros
=======================

Language extensions can be very useful, but only if you know you can depend on
them.  In order to allow fine-grain features checks, we support three builtin
function-like macros.  This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile "compiler
version checks".

``__has_builtin``
-----------------

This function-like macro takes a single identifier argument that is the name of
a builtin function.  It evaluates to 1 if the builtin is supported or 0 if not.
It can be used like this:

.. code-block:: c++

  #ifndef __has_builtin         // Optional of course.
    #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_builtin(__builtin_trap)
    __builtin_trap();
  #else
    abort();
  #endif
  ...

.. _langext-__has_feature-__has_extension:

``__has_feature`` and ``__has_extension``
-----------------------------------------

These function-like macros take a single identifier argument that is the name
of a feature.  ``__has_feature`` evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see :ref:`below <langext-has-feature-back-compat>`), while
``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not.  They can be used like this:

.. code-block:: c++

  #ifndef __has_feature         // Optional of course.
    #define __has_feature(x) 0  // Compatibility with non-clang compilers.
  #endif
  #ifndef __has_extension
    #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
  #endif

  ...
  #if __has_feature(cxx_rvalue_references)
  // This code will only be compiled with the -std=c++11 and -std=gnu++11
  // options, because rvalue references are only standardized in C++11.
  #endif

  #if __has_extension(cxx_rvalue_references)
  // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
  // and -std=gnu++98 options, because rvalue references are supported as a
  // language extension in C++98.
  #endif

.. _langext-has-feature-back-compat:

For backwards compatibility reasons, ``__has_feature`` can also be used to test
for support for non-standardized features, i.e. features not prefixed ``c_``,
``cxx_`` or ``objc_``.

Another use of ``__has_feature`` is to check for compiler features not related
to the language standard, such as e.g. :doc:`AddressSanitizer
<AddressSanitizer>`.

If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
to ``__has_feature``.

The feature tag is described along with the language feature below.

The feature name or extension name can also be specified with a preceding and
following ``__`` (double underscore) to avoid interference from a macro with
the same name.  For instance, ``__cxx_rvalue_references__`` can be used instead
of ``cxx_rvalue_references``.

``__has_attribute``
-------------------

This function-like macro takes a single identifier argument that is the name of
an attribute.  It evaluates to 1 if the attribute is supported or 0 if not.  It
can be used like this:

.. code-block:: c++

  #ifndef __has_attribute         // Optional of course.
    #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
  #endif

  ...
  #if __has_attribute(always_inline)
  #define ALWAYS_INLINE __attribute__((always_inline))
  #else
  #define ALWAYS_INLINE
  #endif
  ...

The attribute name can also be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name.  For
instance, ``__always_inline__`` can be used instead of ``always_inline``.

Include File Checking Macros
============================

Not all developments systems have the same include files.  The
:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
you to check for the existence of an include file before doing a possibly
failing ``#include`` directive.  Include file checking macros must be used
as expressions in ``#if`` or ``#elif`` preprocessing directives.

.. _langext-__has_include:

``__has_include``
-----------------

This function-like macro takes a single file name string argument that is the
name of an include file.  It evaluates to 1 if the file can be found using the
include paths, or 0 otherwise:

.. code-block:: c++

  // Note the two possible file name string formats.
  #if __has_include("myinclude.h") && __has_include(<stdint.h>)
  # include "myinclude.h"
  #endif

To test for this feature, use ``#if defined(__has_include)``:

.. code-block:: c++

  // To avoid problem with non-clang compilers not having this macro.
  #if defined(__has_include)
  #if __has_include("myinclude.h")
  # include "myinclude.h"
  #endif
  #endif

.. _langext-__has_include_next:

``__has_include_next``
----------------------

This function-like macro takes a single file name string argument that is the
name of an include file.  It is like ``__has_include`` except that it looks for
the second instance of the given file found in the include paths.  It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:

.. code-block:: c++

  // Note the two possible file name string formats.
  #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
  # include_next "myinclude.h"
  #endif

  // To avoid problem with non-clang compilers not having this macro.
  #if defined(__has_include_next)
  #if __has_include_next("myinclude.h")
  # include_next "myinclude.h"
  #endif
  #endif

Note that ``__has_include_next``, like the GNU extension ``#include_next``
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file.  A warning will also be issued if an
absolute path is used in the file argument.

``__has_warning``
-----------------

This function-like macro takes a string literal that represents a command line
option for a warning and returns true if that is a valid warning option.

.. code-block:: c++

  #if __has_warning("-Wformat")
  ...
  #endif

Builtin Macros
==============

``__BASE_FILE__``
  Defined to a string that contains the name of the main input file passed to
  Clang.

``__COUNTER__``
  Defined to an integer value that starts at zero and is incremented each time
  the ``__COUNTER__`` macro is expanded.

``__INCLUDE_LEVEL__``
  Defined to an integral value that is the include depth of the file currently
  being translated.  For the main file, this value is zero.

``__TIMESTAMP__``
  Defined to the date and time of the last modification of the current source
  file.

``__clang__``
  Defined when compiling with Clang

``__clang_major__``
  Defined to the major marketing version number of Clang (e.g., the 2 in
  2.0.1).  Note that marketing version numbers should not be used to check for
  language features, as different vendors use different numbering schemes.
  Instead, use the :ref:`langext-feature_check`.

``__clang_minor__``
  Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
  that marketing version numbers should not be used to check for language
  features, as different vendors use different numbering schemes.  Instead, use
  the :ref:`langext-feature_check`.

``__clang_patchlevel__``
  Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).

``__clang_version__``
  Defined to a string that captures the Clang marketing version, including the
  Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".

.. _langext-vectors:

Vectors and Extended Vectors
============================

Supports the GCC, OpenCL, AltiVec and NEON vector extensions.

OpenCL vector types are created using ``ext_vector_type`` attribute.  It
support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL.  An example
is:

.. code-block:: c++

  typedef float float4 __attribute__((ext_vector_type(4)));
  typedef float float2 __attribute__((ext_vector_type(2)));

  float4 foo(float2 a, float2 b) {
    float4 c;
    c.xz = a;
    c.yw = b;
    return c;
  }

Query for this feature with ``__has_extension(attribute_ext_vector_type)``.

Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
and functions.  For example:

.. code-block:: c++

  vector float foo(vector int a) {
    vector int b;
    b = vec_add(a, a) + a;
    return (vector float)b;
  }

NEON vector types are created using ``neon_vector_type`` and
``neon_polyvector_type`` attributes.  For example:

.. code-block:: c++

  typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
  typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;

  int8x8_t foo(int8x8_t a) {
    int8x8_t v;
    v = a;
    return v;
  }

Vector Literals
---------------

Vector literals can be used to create vectors from a set of scalars, or
vectors.  Either parentheses or braces form can be used.  In the parentheses
form the number of literal values specified must be one, i.e. referring to a
scalar value, or must match the size of the vector type being created.  If a
single scalar literal value is specified, the scalar literal value will be
replicated to all the components of the vector type.  In the brackets form any
number of literals can be specified.  For example:

.. code-block:: c++

  typedef int v4si __attribute__((__vector_size__(16)));
  typedef float float4 __attribute__((ext_vector_type(4)));
  typedef float float2 __attribute__((ext_vector_type(2)));

  v4si vsi = (v4si){1, 2, 3, 4};
  float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
  vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
  vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
  vector int vi3 = (vector int)(1, 2); // error
  vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
  vector int vi5 = (vector int)(1, 2, 3, 4);
  float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));

Vector Operations
-----------------

The table below shows the support for each operation by vector extension.  A
dash indicates that an operation is not accepted according to a corresponding
specification.

============================== ====== ======= === ====
         Opeator               OpenCL AltiVec GCC NEON
============================== ====== ======= === ====
[]                              yes     yes   yes  --
unary operators +, --           yes     yes   yes  --
++, -- --                       yes     yes   yes  --
+,--,*,/,%                      yes     yes   yes  --
bitwise operators &,|,^,~       yes     yes   yes  --
>>,<<                           yes     yes   yes  --
!, &&, ||                       no      --    --   --
==, !=, >, <, >=, <=            yes     yes   --   --
=                               yes     yes   yes yes
:?                              yes     --    --   --
sizeof                          yes     yes   yes yes
============================== ====== ======= === ====

See also :ref:`langext-__builtin_shufflevector`.

Messages on ``deprecated`` and ``unavailable`` Attributes
=========================================================

An optional string message can be added to the ``deprecated`` and
``unavailable`` attributes.  For example:

.. code-block:: c++

  void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));

If the deprecated or unavailable declaration is used, the message will be
incorporated into the appropriate diagnostic:

.. code-block:: c++

  harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
        [-Wdeprecated-declarations]
    explode();
    ^

Query for this feature with
``__has_extension(attribute_deprecated_with_message)`` and
``__has_extension(attribute_unavailable_with_message)``.

Attributes on Enumerators
=========================

Clang allows attributes to be written on individual enumerators.  This allows
enumerators to be deprecated, made unavailable, etc.  The attribute must appear
after the enumerator name and before any initializer, like so:

.. code-block:: c++

  enum OperationMode {
    OM_Invalid,
    OM_Normal,
    OM_Terrified __attribute__((deprecated)),
    OM_AbortOnError __attribute__((deprecated)) = 4
  };

Attributes on the ``enum`` declaration do not apply to individual enumerators.

Query for this feature with ``__has_extension(enumerator_attributes)``.

'User-Specified' System Frameworks
==================================

Clang provides a mechanism by which frameworks can be built in such a way that
they will always be treated as being "system frameworks", even if they are not
present in a system framework directory.  This can be useful to system
framework developers who want to be able to test building other applications
with development builds of their framework, including the manner in which the
compiler changes warning behavior for system headers.

Framework developers can opt-in to this mechanism by creating a
"``.system_framework``" file at the top-level of their framework.  That is, the
framework should have contents like:

.. code-block:: none

  .../TestFramework.framework
  .../TestFramework.framework/.system_framework
  .../TestFramework.framework/Headers
  .../TestFramework.framework/Headers/TestFramework.h
  ...

Clang will treat the presence of this file as an indicator that the framework
should be treated as a system framework, regardless of how it was found in the
framework search path.  For consistency, we recommend that such files never be
included in installed versions of the framework.

Availability attribute
======================

Clang introduces the ``availability`` attribute, which can be placed on
declarations to describe the lifecycle of that declaration relative to
operating system versions.  Consider the function declaration for a
hypothetical function ``f``:

.. code-block:: c++

  void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));

The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7.  This information
is used by Clang to determine when it is safe to use ``f``: for example, if
Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
succeeds.  If Clang is instructed to compile code for Mac OS X 10.6, the call
succeeds but Clang emits a warning specifying that the function is deprecated.
Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
fails because ``f()`` is no longer available.

The availability attribute is a comma-separated list starting with the
platform name and then including clauses specifying important milestones in the
declaration's lifetime (in any order) along with additional information.  Those
clauses can be:

introduced=\ *version*
  The first version in which this declaration was introduced.

deprecated=\ *version*
  The first version in which this declaration was deprecated, meaning that
  users should migrate away from this API.

obsoleted=\ *version*
  The first version in which this declaration was obsoleted, meaning that it
  was removed completely and can no longer be used.

unavailable
  This declaration is never available on this platform.

message=\ *string-literal*
  Additional message text that Clang will provide when emitting a warning or
  error about use of a deprecated or obsoleted declaration.  Useful to direct
  users to replacement APIs.

Multiple availability attributes can be placed on a declaration, which may
correspond to different platforms.  Only the availability attribute with the
platform corresponding to the target platform will be used; any others will be
ignored.  If no availability attribute specifies availability for the current
target platform, the availability attributes are ignored.  Supported platforms
are:

``ios``
  Apple's iOS operating system.  The minimum deployment target is specified by
  the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
  command-line arguments.

``macosx``
  Apple's Mac OS X operating system.  The minimum deployment target is
  specified by the ``-mmacosx-version-min=*version*`` command-line argument.

A declaration can be used even when deploying back to a platform version prior
to when the declaration was introduced.  When this happens, the declaration is
`weakly linked
<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
as if the ``weak_import`` attribute were added to the declaration.  A
weakly-linked declaration may or may not be present a run-time, and a program
can determine whether the declaration is present by checking whether the
address of that declaration is non-NULL.

If there are multiple declarations of the same entity, the availability
attributes must either match on a per-platform basis or later
declarations must not have availability attributes for that
platform. For example:

.. code-block:: c

  void g(void) __attribute__((availability(macosx,introduced=10.4)));
  void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
  void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
  void g(void); // okay, inherits both macosx and ios availability from above.
  void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch

When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:

.. code-block:: objc

  @interface A
  - (id)method __attribute__((availability(macosx,introduced=10.4)));
  - (id)method2 __attribute__((availability(macosx,introduced=10.4)));
  @end

  @interface B : A
  - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
  - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
  @end

Checks for Standard Language Features
=====================================

The ``__has_feature`` macro can be used to query if certain standard language
features are enabled.  The ``__has_extension`` macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them.  The features which can be tested are listed here.

C++98
-----

The features listed below are part of the C++98 standard.  These features are
enabled by default when compiling C++ code.

C++ exceptions
^^^^^^^^^^^^^^

Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
enabled.  For example, compiling code with ``-fno-exceptions`` disables C++
exceptions.

C++ RTTI
^^^^^^^^

Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled.  For
example, compiling code with ``-fno-rtti`` disables the use of RTTI.

C++11
-----

The features listed below are part of the C++11 standard.  As a result, all
these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
when compiling C++ code.

C++11 SFINAE includes access control
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_access_control_sfinae)`` or
``__has_extension(cxx_access_control_sfinae)`` to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.

C++11 alias templates
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_alias_templates)`` or
``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
alias declarations and alias templates is enabled.

C++11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
determine if support for alignment specifiers using ``alignas`` is enabled.

C++11 attributes
^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
determine if support for attribute parsing with C++11's square bracket notation
is enabled.

C++11 generalized constant expressions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
constant expressions (e.g., ``constexpr``) is enabled.

C++11 ``decltype()``
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
determine if support for the ``decltype()`` specifier is enabled.  C++11's
``decltype`` does not require type-completeness of a function call expression.
Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
support for this feature is enabled.

C++11 default template arguments in function templates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_default_function_template_args)`` or
``__has_extension(cxx_default_function_template_args)`` to determine if support
for default template arguments in function templates is enabled.

C++11 ``default``\ ed functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_defaulted_functions)`` or
``__has_extension(cxx_defaulted_functions)`` to determine if support for
defaulted function definitions (with ``= default``) is enabled.

C++11 delegating constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
delegating constructors is enabled.

C++11 ``deleted`` functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_deleted_functions)`` or
``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
function definitions (with ``= delete``) is enabled.

C++11 explicit conversion functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
``explicit`` conversion functions is enabled.

C++11 generalized initializers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
generalized initializers (using braced lists and ``std::initializer_list``) is
enabled.

C++11 implicit move constructors/assignment operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.

C++11 inheriting constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
inheriting constructors is enabled.

C++11 inline namespaces
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_inline_namespaces)`` or
``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
namespaces is enabled.

C++11 lambdas
^^^^^^^^^^^^^

Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
determine if support for lambdas is enabled.

C++11 local and unnamed types as template arguments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_local_type_template_args)`` or
``__has_extension(cxx_local_type_template_args)`` to determine if support for
local and unnamed types as template arguments is enabled.

C++11 noexcept
^^^^^^^^^^^^^^

Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
determine if support for noexcept exception specifications is enabled.

C++11 in-class non-static data member initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
initialization of non-static data members is enabled.

C++11 ``nullptr``
^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
determine if support for ``nullptr`` is enabled.

C++11 ``override control``
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_override_control)`` or
``__has_extension(cxx_override_control)`` to determine if support for the
override control keywords is enabled.

C++11 reference-qualified functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_reference_qualified_functions)`` or
``__has_extension(cxx_reference_qualified_functions)`` to determine if support
for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
applied to ``*this``) is enabled.

C++11 range-based ``for`` loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
determine if support for the range-based for loop is enabled.

C++11 raw string literals
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
string literals (e.g., ``R"x(foo\bar)x"``) is enabled.

C++11 rvalue references
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_rvalue_references)`` or
``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
references is enabled.

C++11 ``static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_static_assert)`` or
``__has_extension(cxx_static_assert)`` to determine if support for compile-time
assertions using ``static_assert`` is enabled.

C++11 ``thread_local``
^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_thread_local)`` to determine if support for
``thread_local`` variables is enabled.

C++11 type inference
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
determine C++11 type inference is supported using the ``auto`` specifier.  If
this is disabled, ``auto`` will instead be a storage class specifier, as in C
or C++98.

C++11 strongly typed enumerations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_strong_enums)`` or
``__has_extension(cxx_strong_enums)`` to determine if support for strongly
typed, scoped enumerations is enabled.

C++11 trailing return type
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_trailing_return)`` or
``__has_extension(cxx_trailing_return)`` to determine if support for the
alternate function declaration syntax with trailing return type is enabled.

C++11 Unicode string literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
string literals is enabled.

C++11 unrestricted unions
^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
unrestricted unions is enabled.

C++11 user-defined literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_user_literals)`` to determine if support for
user-defined literals is enabled.

C++11 variadic templates
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_variadic_templates)`` or
``__has_extension(cxx_variadic_templates)`` to determine if support for
variadic templates is enabled.

C++1y
-----

The features listed below are part of the committee draft for the C++1y
standard.  As a result, all these features are enabled with the ``-std=c++1y``
or ``-std=gnu++1y`` option when compiling C++ code.

C++1y binary literals
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_binary_literals)`` or
``__has_extension(cxx_binary_literals)`` to determine whether
binary literals (for instance, ``0b10010``) are recognized. Clang supports this
feature as an extension in all language modes.

C++1y contextual conversions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_contextual_conversions)`` or
``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
are used when performing an implicit conversion for an array bound in a
*new-expression*, the operand of a *delete-expression*, an integral constant
expression, or a condition in a ``switch`` statement.

C++1y decltype(auto)
^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_decltype_auto)`` or
``__has_extension(cxx_decltype_auto)`` to determine if support
for the ``decltype(auto)`` placeholder type is enabled.

C++1y default initializers for aggregates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_aggregate_nsdmi)`` or
``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
for default initializers in aggregate members is enabled.

C++1y generalized lambda capture
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_init_capture)`` or
``__has_extension(cxx_init_capture)`` to determine if support for
lambda captures with explicit initializers is enabled
(for instance, ``[n(0)] { return ++n; }``).
Clang does not yet support this feature.

C++1y generic lambdas
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_generic_lambda)`` or
``__has_extension(cxx_generic_lambda)`` to determine if support for generic
(polymorphic) lambdas is enabled
(for instance, ``[] (auto x) { return x + 1; }``).
Clang does not yet support this feature.

C++1y relaxed constexpr
^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_relaxed_constexpr)`` or
``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
declarations, local variable modification, and control flow constructs
are permitted in ``constexpr`` functions.

C++1y return type deduction
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_return_type_deduction)`` or
``__has_extension(cxx_return_type_deduction)`` to determine if support
for return type deduction for functions (using ``auto`` as a return type)
is enabled.

C++1y runtime-sized arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_runtime_array)`` or
``__has_extension(cxx_runtime_array)`` to determine if support
for arrays of runtime bound (a restricted form of variable-length arrays)
is enabled.
Clang's implementation of this feature is incomplete.

C++1y variable templates
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(cxx_variable_templates)`` or
``__has_extension(cxx_variable_templates)`` to determine if support for
templated variable declarations is enabled.
Clang does not yet support this feature.

C11
---

The features listed below are part of the C11 standard.  As a result, all these
features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
compiling C code.  Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.

C11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
if support for alignment specifiers using ``_Alignas`` is enabled.

C11 atomic operations
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
if support for atomic types using ``_Atomic`` is enabled.  Clang also provides
:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
the ``<stdatomic.h>`` operations on ``_Atomic`` types.

C11 generic selections
^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_generic_selections)`` or
``__has_extension(c_generic_selections)`` to determine if support for generic
selections is enabled.

As an extension, the C11 generic selection expression is available in all
languages supported by Clang.  The syntax is the same as that given in the C11
standard.

In C, type compatibility is decided according to the rules given in the
appropriate standard, but in C++, which lacks the type compatibility rules used
in C, types are considered compatible only if they are equivalent.

C11 ``_Static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
to determine if support for compile-time assertions using ``_Static_assert`` is
enabled.

C11 ``_Thread_local``
^^^^^^^^^^^^^^^^^^^^^

Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
to determine if support for ``_Thread_local`` variables is enabled.

Checks for Type Traits
======================

Clang supports the `GNU C++ type traits
<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
`Microsoft Visual C++ Type traits
<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.  For each
supported type trait ``__X``, ``__has_extension(X)`` indicates the presence of
the type trait.  For example:

.. code-block:: c++

  #if __has_extension(is_convertible_to)
  template<typename From, typename To>
  struct is_convertible_to {
    static const bool value = __is_convertible_to(From, To);
  };
  #else
  // Emulate type trait
  #endif

The following type traits are supported by Clang:

* ``__has_nothrow_assign`` (GNU, Microsoft)
* ``__has_nothrow_copy`` (GNU, Microsoft)
* ``__has_nothrow_constructor`` (GNU, Microsoft)
* ``__has_trivial_assign`` (GNU, Microsoft)
* ``__has_trivial_copy`` (GNU, Microsoft)
* ``__has_trivial_constructor`` (GNU, Microsoft)
* ``__has_trivial_destructor`` (GNU, Microsoft)
* ``__has_virtual_destructor`` (GNU, Microsoft)
* ``__is_abstract`` (GNU, Microsoft)
* ``__is_base_of`` (GNU, Microsoft)
* ``__is_class`` (GNU, Microsoft)
* ``__is_convertible_to`` (Microsoft)
* ``__is_empty`` (GNU, Microsoft)
* ``__is_enum`` (GNU, Microsoft)
* ``__is_interface_class`` (Microsoft)
* ``__is_pod`` (GNU, Microsoft)
* ``__is_polymorphic`` (GNU, Microsoft)
* ``__is_union`` (GNU, Microsoft)
* ``__is_literal(type)``: Determines whether the given type is a literal type
* ``__is_final``: Determines whether the given type is declared with a
  ``final`` class-virt-specifier.
* ``__underlying_type(type)``: Retrieves the underlying type for a given
  ``enum`` type.  This trait is required to implement the C++11 standard
  library.
* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
  of type ``totype`` can be assigned to from a value of type ``fromtype`` such
  that no non-trivial functions are called as part of that assignment.  This
  trait is required to implement the C++11 standard library.
* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
  value of type ``type`` can be direct-initialized with arguments of types
  ``argtypes...`` such that no non-trivial functions are called as part of
  that initialization.  This trait is required to implement the C++11 standard
  library.

Blocks
======

The syntax and high level language feature description is in
:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.

Query for this feature with ``__has_extension(blocks)``.

Objective-C Features
====================

Related result types
--------------------

According to Cocoa conventions, Objective-C methods with certain names
("``init``", "``alloc``", etc.) always return objects that are an instance of
the receiving class's type.  Such methods are said to have a "related result
type", meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class.  For example, given the
following classes:

.. code-block:: objc

  @interface NSObject
  + (id)alloc;
  - (id)init;
  @end

  @interface NSArray : NSObject
  @end

and this common initialization pattern

.. code-block:: objc

  NSArray *array = [[NSArray alloc] init];

the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
``alloc`` implicitly has a related result type.  Similarly, the type of the
expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
related result type and its receiver is known to have the type ``NSArray *``.
If neither ``alloc`` nor ``init`` had a related result type, the expressions
would have had type ``id``, as declared in the method signature.

A method with a related result type can be declared by using the type
``instancetype`` as its result type.  ``instancetype`` is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.

.. code-block:: objc

  @interface A
  + (instancetype)constructAnA;
  @end

The related result type can also be inferred for some methods.  To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:

* the first word is "``alloc``" or "``new``", and the method is a class method,
  or

* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
  and the method is an instance method.

If a method with a related result type is overridden by a subclass method, the
subclass method must also return a type that is compatible with the subclass
type.  For example:

.. code-block:: objc

  @interface NSString : NSObject
  - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
  @end

Related result types only affect the type of a message send or property access
via the given method.  In all other respects, a method with a related result
type is treated the same way as method that returns ``id``.

Use ``__has_feature(objc_instancetype)`` to determine whether the
``instancetype`` contextual keyword is available.

Automatic reference counting
----------------------------

Clang provides support for :doc:`automated reference counting
<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
for manual ``retain``/``release``/``autorelease`` message sends.  There are two
feature macros associated with automatic reference counting:
``__has_feature(objc_arc)`` indicates the availability of automated reference
counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
automated reference counting also includes support for ``__weak`` pointers to
Objective-C objects.

.. _objc-fixed-enum:

Enumerations with a fixed underlying type
-----------------------------------------

Clang provides support for C++11 enumerations with a fixed underlying type
within Objective-C.  For example, one can write an enumeration type as:

.. code-block:: c++

  typedef enum : unsigned char { Red, Green, Blue } Color;

This specifies that the underlying type, which is used to store the enumeration
value, is ``unsigned char``.

Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
underlying types is available in Objective-C.

Interoperability with C++11 lambdas
-----------------------------------

Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature.  For example, consider an API such as ``NSArray``'s
array-sorting method:

.. code-block:: objc

  - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;

``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
(^)(id, id)``, and parameters of this type are generally provided with block
literals as arguments.  However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
``id`` and returning an ``NSComparisonResult``):

.. code-block:: objc

  NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
                     @"String 02"];
  const NSStringCompareOptions comparisonOptions
    = NSCaseInsensitiveSearch | NSNumericSearch |
      NSWidthInsensitiveSearch | NSForcedOrderingSearch;
  NSLocale *currentLocale = [NSLocale currentLocale];
  NSArray *sorted
    = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
               NSRange string1Range = NSMakeRange(0, [s1 length]);
               return [s1 compare:s2 options:comparisonOptions
               range:string1Range locale:currentLocale];
       }];
  NSLog(@"sorted: %@", sorted);

This code relies on an implicit conversion from the type of the lambda
expression (an unnamed, local class type called the *closure type*) to the
corresponding block pointer type.  The conversion itself is expressed by a
conversion operator in that closure type that produces a block pointer with the
same signature as the lambda itself, e.g.,

.. code-block:: objc

  operator NSComparisonResult (^)(id, id)() const;

This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result.  The returned block is first copied (with ``Block_copy``) and then
autoreleased.  As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.

The conversion from a lambda to a block pointer is only available in
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
management (autorelease).

Object Literals and Subscripting
--------------------------------

Clang provides support for :doc:`Object Literals and Subscripting
<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation.  There are several feature macros associated with object
literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
availability of array literals; ``__has_feature(objc_dictionary_literals)``
tests the availability of dictionary literals;
``__has_feature(objc_subscripting)`` tests the availability of object
subscripting.

Objective-C Autosynthesis of Properties
---------------------------------------

Clang provides support for autosynthesis of declared properties.  Using this
feature, clang provides default synthesis of those properties not declared
@dynamic and not having user provided backing getter and setter methods.
``__has_feature(objc_default_synthesize_properties)`` checks for availability
of this feature in version of clang being used.

.. _langext-objc_method_family:


Objective-C requiring a call to ``super`` in an override
--------------------------------------------------------

Some Objective-C classes allow a subclass to override a particular method in a
parent class but expect that the overriding method also calls the overridden
method in the parent class. For these cases, we provide an attribute to
designate that a method requires a "call to ``super``" in the overriding
method in the subclass.

**Usage**: ``__attribute__((objc_requires_super))``.  This attribute can only
be placed at the end of a method declaration:

.. code-block:: objc

  - (void)foo __attribute__((objc_requires_super));

This attribute can only be applied the method declarations within a class, and
not a protocol.  Currently this attribute does not enforce any placement of
where the call occurs in the overriding method (such as in the case of
``-dealloc`` where the call must appear at the end).  It checks only that it
exists.

Note that on both OS X and iOS that the Foundation framework provides a
convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
attribute:

.. code-block:: objc

  - (void)foo NS_REQUIRES_SUPER;

This macro is conditionally defined depending on the compiler's support for
this attribute.  If the compiler does not support the attribute the macro
expands to nothing.

Operationally, when a method has this annotation the compiler will warn if the
implementation of an override in a subclass does not call super.  For example:

.. code-block:: objc

   warning: method possibly missing a [super AnnotMeth] call
   - (void) AnnotMeth{};
                      ^

Objective-C Method Families
---------------------------

Many methods in Objective-C have conventional meanings determined by their
selectors. It is sometimes useful to be able to mark a method as having a
particular conventional meaning despite not having the right selector, or as
not having the conventional meaning that its selector would suggest. For these
use cases, we provide an attribute to specifically describe the "method family"
that a method belongs to.

**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``.  This
attribute can only be placed at the end of a method declaration:

.. code-block:: objc

  - (NSString *)initMyStringValue __attribute__((objc_method_family(none)));

Users who do not wish to change the conventional meaning of a method, and who
merely want to document its non-standard retain and release semantics, should
use the :ref:`retaining behavior attributes <langext-objc-retain-release>`
described below.

Query for this feature with ``__has_attribute(objc_method_family)``.

.. _langext-objc-retain-release:

Objective-C retaining behavior attributes
-----------------------------------------

In Objective-C, functions and methods are generally assumed to follow the
`Cocoa Memory Management 
<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
better described using the :ref:`objc_method_family
<langext-objc_method_family>` attribute instead.

**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
``ns_returns_autoreleased``, ``cf_returns_retained``, and
``cf_returns_not_retained`` attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:

.. code-block:: objc

  id foo() __attribute__((ns_returns_retained));

  - (NSString *)bar:(int)x __attribute__((ns_returns_retained));

The ``*_returns_retained`` attributes specify that the returned object has a +1
retain count.  The ``*_returns_not_retained`` attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1.  ``ns_returns_autoreleased`` specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.

**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The ``ns_consumes_self`` attribute can only be placed on an Objective-C
method; it specifies that the method expects its ``self`` parameter to have a
+1 retain count, which it will balance in some way.

.. code-block:: objc

  void foo(__attribute__((ns_consumed)) NSString *string);

  - (void) bar __attribute__((ns_consumes_self));
  - (void) baz:(id) __attribute__((ns_consumed)) x;

Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.

Query for these features with ``__has_attribute(ns_consumed)``,
``__has_attribute(ns_returns_retained)``, etc.


Objective-C++ ABI: protocol-qualifier mangling of parameters
------------------------------------------------------------

Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
type is a qualified-``id`` (e.g., ``id<Foo>``).  This mangling allows such
parameters to be differentiated from those with the regular unqualified ``id``
type.

This was a non-backward compatible mangling change to the ABI.  This change
allows proper overloading, and also prevents mangling conflicts with template
parameters of protocol-qualified type.

Query the presence of this new mangling with
``__has_feature(objc_protocol_qualifier_mangling)``.

Function Overloading in C
=========================

Clang provides support for C++ function overloading in C.  Function overloading
in C is introduced using the ``overloadable`` attribute.  For example, one
might provide several overloaded versions of a ``tgsin`` function that invokes
the appropriate standard function computing the sine of a value with ``float``,
``double``, or ``long double`` precision:

.. code-block:: c

  #include <math.h>
  float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
  double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
  long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }

Given these declarations, one can call ``tgsin`` with a ``float`` value to
receive a ``float`` result, with a ``double`` to receive a ``double`` result,
etc.  Function overloading in C follows the rules of C++ function overloading
to pick the best overload given the call arguments, with a few C-specific
semantics:

* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
  floating-point promotion (per C99) rather than as a floating-point conversion
  (as in C++).

* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
  considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
  compatible types.

* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
  and ``U`` are compatible types.  This conversion is given "conversion" rank.

The declaration of ``overloadable`` functions is restricted to function
declarations and definitions.  Most importantly, if any function with a given
name is given the ``overloadable`` attribute, then all function declarations
and definitions with that name (and in that scope) must have the
``overloadable`` attribute.  This rule even applies to redeclarations of
functions whose original declaration had the ``overloadable`` attribute, e.g.,

.. code-block:: c

  int f(int) __attribute__((overloadable));
  float f(float); // error: declaration of "f" must have the "overloadable" attribute

  int g(int) __attribute__((overloadable));
  int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute

Functions marked ``overloadable`` must have prototypes.  Therefore, the
following code is ill-formed:

.. code-block:: c

  int h() __attribute__((overloadable)); // error: h does not have a prototype

However, ``overloadable`` functions are allowed to use a ellipsis even if there
are no named parameters (as is permitted in C++).  This feature is particularly
useful when combined with the ``unavailable`` attribute:

.. code-block:: c++

  void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error

Functions declared with the ``overloadable`` attribute have their names mangled
according to the same rules as C++ function names.  For example, the three
``tgsin`` functions in our motivating example get the mangled names
``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively.  There are two
caveats to this use of name mangling:

* Future versions of Clang may change the name mangling of functions overloaded
  in C, so you should not depend on an specific mangling.  To be completely
  safe, we strongly urge the use of ``static inline`` with ``overloadable``
  functions.

* The ``overloadable`` attribute has almost no meaning when used in C++,
  because names will already be mangled and functions are already overloadable.
  However, when an ``overloadable`` function occurs within an ``extern "C"``
  linkage specification, it's name *will* be mangled in the same way as it
  would in C.

Query for this feature with ``__has_extension(attribute_overloadable)``.

Initializer lists for complex numbers in C
==========================================

clang supports an extension which allows the following in C:

.. code-block:: c++

  #include <math.h>
  #include <complex.h>
  complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)

This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support ``_Imaginary``.  (Clang also supports the ``__real__`` and
``__imag__`` extensions from gcc, which help in some cases, but are not usable
in static initializers.)

Note that this extension does not allow eliding the braces; the meaning of the
following two lines is different:

.. code-block:: c++

  complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
  complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)

This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ ``std::complex``.  (In C++11, list initialization allows the same
syntax to be used with ``std::complex`` with the same meaning.)

Builtin Functions
=================

Clang supports a number of builtin library functions with the same syntax as
GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
``__sync_fetch_and_add``, etc.  In addition to the GCC builtins, Clang supports
a number of builtins that GCC does not, which are listed here.

Please note that Clang does not and will not support all of the GCC builtins
for vector operations.  Instead of using builtins, you should use the functions
defined in target-specific header files like ``<xmmintrin.h>``, which define
portable wrappers for these.  Many of the Clang versions of these functions are
implemented directly in terms of :ref:`extended vector support
<langext-vectors>` instead of builtins, in order to reduce the number of
builtins that we need to implement.

``__builtin_readcyclecounter``
------------------------------

``__builtin_readcyclecounter`` is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.

**Syntax**:

.. code-block:: c++

  __builtin_readcyclecounter()

**Example of Use**:

.. code-block:: c++

  unsigned long long t0 = __builtin_readcyclecounter();
  do_something();
  unsigned long long t1 = __builtin_readcyclecounter();
  unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow

**Description**:

The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals.  When not supported by the
target, the return value is always zero.  This builtin takes no arguments and
produces an unsigned long long result.

Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
that even if present, its use may depend on run-time privilege or other OS
controlled state.

.. _langext-__builtin_shufflevector:

``__builtin_shufflevector``
---------------------------

``__builtin_shufflevector`` is used to express generic vector
permutation/shuffle/swizzle operations.  This builtin is also very important
for the implementation of various target-specific header files like
``<xmmintrin.h>``.

**Syntax**:

.. code-block:: c++

  __builtin_shufflevector(vec1, vec2, index1, index2, ...)

**Examples**:

.. code-block:: c++

  // identity operation - return 4-element vector v1.
  __builtin_shufflevector(v1, v1, 0, 1, 2, 3)

  // "Splat" element 0 of V1 into a 4-element result.
  __builtin_shufflevector(V1, V1, 0, 0, 0, 0)

  // Reverse 4-element vector V1.
  __builtin_shufflevector(V1, V1, 3, 2, 1, 0)

  // Concatenate every other element of 4-element vectors V1 and V2.
  __builtin_shufflevector(V1, V2, 0, 2, 4, 6)

  // Concatenate every other element of 8-element vectors V1 and V2.
  __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)

  // Shuffle v1 with some elements being undefined
  __builtin_shufflevector(v1, v1, 3, -1, 1, -1)

**Description**:

The first two arguments to ``__builtin_shufflevector`` are vectors that have
the same element type.  The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector.  These element indices are numbered sequentially
starting with the first vector, continuing into the second vector.  Thus, if
``vec1`` is a 4-element vector, index 5 would refer to the second element of
``vec2``. An index of -1 can be used to indicate that the corresponding element
in the returned vector is a don't care and can be optimized by the backend.

The result of ``__builtin_shufflevector`` is a vector with the same element
type as ``vec1``/``vec2`` but that has an element count equal to the number of
indices specified.

Query for this feature with ``__has_builtin(__builtin_shufflevector)``.

``__builtin_convertvector``
---------------------------

``__builtin_convertvector`` is used to express generic vector
type-conversion operations. The input vector and the output vector
type must have the same number of elements.

**Syntax**:

.. code-block:: c++

  __builtin_convertvector(src_vec, dst_vec_type)

**Examples**:

.. code-block:: c++

  typedef double vector4double __attribute__((__vector_size__(32)));
  typedef float  vector4float  __attribute__((__vector_size__(16)));
  typedef short  vector4short  __attribute__((__vector_size__(8)));
  vector4float vf; vector4short vs;

  // convert from a vector of 4 floats to a vector of 4 doubles.
  __builtin_convertvector(vf, vector4double)
  // equivalent to:
  (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }

  // convert from a vector of 4 shorts to a vector of 4 floats.
  __builtin_convertvector(vs, vector4float)
  // equivalent to:
  (vector4float) { (float) vf[0], (float) vf[1], (float) vf[2], (float) vf[3] }

**Description**:

The first argument to ``__builtin_convertvector`` is a vector, and the second
argument is a vector type with the same number of elements as the first
argument.

The result of ``__builtin_convertvector`` is a vector with the same element
type as the second argument, with a value defined in terms of the action of a
C-style cast applied to each element of the first argument.

Query for this feature with ``__has_builtin(__builtin_convertvector)``.

``__builtin_unreachable``
-------------------------

``__builtin_unreachable`` is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings.  For
example, without the ``__builtin_unreachable`` in the example below, the
compiler assumes that the inline asm can fall through and prints a "function
declared '``noreturn``' should not return" warning.

**Syntax**:

.. code-block:: c++

    __builtin_unreachable()

**Example of use**:

.. code-block:: c++

  void myabort(void) __attribute__((noreturn));
  void myabort(void) {
    asm("int3");
    __builtin_unreachable();
  }

**Description**:

The ``__builtin_unreachable()`` builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code.  This builtin
takes no arguments and produces a void result.

Query for this feature with ``__has_builtin(__builtin_unreachable)``.

``__sync_swap``
---------------

``__sync_swap`` is used to atomically swap integers or pointers in memory.

**Syntax**:

.. code-block:: c++

  type __sync_swap(type *ptr, type value, ...)

**Example of Use**:

.. code-block:: c++

  int old_value = __sync_swap(&value, new_value);

**Description**:

The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
atomic intrinsics to allow code to atomically swap the current value with the
new value.  More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
``__sync_bool_compare_and_swap()`` or relying on the platform specific
implementation details of ``__sync_lock_test_and_set()``.  The
``__sync_swap()`` builtin is a full barrier.

``__builtin_addressof``
-----------------------

``__builtin_addressof`` performs the functionality of the built-in ``&``
operator, ignoring any ``operator&`` overload.  This is useful in constant
expressions in C++11, where there is no other way to take the address of an
object that overloads ``operator&``.

**Example of use**:

.. code-block:: c++

  template<typename T> constexpr T *addressof(T &value) {
    return __builtin_addressof(value);
  }

Multiprecision Arithmetic Builtins
----------------------------------

Clang provides a set of builtins which expose multiprecision arithmetic in a
manner amenable to C. They all have the following form:

.. code-block:: c

  unsigned x = ..., y = ..., carryin = ..., carryout;
  unsigned sum = __builtin_addc(x, y, carryin, &carryout);

Thus one can form a multiprecision addition chain in the following manner:

.. code-block:: c

  unsigned *x, *y, *z, carryin=0, carryout;
  z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
  carryin = carryout;
  z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
  carryin = carryout;
  z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
  carryin = carryout;
  z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);

The complete list of builtins are:

.. code-block:: c

  unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
  unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
  unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
  unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
  unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
  unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
  unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
  unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
  unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
  unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);

Checked Arithmetic Builtins
---------------------------

Clang provides a set of builtins that implement checked arithmetic for security
critical applications in a manner that is fast and easily expressable in C. As
an example of their usage:

.. code-block:: c

  errorcode_t security_critical_application(...) {
    unsigned x, y, result;
    ...
    if (__builtin_umul_overflow(x, y, &result))
      return kErrorCodeHackers;
    ...
    use_multiply(result);
    ...
  }

A complete enumeration of the builtins are:

.. code-block:: c

  bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
  bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
  bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
  bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
  bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
  bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
  bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
  bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
  bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
  bool __builtin_sadd_overflow  (int x, int y, int *sum);
  bool __builtin_saddl_overflow (long x, long y, long *sum);
  bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
  bool __builtin_ssub_overflow  (int x, int y, int *diff);
  bool __builtin_ssubl_overflow (long x, long y, long *diff);
  bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
  bool __builtin_smul_overflow  (int x, int y, int *prod);
  bool __builtin_smull_overflow (long x, long y, long *prod);
  bool __builtin_smulll_overflow(long long x, long long y, long long *prod);


.. _langext-__c11_atomic:

__c11_atomic builtins
---------------------

Clang provides a set of builtins which are intended to be used to implement
C11's ``<stdatomic.h>`` header.  These builtins provide the semantics of the
``_explicit`` form of the corresponding C11 operation, and are named with a
``__c11_`` prefix.  The supported operations are:

* ``__c11_atomic_init``
* ``__c11_atomic_thread_fence``
* ``__c11_atomic_signal_fence``
* ``__c11_atomic_is_lock_free``
* ``__c11_atomic_store``
* ``__c11_atomic_load``
* ``__c11_atomic_exchange``
* ``__c11_atomic_compare_exchange_strong``
* ``__c11_atomic_compare_exchange_weak``
* ``__c11_atomic_fetch_add``
* ``__c11_atomic_fetch_sub``
* ``__c11_atomic_fetch_and``
* ``__c11_atomic_fetch_or``
* ``__c11_atomic_fetch_xor``

Low-level ARM exclusive memory builtins
---------------------------------------

Clang provides overloaded builtins giving direct access to the three key ARM
instructions for implementing atomic operations.

.. code-block:: c

  T __builtin_arm_ldrex(const volatile T *addr);
  int __builtin_arm_strex(T val, volatile T *addr);
  void __builtin_arm_clrex(void);

The types ``T`` currently supported are:
* Integer types with width at most 64 bits.
* Floating-point types
* Pointer types.

Note that the compiler does not guarantee it will not insert stores which clear
the exclusive monitor in between an ``ldrex`` and its paired ``strex``. In
practice this is only usually a risk when the extra store is on the same cache
line as the variable being modified and Clang will only insert stack stores on
its own, so it is best not to use these operations on variables with automatic
storage duration.

Also, loads and stores may be implicit in code written between the ``ldrex`` and
``strex``. Clang will not necessarily mitigate the effects of these either, so
care should be exercised.

For these reasons the higher level atomic primitives should be preferred where
possible.

Non-standard C++11 Attributes
=============================

Clang's non-standard C++11 attributes live in the ``clang`` attribute
namespace.

The ``clang::fallthrough`` attribute
------------------------------------

The ``clang::fallthrough`` attribute is used along with the
``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
between switch labels.  It can only be applied to a null statement placed at a
point of execution between any statement and the next switch label.  It is
common to mark these places with a specific comment, but this attribute is
meant to replace comments with a more strict annotation, which can be checked
by the compiler.  This attribute doesn't change semantics of the code and can
be used wherever an intended fall-through occurs.  It is designed to mimic
control-flow statements like ``break;``, so it can be placed in most places
where ``break;`` can, but only if there are no statements on the execution path
between it and the next switch label.

Here is an example:

.. code-block:: c++

  // compile with -Wimplicit-fallthrough
  switch (n) {
  case 22:
  case 33:  // no warning: no statements between case labels
    f();
  case 44:  // warning: unannotated fall-through
    g();
    [[clang::fallthrough]];
  case 55:  // no warning
    if (x) {
      h();
      break;
    }
    else {
      i();
      [[clang::fallthrough]];
    }
  case 66:  // no warning
    p();
    [[clang::fallthrough]]; // warning: fallthrough annotation does not
                            //          directly precede case label
    q();
  case 77:  // warning: unannotated fall-through
    r();
  }

``gnu::`` attributes
--------------------

Clang also supports GCC's ``gnu`` attribute namespace. All GCC attributes which
are accepted with the ``__attribute__((foo))`` syntax are also accepted as
``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
(see the list of `GCC function attributes
<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
`GCC type attributes
<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
implementation, these attributes must appertain to the *declarator-id* in a
declaration, which means they must go either at the start of the declaration or
immediately after the name being declared.

For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
also applies the GNU ``noreturn`` attribute to ``f``.

.. code-block:: c++

  [[gnu::unused]] int a, f [[gnu::noreturn]] ();

Target-Specific Extensions
==========================

Clang supports some language features conditionally on some targets.

X86/X86-64 Language Extensions
------------------------------

The X86 backend has these language extensions:

Memory references off the GS segment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Annotating a pointer with address space #256 causes it to be code generated
relative to the X86 GS segment register, and address space #257 causes it to be
relative to the X86 FS segment.  Note that this is a very very low-level
feature that should only be used if you know what you're doing (for example in
an OS kernel).

Here is an example:

.. code-block:: c++

  #define GS_RELATIVE __attribute__((address_space(256)))
  int foo(int GS_RELATIVE *P) {
    return *P;
  }

Which compiles to (on X86-32):

.. code-block:: gas

  _foo:
          movl    4(%esp), %eax
          movl    %gs:(%eax), %eax
          ret

ARM Language Extensions
-----------------------

Interrupt attribute
^^^^^^^^^^^^^^^^^^^

Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on
ARM targets. This attribute may be attached to a function definition and
instructs the backend to generate appropriate function entry/exit code so that
it can be used directly as an interrupt service routine.

 The parameter passed to the interrupt attribute is optional, but if
provided it must be a string literal with one of the following values: "IRQ",
"FIQ", "SWI", "ABORT", "UNDEF".

The semantics are as follows:

- If the function is AAPCS, Clang instructs the backend to realign the stack to
  8 bytes on entry. This is a general requirement of the AAPCS at public
  interfaces, but may not hold when an exception is taken. Doing this allows
  other AAPCS functions to be called.
- If the CPU is M-class this is all that needs to be done since the architecture
  itself is designed in such a way that functions obeying the normal AAPCS ABI
  constraints are valid exception handlers.
- If the CPU is not M-class, the prologue and epilogue are modified to save all
  non-banked registers that are used, so that upon return the user-mode state
  will not be corrupted. Note that to avoid unnecessary overhead, only
  general-purpose (integer) registers are saved in this way. If VFP operations
  are needed, that state must be saved manually.

  Specifically, interrupt kinds other than "FIQ" will save all core registers
  except "lr" and "sp". "FIQ" interrupts will save r0-r7.
- If the CPU is not M-class, the return instruction is changed to one of the
  canonical sequences permitted by the architecture for exception return. Where
  possible the function itself will make the necessary "lr" adjustments so that
  the "preferred return address" is selected.

  Unfortunately the compiler is unable to make this guarantee for an "UNDEF"
  handler, where the offset from "lr" to the preferred return address depends on
  the execution state of the code which generated the exception. In this case
  a sequence equivalent to "movs pc, lr" will be used.

Extensions for Static Analysis
==============================

Clang supports additional attributes that are useful for documenting program
invariants and rules for static analysis tools, such as the `Clang Static
Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
in the analyzer's `list of source-level annotations
<http://clang-analyzer.llvm.org/annotations.html>`_.


Extensions for Dynamic Analysis
===============================

.. _langext-address_sanitizer:

AddressSanitizer
----------------

Use ``__has_feature(address_sanitizer)`` to check if the code is being built
with :doc:`AddressSanitizer`.

Use ``__attribute__((no_sanitize_address))``
on a function declaration
to specify that address safety instrumentation (e.g. AddressSanitizer) should
not be applied to that function.

.. _langext-thread_sanitizer:

ThreadSanitizer
----------------

Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
with :doc:`ThreadSanitizer`.

Use ``__attribute__((no_sanitize_thread))`` on a function declaration
to specify that checks for data races on plain (non-atomic) memory accesses
should not be inserted by ThreadSanitizer.
The function is still instrumented by the tool to avoid false positives and
provide meaningful stack traces.

.. _langext-memory_sanitizer:

MemorySanitizer
----------------
Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
with :doc:`MemorySanitizer`.

Use ``__attribute__((no_sanitize_memory))`` on a function declaration
to specify that checks for uninitialized memory should not be inserted 
(e.g. by MemorySanitizer). The function may still be instrumented by the tool
to avoid false positives in other places.


Thread-Safety Annotation Checking
=================================

Clang supports additional attributes for checking basic locking policies in
multithreaded programs.  Clang currently parses the following list of
attributes, although **the implementation for these annotations is currently in
development.** For more details, see the `GCC implementation
<http://gcc.gnu.org/wiki/ThreadSafetyAnnotation>`_.

``no_thread_safety_analysis``
-----------------------------

Use ``__attribute__((no_thread_safety_analysis))`` on a function declaration to
specify that the thread safety analysis should not be run on that function.
This attribute provides an escape hatch (e.g. for situations when it is
difficult to annotate the locking policy).

``lockable``
------------

Use ``__attribute__((lockable))`` on a class definition to specify that it has
a lockable type (e.g. a Mutex class).  This annotation is primarily used to
check consistency.

``scoped_lockable``
-------------------

Use ``__attribute__((scoped_lockable))`` on a class definition to specify that
it has a "scoped" lockable type.  Objects of this type will acquire the lock
upon construction and release it upon going out of scope.  This annotation is
primarily used to check consistency.

``guarded_var``
---------------

Use ``__attribute__((guarded_var))`` on a variable declaration to specify that
the variable must be accessed while holding some lock.

``pt_guarded_var``
------------------

Use ``__attribute__((pt_guarded_var))`` on a pointer declaration to specify
that the pointer must be dereferenced while holding some lock.

``guarded_by(l)``
-----------------

Use ``__attribute__((guarded_by(l)))`` on a variable declaration to specify
that the variable must be accessed while holding lock ``l``.

``pt_guarded_by(l)``
--------------------

Use ``__attribute__((pt_guarded_by(l)))`` on a pointer declaration to specify
that the pointer must be dereferenced while holding lock ``l``.

``acquired_before(...)``
------------------------

Use ``__attribute__((acquired_before(...)))`` on a declaration of a lockable
variable to specify that the lock must be acquired before all attribute
arguments.  Arguments must be lockable type, and there must be at least one
argument.

``acquired_after(...)``
-----------------------

Use ``__attribute__((acquired_after(...)))`` on a declaration of a lockable
variable to specify that the lock must be acquired after all attribute
arguments.  Arguments must be lockable type, and there must be at least one
argument.

``exclusive_lock_function(...)``
--------------------------------

Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
to specify that the function acquires all listed locks exclusively.  This
attribute takes zero or more arguments: either of lockable type or integers
indexing into function parameters of lockable type.  If no arguments are given,
the acquired lock is implicitly ``this`` of the enclosing object.

``shared_lock_function(...)``
-----------------------------

Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
specify that the function acquires all listed locks, although the locks may be
shared (e.g. read locks).  This attribute takes zero or more arguments: either
of lockable type or integers indexing into function parameters of lockable
type.  If no arguments are given, the acquired lock is implicitly ``this`` of
the enclosing object.

``exclusive_trylock_function(...)``
-----------------------------------

Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
to specify that the function will try (without blocking) to acquire all listed
locks exclusively.  This attribute takes one or more arguments.  The first
argument is an integer or boolean value specifying the return value of a
successful lock acquisition.  The remaining arugments are either of lockable
type or integers indexing into function parameters of lockable type.  If only
one argument is given, the acquired lock is implicitly ``this`` of the
enclosing object.

``shared_trylock_function(...)``
--------------------------------

Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
specify that the function will try (without blocking) to acquire all listed
locks, although the locks may be shared (e.g. read locks).  This attribute
takes one or more arguments.  The first argument is an integer or boolean value
specifying the return value of a successful lock acquisition.  The remaining
arugments are either of lockable type or integers indexing into function
parameters of lockable type.  If only one argument is given, the acquired lock
is implicitly ``this`` of the enclosing object.

``unlock_function(...)``
------------------------

Use ``__attribute__((unlock_function(...)))`` on a function declaration to
specify that the function release all listed locks.  This attribute takes zero
or more arguments: either of lockable type or integers indexing into function
parameters of lockable type.  If no arguments are given, the acquired lock is
implicitly ``this`` of the enclosing object.

``lock_returned(l)``
--------------------

Use ``__attribute__((lock_returned(l)))`` on a function declaration to specify
that the function returns lock ``l`` (``l`` must be of lockable type).  This
annotation is used to aid in resolving lock expressions.

``locks_excluded(...)``
-----------------------

Use ``__attribute__((locks_excluded(...)))`` on a function declaration to
specify that the function must not be called with the listed locks.  Arguments
must be lockable type, and there must be at least one argument.

``exclusive_locks_required(...)``
---------------------------------

Use ``__attribute__((exclusive_locks_required(...)))`` on a function
declaration to specify that the function must be called while holding the
listed exclusive locks.  Arguments must be lockable type, and there must be at
least one argument.

``shared_locks_required(...)``
------------------------------

Use ``__attribute__((shared_locks_required(...)))`` on a function declaration
to specify that the function must be called while holding the listed shared
locks.  Arguments must be lockable type, and there must be at least one
argument.

Consumed Annotation Checking
============================

Clang supports additional attributes for checking basic resource management
properties, specifically for unique objects that have a single owning reference.
The following attributes are currently supported, although **the implementation
for these annotations is currently in development and are subject to change.**

``consumable``
--------------

Each class that uses any of the following annotations must first be marked
using the consumable attribute.  Failure to do so will result in a warning.

``set_typestate(new_state)``
----------------------------

Annotate methods that transition an object into a new state with
``__attribute__((set_typestate(new_state)))``.  The new new state must be
unconsumed, consumed, or unknown.

``callable_when(...)``
----------------------

Use ``__attribute__((callable_when(...)))`` to indicate what states a method
may be called in.  Valid states are unconsumed, consumed, or unknown.  Each
argument to this attribute must be a quoted string.  E.g.:

``__attribute__((callable_when("unconsumed", "unknown")))``

``tests_typestate(tested_state)``
---------------------------------

Use ``__attribute__((tests_typestate(tested_state)))`` to indicate that a method
returns true if the object is in the specified state..

``param_typestate(expected_state)``
-----------------------------------

This attribute specifies expectations about function parameters.  Calls to an
function with annotated parameters will issue a warning if the corresponding
argument isn't in the expected state.  The attribute is also used to set the
initial state of the parameter when analyzing the function's body.

``return_typestate(ret_state)``
-------------------------------

The ``return_typestate`` attribute can be applied to functions or parameters.
When applied to a function the attribute specifies the state of the returned
value.  The function's body is checked to ensure that it always returns a value
in the specified state.  On the caller side, values returned by the annotated
function are initialized to the given state.

If the attribute is applied to a function parameter it modifies the state of
an argument after a call to the function returns.  The function's body is
checked to ensure that the parameter is in the expected state before returning. 

Type Safety Checking
====================

Clang supports additional attributes to enable checking type safety properties
that can't be enforced by the C type system.  Use cases include:

* MPI library implementations, where these attributes enable checking that
  the buffer type matches the passed ``MPI_Datatype``;
* for HDF5 library there is a similar use case to MPI;
* checking types of variadic functions' arguments for functions like
  ``fcntl()`` and ``ioctl()``.

You can detect support for these attributes with ``__has_attribute()``.  For
example:

.. code-block:: c++

  #if defined(__has_attribute)
  #  if __has_attribute(argument_with_type_tag) && \
        __has_attribute(pointer_with_type_tag) && \
        __has_attribute(type_tag_for_datatype)
  #    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
  /* ... other macros ...  */
  #  endif
  #endif

  #if !defined(ATTR_MPI_PWT)
  # define ATTR_MPI_PWT(buffer_idx, type_idx)
  #endif

  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
      ATTR_MPI_PWT(1,3);

``argument_with_type_tag(...)``
-------------------------------

Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
type_tag_idx)))`` on a function declaration to specify that the function
accepts a type tag that determines the type of some other argument.
``arg_kind`` is an identifier that should be used when annotating all
applicable type tags.

This attribute is primarily useful for checking arguments of variadic functions
(``pointer_with_type_tag`` can be used in most non-variadic cases).

For example:

.. code-block:: c++

  int fcntl(int fd, int cmd, ...)
      __attribute__(( argument_with_type_tag(fcntl,3,2) ));

``pointer_with_type_tag(...)``
------------------------------

Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
on a function declaration to specify that the function accepts a type tag that
determines the pointee type of some other pointer argument.

For example:

.. code-block:: c++

  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
      __attribute__(( pointer_with_type_tag(mpi,1,3) ));

``type_tag_for_datatype(...)``
------------------------------

Clang supports annotating type tags of two forms.

* **Type tag that is an expression containing a reference to some declared
  identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
  declaration with that identifier:

  .. code-block:: c++

    extern struct mpi_datatype mpi_datatype_int
        __attribute__(( type_tag_for_datatype(mpi,int) ));
    #define MPI_INT ((MPI_Datatype) &mpi_datatype_int)

* **Type tag that is an integral literal.** Introduce a ``static const``
  variable with a corresponding initializer value and attach
  ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
  for example:

  .. code-block:: c++

    #define MPI_INT ((MPI_Datatype) 42)
    static const MPI_Datatype mpi_datatype_int
        __attribute__(( type_tag_for_datatype(mpi,int) )) = 42

The attribute also accepts an optional third argument that determines how the
expression is compared to the type tag.  There are two supported flags:

* ``layout_compatible`` will cause types to be compared according to
  layout-compatibility rules (C++11 [class.mem] p 17, 18).  This is
  implemented to support annotating types like ``MPI_DOUBLE_INT``.

  For example:

  .. code-block:: c++

    /* In mpi.h */
    struct internal_mpi_double_int { double d; int i; };
    extern struct mpi_datatype mpi_datatype_double_int
        __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));

    #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)

    /* In user code */
    struct my_pair { double a; int b; };
    struct my_pair *buffer;
    MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ...  */); // no warning

    struct my_int_pair { int a; int b; }
    struct my_int_pair *buffer2;
    MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ...  */); // warning: actual buffer element
                                                      // type 'struct my_int_pair'
                                                      // doesn't match specified MPI_Datatype

* ``must_be_null`` specifies that the expression should be a null pointer
  constant, for example:

  .. code-block:: c++

    /* In mpi.h */
    extern struct mpi_datatype mpi_datatype_null
        __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));

    #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)

    /* In user code */
    MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ...  */); // warning: MPI_DATATYPE_NULL
                                                        // was specified but buffer
                                                        // is not a null pointer

Format String Checking
======================

Clang supports the ``format`` attribute, which indicates that the function
accepts a ``printf`` or ``scanf``-like format string and corresponding
arguments or a ``va_list`` that contains these arguments.

Please see `GCC documentation about format attribute
<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details
about attribute syntax.

Clang implements two kinds of checks with this attribute.

#. Clang checks that the function with the ``format`` attribute is called with
   a format string that uses format specifiers that are allowed, and that
   arguments match the format string.  This is the ``-Wformat`` warning, it is
   on by default.

#. Clang checks that the format string argument is a literal string.  This is
   the ``-Wformat-nonliteral`` warning, it is off by default.

   Clang implements this mostly the same way as GCC, but there is a difference
   for functions that accept a ``va_list`` argument (for example, ``vprintf``).
   GCC does not emit ``-Wformat-nonliteral`` warning for calls to such
   fuctions.  Clang does not warn if the format string comes from a function
   parameter, where the function is annotated with a compatible attribute,
   otherwise it warns.  For example:

   .. code-block:: c

     __attribute__((__format__ (__scanf__, 1, 3)))
     void foo(const char* s, char *buf, ...) {
       va_list ap;
       va_start(ap, buf);

       vprintf(s, ap); // warning: format string is not a string literal
     }

   In this case we warn because ``s`` contains a format string for a
   ``scanf``-like function, but it is passed to a ``printf``-like function.

   If the attribute is removed, clang still warns, because the format string is
   not a string literal.

   Another example:

   .. code-block:: c

     __attribute__((__format__ (__printf__, 1, 3)))
     void foo(const char* s, char *buf, ...) {
       va_list ap;
       va_start(ap, buf);

       vprintf(s, ap); // warning
     }

   In this case Clang does not warn because the format string ``s`` and
   the corresponding arguments are annotated.  If the arguments are
   incorrect, the caller of ``foo`` will receive a warning.