summaryrefslogtreecommitdiff
path: root/include/clang/AST/Type.h
blob: 39f10d3393bac57773db7eb58e4641ffdeff0ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
//===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the Type interface and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_TYPE_H
#define LLVM_CLANG_AST_TYPE_H

#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/TemplateName.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/Visibility.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/type_traits.h"

namespace clang {
  enum {
    TypeAlignmentInBits = 4,
    TypeAlignment = 1 << TypeAlignmentInBits
  };
  class Type;
  class ExtQuals;
  class QualType;
}

namespace llvm {
  template <typename T>
  class PointerLikeTypeTraits;
  template<>
  class PointerLikeTypeTraits< ::clang::Type*> {
  public:
    static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
    static inline ::clang::Type *getFromVoidPointer(void *P) {
      return static_cast< ::clang::Type*>(P);
    }
    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
  };
  template<>
  class PointerLikeTypeTraits< ::clang::ExtQuals*> {
  public:
    static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
    static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
      return static_cast< ::clang::ExtQuals*>(P);
    }
    enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
  };

  template <>
  struct isPodLike<clang::QualType> { static const bool value = true; };
}

namespace clang {
  class ASTContext;
  class TypedefNameDecl;
  class TemplateDecl;
  class TemplateTypeParmDecl;
  class NonTypeTemplateParmDecl;
  class TemplateTemplateParmDecl;
  class TagDecl;
  class RecordDecl;
  class CXXRecordDecl;
  class EnumDecl;
  class FieldDecl;
  class FunctionDecl;
  class ObjCInterfaceDecl;
  class ObjCProtocolDecl;
  class ObjCMethodDecl;
  class UnresolvedUsingTypenameDecl;
  class Expr;
  class Stmt;
  class SourceLocation;
  class StmtIteratorBase;
  class TemplateArgument;
  class TemplateArgumentLoc;
  class TemplateArgumentListInfo;
  class ElaboratedType;
  class ExtQuals;
  class ExtQualsTypeCommonBase;
  struct PrintingPolicy;

  template <typename> class CanQual;
  typedef CanQual<Type> CanQualType;

  // Provide forward declarations for all of the *Type classes
#define TYPE(Class, Base) class Class##Type;
#include "clang/AST/TypeNodes.def"

/// Qualifiers - The collection of all-type qualifiers we support.
/// Clang supports five independent qualifiers:
/// * C99: const, volatile, and restrict
/// * Embedded C (TR18037): address spaces
/// * Objective C: the GC attributes (none, weak, or strong)
class Qualifiers {
public:
  enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    Const    = 0x1,
    Restrict = 0x2,
    Volatile = 0x4,
    CVRMask = Const | Volatile | Restrict
  };

  enum GC {
    GCNone = 0,
    Weak,
    Strong
  };

  enum ObjCLifetime {
    /// There is no lifetime qualification on this type.
    OCL_None,

    /// This object can be modified without requiring retains or
    /// releases.
    OCL_ExplicitNone,

    /// Assigning into this object requires the old value to be
    /// released and the new value to be retained.  The timing of the
    /// release of the old value is inexact: it may be moved to
    /// immediately after the last known point where the value is
    /// live.
    OCL_Strong,

    /// Reading or writing from this object requires a barrier call.
    OCL_Weak,

    /// Assigning into this object requires a lifetime extension.
    OCL_Autoreleasing
  };

  enum {
    /// The maximum supported address space number.
    /// 24 bits should be enough for anyone.
    MaxAddressSpace = 0xffffffu,

    /// The width of the "fast" qualifier mask.
    FastWidth = 3,

    /// The fast qualifier mask.
    FastMask = (1 << FastWidth) - 1
  };

  Qualifiers() : Mask(0) {}

  /// \brief Returns the common set of qualifiers while removing them from
  /// the given sets.
  static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    // If both are only CVR-qualified, bit operations are sufficient.
    if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
      Qualifiers Q;
      Q.Mask = L.Mask & R.Mask;
      L.Mask &= ~Q.Mask;
      R.Mask &= ~Q.Mask;
      return Q;
    }

    Qualifiers Q;
    unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    Q.addCVRQualifiers(CommonCRV);
    L.removeCVRQualifiers(CommonCRV);
    R.removeCVRQualifiers(CommonCRV);

    if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
      Q.setObjCGCAttr(L.getObjCGCAttr());
      L.removeObjCGCAttr();
      R.removeObjCGCAttr();
    }

    if (L.getObjCLifetime() == R.getObjCLifetime()) {
      Q.setObjCLifetime(L.getObjCLifetime());
      L.removeObjCLifetime();
      R.removeObjCLifetime();
    }

    if (L.getAddressSpace() == R.getAddressSpace()) {
      Q.setAddressSpace(L.getAddressSpace());
      L.removeAddressSpace();
      R.removeAddressSpace();
    }
    return Q;
  }

  static Qualifiers fromFastMask(unsigned Mask) {
    Qualifiers Qs;
    Qs.addFastQualifiers(Mask);
    return Qs;
  }

  static Qualifiers fromCVRMask(unsigned CVR) {
    Qualifiers Qs;
    Qs.addCVRQualifiers(CVR);
    return Qs;
  }

  // Deserialize qualifiers from an opaque representation.
  static Qualifiers fromOpaqueValue(unsigned opaque) {
    Qualifiers Qs;
    Qs.Mask = opaque;
    return Qs;
  }

  // Serialize these qualifiers into an opaque representation.
  unsigned getAsOpaqueValue() const {
    return Mask;
  }

  bool hasConst() const { return Mask & Const; }
  void setConst(bool flag) {
    Mask = (Mask & ~Const) | (flag ? Const : 0);
  }
  void removeConst() { Mask &= ~Const; }
  void addConst() { Mask |= Const; }

  bool hasVolatile() const { return Mask & Volatile; }
  void setVolatile(bool flag) {
    Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
  }
  void removeVolatile() { Mask &= ~Volatile; }
  void addVolatile() { Mask |= Volatile; }

  bool hasRestrict() const { return Mask & Restrict; }
  void setRestrict(bool flag) {
    Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
  }
  void removeRestrict() { Mask &= ~Restrict; }
  void addRestrict() { Mask |= Restrict; }

  bool hasCVRQualifiers() const { return getCVRQualifiers(); }
  unsigned getCVRQualifiers() const { return Mask & CVRMask; }
  void setCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask = (Mask & ~CVRMask) | mask;
  }
  void removeCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask &= ~mask;
  }
  void removeCVRQualifiers() {
    removeCVRQualifiers(CVRMask);
  }
  void addCVRQualifiers(unsigned mask) {
    assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    Mask |= mask;
  }

  bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
  GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
  void setObjCGCAttr(GC type) {
    Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
  }
  void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
  void addObjCGCAttr(GC type) {
    assert(type);
    setObjCGCAttr(type);
  }
  Qualifiers withoutObjCGCAttr() const {
    Qualifiers qs = *this;
    qs.removeObjCGCAttr();
    return qs;
  }
  Qualifiers withoutObjCLifetime() const {
    Qualifiers qs = *this;
    qs.removeObjCLifetime();
    return qs;
  }

  bool hasObjCLifetime() const { return Mask & LifetimeMask; }
  ObjCLifetime getObjCLifetime() const {
    return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
  }
  void setObjCLifetime(ObjCLifetime type) {
    Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
  }
  void removeObjCLifetime() { setObjCLifetime(OCL_None); }
  void addObjCLifetime(ObjCLifetime type) {
    assert(type);
    assert(!hasObjCLifetime());
    Mask |= (type << LifetimeShift);
  }

  /// True if the lifetime is neither None or ExplicitNone.
  bool hasNonTrivialObjCLifetime() const {
    ObjCLifetime lifetime = getObjCLifetime();
    return (lifetime > OCL_ExplicitNone);
  }

  /// True if the lifetime is either strong or weak.
  bool hasStrongOrWeakObjCLifetime() const {
    ObjCLifetime lifetime = getObjCLifetime();
    return (lifetime == OCL_Strong || lifetime == OCL_Weak);
  }

  bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
  unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
  void setAddressSpace(unsigned space) {
    assert(space <= MaxAddressSpace);
    Mask = (Mask & ~AddressSpaceMask)
         | (((uint32_t) space) << AddressSpaceShift);
  }
  void removeAddressSpace() { setAddressSpace(0); }
  void addAddressSpace(unsigned space) {
    assert(space);
    setAddressSpace(space);
  }

  // Fast qualifiers are those that can be allocated directly
  // on a QualType object.
  bool hasFastQualifiers() const { return getFastQualifiers(); }
  unsigned getFastQualifiers() const { return Mask & FastMask; }
  void setFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask = (Mask & ~FastMask) | mask;
  }
  void removeFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask &= ~mask;
  }
  void removeFastQualifiers() {
    removeFastQualifiers(FastMask);
  }
  void addFastQualifiers(unsigned mask) {
    assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    Mask |= mask;
  }

  /// hasNonFastQualifiers - Return true if the set contains any
  /// qualifiers which require an ExtQuals node to be allocated.
  bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
  Qualifiers getNonFastQualifiers() const {
    Qualifiers Quals = *this;
    Quals.setFastQualifiers(0);
    return Quals;
  }

  /// hasQualifiers - Return true if the set contains any qualifiers.
  bool hasQualifiers() const { return Mask; }
  bool empty() const { return !Mask; }

  /// \brief Add the qualifiers from the given set to this set.
  void addQualifiers(Qualifiers Q) {
    // If the other set doesn't have any non-boolean qualifiers, just
    // bit-or it in.
    if (!(Q.Mask & ~CVRMask))
      Mask |= Q.Mask;
    else {
      Mask |= (Q.Mask & CVRMask);
      if (Q.hasAddressSpace())
        addAddressSpace(Q.getAddressSpace());
      if (Q.hasObjCGCAttr())
        addObjCGCAttr(Q.getObjCGCAttr());
      if (Q.hasObjCLifetime())
        addObjCLifetime(Q.getObjCLifetime());
    }
  }

  /// \brief Remove the qualifiers from the given set from this set.
  void removeQualifiers(Qualifiers Q) {
    // If the other set doesn't have any non-boolean qualifiers, just
    // bit-and the inverse in.
    if (!(Q.Mask & ~CVRMask))
      Mask &= ~Q.Mask;
    else {
      Mask &= ~(Q.Mask & CVRMask);
      if (getObjCGCAttr() == Q.getObjCGCAttr())
        removeObjCGCAttr();
      if (getObjCLifetime() == Q.getObjCLifetime())
        removeObjCLifetime();
      if (getAddressSpace() == Q.getAddressSpace())
        removeAddressSpace();
    }
  }

  /// \brief Add the qualifiers from the given set to this set, given that
  /// they don't conflict.
  void addConsistentQualifiers(Qualifiers qs) {
    assert(getAddressSpace() == qs.getAddressSpace() ||
           !hasAddressSpace() || !qs.hasAddressSpace());
    assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
           !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    assert(getObjCLifetime() == qs.getObjCLifetime() ||
           !hasObjCLifetime() || !qs.hasObjCLifetime());
    Mask |= qs.Mask;
  }

  /// \brief Determines if these qualifiers compatibly include another set.
  /// Generally this answers the question of whether an object with the other
  /// qualifiers can be safely used as an object with these qualifiers.
  bool compatiblyIncludes(Qualifiers other) const {
    return
      // Address spaces must match exactly.
      getAddressSpace() == other.getAddressSpace() &&
      // ObjC GC qualifiers can match, be added, or be removed, but can't be
      // changed.
      (getObjCGCAttr() == other.getObjCGCAttr() ||
       !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
      // ObjC lifetime qualifiers must match exactly.
      getObjCLifetime() == other.getObjCLifetime() &&
      // CVR qualifiers may subset.
      (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
  }

  /// \brief Determines if these qualifiers compatibly include another set of
  /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
  ///
  /// One set of Objective-C lifetime qualifiers compatibly includes the other
  /// if the lifetime qualifiers match, or if both are non-__weak and the
  /// including set also contains the 'const' qualifier.
  bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    if (getObjCLifetime() == other.getObjCLifetime())
      return true;

    if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
      return false;

    return hasConst();
  }

  /// \brief Determine whether this set of qualifiers is a strict superset of
  /// another set of qualifiers, not considering qualifier compatibility.
  bool isStrictSupersetOf(Qualifiers Other) const;

  bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
  bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }

  operator bool() const { return hasQualifiers(); }

  Qualifiers &operator+=(Qualifiers R) {
    addQualifiers(R);
    return *this;
  }

  // Union two qualifier sets.  If an enumerated qualifier appears
  // in both sets, use the one from the right.
  friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    L += R;
    return L;
  }

  Qualifiers &operator-=(Qualifiers R) {
    removeQualifiers(R);
    return *this;
  }

  /// \brief Compute the difference between two qualifier sets.
  friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    L -= R;
    return L;
  }

  std::string getAsString() const;
  std::string getAsString(const PrintingPolicy &Policy) const;

  bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
  void print(raw_ostream &OS, const PrintingPolicy &Policy,
             bool appendSpaceIfNonEmpty = false) const;

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(Mask);
  }

private:

  // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
  //           |C R V|GCAttr|Lifetime|AddressSpace|
  uint32_t Mask;

  static const uint32_t GCAttrMask = 0x18;
  static const uint32_t GCAttrShift = 3;
  static const uint32_t LifetimeMask = 0xE0;
  static const uint32_t LifetimeShift = 5;
  static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
  static const uint32_t AddressSpaceShift = 8;
};

/// A std::pair-like structure for storing a qualified type split
/// into its local qualifiers and its locally-unqualified type.
struct SplitQualType {
  /// The locally-unqualified type.
  const Type *Ty;

  /// The local qualifiers.
  Qualifiers Quals;

  SplitQualType() : Ty(0), Quals() {}
  SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}

  SplitQualType getSingleStepDesugaredType() const; // end of this file

  // Make llvm::tie work.
  operator std::pair<const Type *,Qualifiers>() const {
    return std::pair<const Type *,Qualifiers>(Ty, Quals);
  }

  friend bool operator==(SplitQualType a, SplitQualType b) {
    return a.Ty == b.Ty && a.Quals == b.Quals;
  }
  friend bool operator!=(SplitQualType a, SplitQualType b) {
    return a.Ty != b.Ty || a.Quals != b.Quals;
  }
};

/// QualType - For efficiency, we don't store CV-qualified types as nodes on
/// their own: instead each reference to a type stores the qualifiers.  This
/// greatly reduces the number of nodes we need to allocate for types (for
/// example we only need one for 'int', 'const int', 'volatile int',
/// 'const volatile int', etc).
///
/// As an added efficiency bonus, instead of making this a pair, we
/// just store the two bits we care about in the low bits of the
/// pointer.  To handle the packing/unpacking, we make QualType be a
/// simple wrapper class that acts like a smart pointer.  A third bit
/// indicates whether there are extended qualifiers present, in which
/// case the pointer points to a special structure.
class QualType {
  // Thankfully, these are efficiently composable.
  llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
                       Qualifiers::FastWidth> Value;

  const ExtQuals *getExtQualsUnsafe() const {
    return Value.getPointer().get<const ExtQuals*>();
  }

  const Type *getTypePtrUnsafe() const {
    return Value.getPointer().get<const Type*>();
  }

  const ExtQualsTypeCommonBase *getCommonPtr() const {
    assert(!isNull() && "Cannot retrieve a NULL type pointer");
    uintptr_t CommonPtrVal
      = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
  }

  friend class QualifierCollector;
public:
  QualType() {}

  QualType(const Type *Ptr, unsigned Quals)
    : Value(Ptr, Quals) {}
  QualType(const ExtQuals *Ptr, unsigned Quals)
    : Value(Ptr, Quals) {}

  unsigned getLocalFastQualifiers() const { return Value.getInt(); }
  void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }

  /// Retrieves a pointer to the underlying (unqualified) type.
  ///
  /// This function requires that the type not be NULL. If the type might be
  /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
  const Type *getTypePtr() const;

  const Type *getTypePtrOrNull() const;

  /// Retrieves a pointer to the name of the base type.
  const IdentifierInfo *getBaseTypeIdentifier() const;

  /// Divides a QualType into its unqualified type and a set of local
  /// qualifiers.
  SplitQualType split() const;

  void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
  static QualType getFromOpaquePtr(const void *Ptr) {
    QualType T;
    T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    return T;
  }

  const Type &operator*() const {
    return *getTypePtr();
  }

  const Type *operator->() const {
    return getTypePtr();
  }

  bool isCanonical() const;
  bool isCanonicalAsParam() const;

  /// isNull - Return true if this QualType doesn't point to a type yet.
  bool isNull() const {
    return Value.getPointer().isNull();
  }

  /// \brief Determine whether this particular QualType instance has the
  /// "const" qualifier set, without looking through typedefs that may have
  /// added "const" at a different level.
  bool isLocalConstQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Const);
  }

  /// \brief Determine whether this type is const-qualified.
  bool isConstQualified() const;

  /// \brief Determine whether this particular QualType instance has the
  /// "restrict" qualifier set, without looking through typedefs that may have
  /// added "restrict" at a different level.
  bool isLocalRestrictQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Restrict);
  }

  /// \brief Determine whether this type is restrict-qualified.
  bool isRestrictQualified() const;

  /// \brief Determine whether this particular QualType instance has the
  /// "volatile" qualifier set, without looking through typedefs that may have
  /// added "volatile" at a different level.
  bool isLocalVolatileQualified() const {
    return (getLocalFastQualifiers() & Qualifiers::Volatile);
  }

  /// \brief Determine whether this type is volatile-qualified.
  bool isVolatileQualified() const;

  /// \brief Determine whether this particular QualType instance has any
  /// qualifiers, without looking through any typedefs that might add
  /// qualifiers at a different level.
  bool hasLocalQualifiers() const {
    return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
  }

  /// \brief Determine whether this type has any qualifiers.
  bool hasQualifiers() const;

  /// \brief Determine whether this particular QualType instance has any
  /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
  /// instance.
  bool hasLocalNonFastQualifiers() const {
    return Value.getPointer().is<const ExtQuals*>();
  }

  /// \brief Retrieve the set of qualifiers local to this particular QualType
  /// instance, not including any qualifiers acquired through typedefs or
  /// other sugar.
  Qualifiers getLocalQualifiers() const;

  /// \brief Retrieve the set of qualifiers applied to this type.
  Qualifiers getQualifiers() const;

  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
  /// local to this particular QualType instance, not including any qualifiers
  /// acquired through typedefs or other sugar.
  unsigned getLocalCVRQualifiers() const {
    return getLocalFastQualifiers();
  }

  /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
  /// applied to this type.
  unsigned getCVRQualifiers() const;

  bool isConstant(ASTContext& Ctx) const {
    return QualType::isConstant(*this, Ctx);
  }

  /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
  bool isPODType(ASTContext &Context) const;

  /// isCXX98PODType() - Return true if this is a POD type according to the
  /// rules of the C++98 standard, regardless of the current compilation's
  /// language.
  bool isCXX98PODType(ASTContext &Context) const;

  /// isCXX11PODType() - Return true if this is a POD type according to the
  /// more relaxed rules of the C++11 standard, regardless of the current
  /// compilation's language.
  /// (C++0x [basic.types]p9)
  bool isCXX11PODType(ASTContext &Context) const;

  /// isTrivialType - Return true if this is a trivial type
  /// (C++0x [basic.types]p9)
  bool isTrivialType(ASTContext &Context) const;

  /// isTriviallyCopyableType - Return true if this is a trivially
  /// copyable type (C++0x [basic.types]p9)
  bool isTriviallyCopyableType(ASTContext &Context) const;

  // Don't promise in the API that anything besides 'const' can be
  // easily added.

  /// addConst - add the specified type qualifier to this QualType.
  void addConst() {
    addFastQualifiers(Qualifiers::Const);
  }
  QualType withConst() const {
    return withFastQualifiers(Qualifiers::Const);
  }

  /// addVolatile - add the specified type qualifier to this QualType.
  void addVolatile() {
    addFastQualifiers(Qualifiers::Volatile);
  }
  QualType withVolatile() const {
    return withFastQualifiers(Qualifiers::Volatile);
  }
  
  /// Add the restrict qualifier to this QualType.
  void addRestrict() {
    addFastQualifiers(Qualifiers::Restrict);
  }
  QualType withRestrict() const {
    return withFastQualifiers(Qualifiers::Restrict);
  }

  QualType withCVRQualifiers(unsigned CVR) const {
    return withFastQualifiers(CVR);
  }

  void addFastQualifiers(unsigned TQs) {
    assert(!(TQs & ~Qualifiers::FastMask)
           && "non-fast qualifier bits set in mask!");
    Value.setInt(Value.getInt() | TQs);
  }

  void removeLocalConst();
  void removeLocalVolatile();
  void removeLocalRestrict();
  void removeLocalCVRQualifiers(unsigned Mask);

  void removeLocalFastQualifiers() { Value.setInt(0); }
  void removeLocalFastQualifiers(unsigned Mask) {
    assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    Value.setInt(Value.getInt() & ~Mask);
  }

  // Creates a type with the given qualifiers in addition to any
  // qualifiers already on this type.
  QualType withFastQualifiers(unsigned TQs) const {
    QualType T = *this;
    T.addFastQualifiers(TQs);
    return T;
  }

  // Creates a type with exactly the given fast qualifiers, removing
  // any existing fast qualifiers.
  QualType withExactLocalFastQualifiers(unsigned TQs) const {
    return withoutLocalFastQualifiers().withFastQualifiers(TQs);
  }

  // Removes fast qualifiers, but leaves any extended qualifiers in place.
  QualType withoutLocalFastQualifiers() const {
    QualType T = *this;
    T.removeLocalFastQualifiers();
    return T;
  }

  QualType getCanonicalType() const;

  /// \brief Return this type with all of the instance-specific qualifiers
  /// removed, but without removing any qualifiers that may have been applied
  /// through typedefs.
  QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }

  /// \brief Retrieve the unqualified variant of the given type,
  /// removing as little sugar as possible.
  ///
  /// This routine looks through various kinds of sugar to find the
  /// least-desugared type that is unqualified. For example, given:
  ///
  /// \code
  /// typedef int Integer;
  /// typedef const Integer CInteger;
  /// typedef CInteger DifferenceType;
  /// \endcode
  ///
  /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
  /// desugar until we hit the type \c Integer, which has no qualifiers on it.
  ///
  /// The resulting type might still be qualified if it's sugar for an array
  /// type.  To strip qualifiers even from within a sugared array type, use
  /// ASTContext::getUnqualifiedArrayType.
  inline QualType getUnqualifiedType() const;

  /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
  /// given type, removing as little sugar as possible.
  ///
  /// Like getUnqualifiedType(), but also returns the set of
  /// qualifiers that were built up.
  ///
  /// The resulting type might still be qualified if it's sugar for an array
  /// type.  To strip qualifiers even from within a sugared array type, use
  /// ASTContext::getUnqualifiedArrayType.
  inline SplitQualType getSplitUnqualifiedType() const;

  /// \brief Determine whether this type is more qualified than the other
  /// given type, requiring exact equality for non-CVR qualifiers.
  bool isMoreQualifiedThan(QualType Other) const;

  /// \brief Determine whether this type is at least as qualified as the other
  /// given type, requiring exact equality for non-CVR qualifiers.
  bool isAtLeastAsQualifiedAs(QualType Other) const;

  QualType getNonReferenceType() const;

  /// \brief Determine the type of a (typically non-lvalue) expression with the
  /// specified result type.
  ///
  /// This routine should be used for expressions for which the return type is
  /// explicitly specified (e.g., in a cast or call) and isn't necessarily
  /// an lvalue. It removes a top-level reference (since there are no
  /// expressions of reference type) and deletes top-level cvr-qualifiers
  /// from non-class types (in C++) or all types (in C).
  QualType getNonLValueExprType(ASTContext &Context) const;

  /// getDesugaredType - Return the specified type with any "sugar" removed from
  /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
  /// the type is already concrete, it returns it unmodified.  This is similar
  /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
  /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
  /// concrete.
  ///
  /// Qualifiers are left in place.
  QualType getDesugaredType(const ASTContext &Context) const {
    return getDesugaredType(*this, Context);
  }

  SplitQualType getSplitDesugaredType() const {
    return getSplitDesugaredType(*this);
  }

  /// \brief Return the specified type with one level of "sugar" removed from
  /// the type.
  ///
  /// This routine takes off the first typedef, typeof, etc. If the outer level
  /// of the type is already concrete, it returns it unmodified.
  QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    return getSingleStepDesugaredTypeImpl(*this, Context);
  }

  /// IgnoreParens - Returns the specified type after dropping any
  /// outer-level parentheses.
  QualType IgnoreParens() const {
    if (isa<ParenType>(*this))
      return QualType::IgnoreParens(*this);
    return *this;
  }

  /// operator==/!= - Indicate whether the specified types and qualifiers are
  /// identical.
  friend bool operator==(const QualType &LHS, const QualType &RHS) {
    return LHS.Value == RHS.Value;
  }
  friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    return LHS.Value != RHS.Value;
  }
  std::string getAsString() const {
    return getAsString(split());
  }
  static std::string getAsString(SplitQualType split) {
    return getAsString(split.Ty, split.Quals);
  }
  static std::string getAsString(const Type *ty, Qualifiers qs);

  std::string getAsString(const PrintingPolicy &Policy) const;

  void print(raw_ostream &OS, const PrintingPolicy &Policy,
             const Twine &PlaceHolder = Twine()) const {
    print(split(), OS, Policy, PlaceHolder);
  }
  static void print(SplitQualType split, raw_ostream &OS,
                    const PrintingPolicy &policy, const Twine &PlaceHolder) {
    return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
  }
  static void print(const Type *ty, Qualifiers qs,
                    raw_ostream &OS, const PrintingPolicy &policy,
                    const Twine &PlaceHolder);

  void getAsStringInternal(std::string &Str,
                           const PrintingPolicy &Policy) const {
    return getAsStringInternal(split(), Str, Policy);
  }
  static void getAsStringInternal(SplitQualType split, std::string &out,
                                  const PrintingPolicy &policy) {
    return getAsStringInternal(split.Ty, split.Quals, out, policy);
  }
  static void getAsStringInternal(const Type *ty, Qualifiers qs,
                                  std::string &out,
                                  const PrintingPolicy &policy);

  class StreamedQualTypeHelper {
    const QualType &T;
    const PrintingPolicy &Policy;
    const Twine &PlaceHolder;
  public:
    StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
                           const Twine &PlaceHolder)
      : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }

    friend raw_ostream &operator<<(raw_ostream &OS,
                                   const StreamedQualTypeHelper &SQT) {
      SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
      return OS;
    }
  };

  StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
                                const Twine &PlaceHolder = Twine()) const {
    return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
  }

  void dump(const char *s) const;
  void dump() const;

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(getAsOpaquePtr());
  }

  /// getAddressSpace - Return the address space of this type.
  inline unsigned getAddressSpace() const;

  /// getObjCGCAttr - Returns gc attribute of this type.
  inline Qualifiers::GC getObjCGCAttr() const;

  /// isObjCGCWeak true when Type is objc's weak.
  bool isObjCGCWeak() const {
    return getObjCGCAttr() == Qualifiers::Weak;
  }

  /// isObjCGCStrong true when Type is objc's strong.
  bool isObjCGCStrong() const {
    return getObjCGCAttr() == Qualifiers::Strong;
  }

  /// getObjCLifetime - Returns lifetime attribute of this type.
  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return getQualifiers().getObjCLifetime();
  }

  bool hasNonTrivialObjCLifetime() const {
    return getQualifiers().hasNonTrivialObjCLifetime();
  }

  bool hasStrongOrWeakObjCLifetime() const {
    return getQualifiers().hasStrongOrWeakObjCLifetime();
  }

  enum DestructionKind {
    DK_none,
    DK_cxx_destructor,
    DK_objc_strong_lifetime,
    DK_objc_weak_lifetime
  };

  /// isDestructedType - nonzero if objects of this type require
  /// non-trivial work to clean up after.  Non-zero because it's
  /// conceivable that qualifiers (objc_gc(weak)?) could make
  /// something require destruction.
  DestructionKind isDestructedType() const {
    return isDestructedTypeImpl(*this);
  }

  /// \brief Determine whether expressions of the given type are forbidden
  /// from being lvalues in C.
  ///
  /// The expression types that are forbidden to be lvalues are:
  ///   - 'void', but not qualified void
  ///   - function types
  ///
  /// The exact rule here is C99 6.3.2.1:
  ///   An lvalue is an expression with an object type or an incomplete
  ///   type other than void.
  bool isCForbiddenLValueType() const;

private:
  // These methods are implemented in a separate translation unit;
  // "static"-ize them to avoid creating temporary QualTypes in the
  // caller.
  static bool isConstant(QualType T, ASTContext& Ctx);
  static QualType getDesugaredType(QualType T, const ASTContext &Context);
  static SplitQualType getSplitDesugaredType(QualType T);
  static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
  static QualType getSingleStepDesugaredTypeImpl(QualType type,
                                                 const ASTContext &C);
  static QualType IgnoreParens(QualType T);
  static DestructionKind isDestructedTypeImpl(QualType type);
};

} // end clang.

namespace llvm {
/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
/// to a specific Type class.
template<> struct simplify_type< ::clang::QualType> {
  typedef const ::clang::Type *SimpleType;
  static SimpleType getSimplifiedValue(::clang::QualType Val) {
    return Val.getTypePtr();
  }
};

// Teach SmallPtrSet that QualType is "basically a pointer".
template<>
class PointerLikeTypeTraits<clang::QualType> {
public:
  static inline void *getAsVoidPointer(clang::QualType P) {
    return P.getAsOpaquePtr();
  }
  static inline clang::QualType getFromVoidPointer(void *P) {
    return clang::QualType::getFromOpaquePtr(P);
  }
  // Various qualifiers go in low bits.
  enum { NumLowBitsAvailable = 0 };
};

} // end namespace llvm

namespace clang {

/// \brief Base class that is common to both the \c ExtQuals and \c Type
/// classes, which allows \c QualType to access the common fields between the
/// two.
///
class ExtQualsTypeCommonBase {
  ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
    : BaseType(baseType), CanonicalType(canon) {}

  /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
  /// a self-referential pointer (for \c Type).
  ///
  /// This pointer allows an efficient mapping from a QualType to its
  /// underlying type pointer.
  const Type *const BaseType;

  /// \brief The canonical type of this type.  A QualType.
  QualType CanonicalType;

  friend class QualType;
  friend class Type;
  friend class ExtQuals;
};

/// ExtQuals - We can encode up to four bits in the low bits of a
/// type pointer, but there are many more type qualifiers that we want
/// to be able to apply to an arbitrary type.  Therefore we have this
/// struct, intended to be heap-allocated and used by QualType to
/// store qualifiers.
///
/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
/// in three low bits on the QualType pointer; a fourth bit records whether
/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
/// Objective-C GC attributes) are much more rare.
class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
  // NOTE: changing the fast qualifiers should be straightforward as
  // long as you don't make 'const' non-fast.
  // 1. Qualifiers:
  //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
  //       Fast qualifiers must occupy the low-order bits.
  //    b) Update Qualifiers::FastWidth and FastMask.
  // 2. QualType:
  //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
  //    b) Update remove{Volatile,Restrict}, defined near the end of
  //       this header.
  // 3. ASTContext:
  //    a) Update get{Volatile,Restrict}Type.

  /// Quals - the immutable set of qualifiers applied by this
  /// node;  always contains extended qualifiers.
  Qualifiers Quals;

  ExtQuals *this_() { return this; }

public:
  ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
    : ExtQualsTypeCommonBase(baseType,
                             canon.isNull() ? QualType(this_(), 0) : canon),
      Quals(quals)
  {
    assert(Quals.hasNonFastQualifiers()
           && "ExtQuals created with no fast qualifiers");
    assert(!Quals.hasFastQualifiers()
           && "ExtQuals created with fast qualifiers");
  }

  Qualifiers getQualifiers() const { return Quals; }

  bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
  Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }

  bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
  Qualifiers::ObjCLifetime getObjCLifetime() const {
    return Quals.getObjCLifetime();
  }

  bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
  unsigned getAddressSpace() const { return Quals.getAddressSpace(); }

  const Type *getBaseType() const { return BaseType; }

public:
  void Profile(llvm::FoldingSetNodeID &ID) const {
    Profile(ID, getBaseType(), Quals);
  }
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const Type *BaseType,
                      Qualifiers Quals) {
    assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
    ID.AddPointer(BaseType);
    Quals.Profile(ID);
  }
};

/// \brief The kind of C++0x ref-qualifier associated with a function type,
/// which determines whether a member function's "this" object can be an
/// lvalue, rvalue, or neither.
enum RefQualifierKind {
  /// \brief No ref-qualifier was provided.
  RQ_None = 0,
  /// \brief An lvalue ref-qualifier was provided (\c &).
  RQ_LValue,
  /// \brief An rvalue ref-qualifier was provided (\c &&).
  RQ_RValue
};

/// Type - This is the base class of the type hierarchy.  A central concept
/// with types is that each type always has a canonical type.  A canonical type
/// is the type with any typedef names stripped out of it or the types it
/// references.  For example, consider:
///
///  typedef int  foo;
///  typedef foo* bar;
///    'int *'    'foo *'    'bar'
///
/// There will be a Type object created for 'int'.  Since int is canonical, its
/// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
/// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
/// there is a PointerType that represents 'int*', which, like 'int', is
/// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
/// is also 'int*'.
///
/// Non-canonical types are useful for emitting diagnostics, without losing
/// information about typedefs being used.  Canonical types are useful for type
/// comparisons (they allow by-pointer equality tests) and useful for reasoning
/// about whether something has a particular form (e.g. is a function type),
/// because they implicitly, recursively, strip all typedefs out of a type.
///
/// Types, once created, are immutable.
///
class Type : public ExtQualsTypeCommonBase {
public:
  enum TypeClass {
#define TYPE(Class, Base) Class,
#define LAST_TYPE(Class) TypeLast = Class,
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
    TagFirst = Record, TagLast = Enum
  };

private:
  Type(const Type &) LLVM_DELETED_FUNCTION;
  void operator=(const Type &) LLVM_DELETED_FUNCTION;

  /// Bitfields required by the Type class.
  class TypeBitfields {
    friend class Type;
    template <class T> friend class TypePropertyCache;

    /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
    unsigned TC : 8;

    /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
    unsigned Dependent : 1;

    /// \brief Whether this type somehow involves a template parameter, even
    /// if the resolution of the type does not depend on a template parameter.
    unsigned InstantiationDependent : 1;

    /// \brief Whether this type is a variably-modified type (C99 6.7.5).
    unsigned VariablyModified : 1;

    /// \brief Whether this type contains an unexpanded parameter pack
    /// (for C++0x variadic templates).
    unsigned ContainsUnexpandedParameterPack : 1;

    /// \brief True if the cache (i.e. the bitfields here starting with
    /// 'Cache') is valid.
    mutable unsigned CacheValid : 1;

    /// \brief Linkage of this type.
    mutable unsigned CachedLinkage : 2;

    /// \brief Whether this type involves and local or unnamed types.
    mutable unsigned CachedLocalOrUnnamed : 1;

    /// \brief FromAST - Whether this type comes from an AST file.
    mutable unsigned FromAST : 1;

    bool isCacheValid() const {
      return CacheValid;
    }
    Linkage getLinkage() const {
      assert(isCacheValid() && "getting linkage from invalid cache");
      return static_cast<Linkage>(CachedLinkage);
    }
    bool hasLocalOrUnnamedType() const {
      assert(isCacheValid() && "getting linkage from invalid cache");
      return CachedLocalOrUnnamed;
    }
  };
  enum { NumTypeBits = 19 };

protected:
  // These classes allow subclasses to somewhat cleanly pack bitfields
  // into Type.

  class ArrayTypeBitfields {
    friend class ArrayType;

    unsigned : NumTypeBits;

    /// IndexTypeQuals - CVR qualifiers from declarations like
    /// 'int X[static restrict 4]'. For function parameters only.
    unsigned IndexTypeQuals : 3;

    /// SizeModifier - storage class qualifiers from declarations like
    /// 'int X[static restrict 4]'. For function parameters only.
    /// Actually an ArrayType::ArraySizeModifier.
    unsigned SizeModifier : 3;
  };

  class BuiltinTypeBitfields {
    friend class BuiltinType;

    unsigned : NumTypeBits;

    /// The kind (BuiltinType::Kind) of builtin type this is.
    unsigned Kind : 8;
  };

  class FunctionTypeBitfields {
    friend class FunctionType;

    unsigned : NumTypeBits;

    /// Extra information which affects how the function is called, like
    /// regparm and the calling convention.
    unsigned ExtInfo : 9;

    /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
    /// other bitfields.
    /// The qualifiers are part of FunctionProtoType because...
    ///
    /// C++ 8.3.5p4: The return type, the parameter type list and the
    /// cv-qualifier-seq, [...], are part of the function type.
    unsigned TypeQuals : 3;
  };

  class ObjCObjectTypeBitfields {
    friend class ObjCObjectType;

    unsigned : NumTypeBits;

    /// NumProtocols - The number of protocols stored directly on this
    /// object type.
    unsigned NumProtocols : 32 - NumTypeBits;
  };

  class ReferenceTypeBitfields {
    friend class ReferenceType;

    unsigned : NumTypeBits;

    /// True if the type was originally spelled with an lvalue sigil.
    /// This is never true of rvalue references but can also be false
    /// on lvalue references because of C++0x [dcl.typedef]p9,
    /// as follows:
    ///
    ///   typedef int &ref;    // lvalue, spelled lvalue
    ///   typedef int &&rvref; // rvalue
    ///   ref &a;              // lvalue, inner ref, spelled lvalue
    ///   ref &&a;             // lvalue, inner ref
    ///   rvref &a;            // lvalue, inner ref, spelled lvalue
    ///   rvref &&a;           // rvalue, inner ref
    unsigned SpelledAsLValue : 1;

    /// True if the inner type is a reference type.  This only happens
    /// in non-canonical forms.
    unsigned InnerRef : 1;
  };

  class TypeWithKeywordBitfields {
    friend class TypeWithKeyword;

    unsigned : NumTypeBits;

    /// An ElaboratedTypeKeyword.  8 bits for efficient access.
    unsigned Keyword : 8;
  };

  class VectorTypeBitfields {
    friend class VectorType;

    unsigned : NumTypeBits;

    /// VecKind - The kind of vector, either a generic vector type or some
    /// target-specific vector type such as for AltiVec or Neon.
    unsigned VecKind : 3;

    /// NumElements - The number of elements in the vector.
    unsigned NumElements : 29 - NumTypeBits;
  };

  class AttributedTypeBitfields {
    friend class AttributedType;

    unsigned : NumTypeBits;

    /// AttrKind - an AttributedType::Kind
    unsigned AttrKind : 32 - NumTypeBits;
  };

  class AutoTypeBitfields {
    friend class AutoType;

    unsigned : NumTypeBits;

    /// Was this placeholder type spelled as 'decltype(auto)'?
    unsigned IsDecltypeAuto : 1;
  };

  union {
    TypeBitfields TypeBits;
    ArrayTypeBitfields ArrayTypeBits;
    AttributedTypeBitfields AttributedTypeBits;
    AutoTypeBitfields AutoTypeBits;
    BuiltinTypeBitfields BuiltinTypeBits;
    FunctionTypeBitfields FunctionTypeBits;
    ObjCObjectTypeBitfields ObjCObjectTypeBits;
    ReferenceTypeBitfields ReferenceTypeBits;
    TypeWithKeywordBitfields TypeWithKeywordBits;
    VectorTypeBitfields VectorTypeBits;
  };

private:
  /// \brief Set whether this type comes from an AST file.
  void setFromAST(bool V = true) const {
    TypeBits.FromAST = V;
  }

  template <class T> friend class TypePropertyCache;

protected:
  // silence VC++ warning C4355: 'this' : used in base member initializer list
  Type *this_() { return this; }
  Type(TypeClass tc, QualType canon, bool Dependent,
       bool InstantiationDependent, bool VariablyModified,
       bool ContainsUnexpandedParameterPack)
    : ExtQualsTypeCommonBase(this,
                             canon.isNull() ? QualType(this_(), 0) : canon) {
    TypeBits.TC = tc;
    TypeBits.Dependent = Dependent;
    TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
    TypeBits.VariablyModified = VariablyModified;
    TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
    TypeBits.CacheValid = false;
    TypeBits.CachedLocalOrUnnamed = false;
    TypeBits.CachedLinkage = NoLinkage;
    TypeBits.FromAST = false;
  }
  friend class ASTContext;

  void setDependent(bool D = true) {
    TypeBits.Dependent = D;
    if (D)
      TypeBits.InstantiationDependent = true;
  }
  void setInstantiationDependent(bool D = true) {
    TypeBits.InstantiationDependent = D; }
  void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
  }
  void setContainsUnexpandedParameterPack(bool PP = true) {
    TypeBits.ContainsUnexpandedParameterPack = PP;
  }

public:
  TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }

  /// \brief Whether this type comes from an AST file.
  bool isFromAST() const { return TypeBits.FromAST; }

  /// \brief Whether this type is or contains an unexpanded parameter
  /// pack, used to support C++0x variadic templates.
  ///
  /// A type that contains a parameter pack shall be expanded by the
  /// ellipsis operator at some point. For example, the typedef in the
  /// following example contains an unexpanded parameter pack 'T':
  ///
  /// \code
  /// template<typename ...T>
  /// struct X {
  ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
  /// };
  /// \endcode
  ///
  /// Note that this routine does not specify which
  bool containsUnexpandedParameterPack() const {
    return TypeBits.ContainsUnexpandedParameterPack;
  }

  /// Determines if this type would be canonical if it had no further
  /// qualification.
  bool isCanonicalUnqualified() const {
    return CanonicalType == QualType(this, 0);
  }

  /// Pull a single level of sugar off of this locally-unqualified type.
  /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
  /// or QualType::getSingleStepDesugaredType(const ASTContext&).
  QualType getLocallyUnqualifiedSingleStepDesugaredType() const;

  /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
  /// object types, function types, and incomplete types.

  /// isIncompleteType - Return true if this is an incomplete type.
  /// A type that can describe objects, but which lacks information needed to
  /// determine its size (e.g. void, or a fwd declared struct). Clients of this
  /// routine will need to determine if the size is actually required.
  ///
  /// \brief Def If non-NULL, and the type refers to some kind of declaration
  /// that can be completed (such as a C struct, C++ class, or Objective-C
  /// class), will be set to the declaration.
  bool isIncompleteType(NamedDecl **Def = 0) const;

  /// isIncompleteOrObjectType - Return true if this is an incomplete or object
  /// type, in other words, not a function type.
  bool isIncompleteOrObjectType() const {
    return !isFunctionType();
  }

  /// \brief Determine whether this type is an object type.
  bool isObjectType() const {
    // C++ [basic.types]p8:
    //   An object type is a (possibly cv-qualified) type that is not a
    //   function type, not a reference type, and not a void type.
    return !isReferenceType() && !isFunctionType() && !isVoidType();
  }

  /// isLiteralType - Return true if this is a literal type
  /// (C++11 [basic.types]p10)
  bool isLiteralType(ASTContext &Ctx) const;

  /// \brief Test if this type is a standard-layout type.
  /// (C++0x [basic.type]p9)
  bool isStandardLayoutType() const;

  /// Helper methods to distinguish type categories. All type predicates
  /// operate on the canonical type, ignoring typedefs and qualifiers.

  /// isBuiltinType - returns true if the type is a builtin type.
  bool isBuiltinType() const;

  /// isSpecificBuiltinType - Test for a particular builtin type.
  bool isSpecificBuiltinType(unsigned K) const;

  /// isPlaceholderType - Test for a type which does not represent an
  /// actual type-system type but is instead used as a placeholder for
  /// various convenient purposes within Clang.  All such types are
  /// BuiltinTypes.
  bool isPlaceholderType() const;
  const BuiltinType *getAsPlaceholderType() const;

  /// isSpecificPlaceholderType - Test for a specific placeholder type.
  bool isSpecificPlaceholderType(unsigned K) const;

  /// isNonOverloadPlaceholderType - Test for a placeholder type
  /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
  bool isNonOverloadPlaceholderType() const;

  /// isIntegerType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
  bool isEnumeralType() const;
  bool isBooleanType() const;
  bool isCharType() const;
  bool isWideCharType() const;
  bool isChar16Type() const;
  bool isChar32Type() const;
  bool isAnyCharacterType() const;
  bool isIntegralType(ASTContext &Ctx) const;

  /// \brief Determine whether this type is an integral or enumeration type.
  bool isIntegralOrEnumerationType() const;
  /// \brief Determine whether this type is an integral or unscoped enumeration
  /// type.
  bool isIntegralOrUnscopedEnumerationType() const;

  /// Floating point categories.
  bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
  /// isComplexType() does *not* include complex integers (a GCC extension).
  /// isComplexIntegerType() can be used to test for complex integers.
  bool isComplexType() const;      // C99 6.2.5p11 (complex)
  bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
  bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
  bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
  bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
  bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
  bool isVoidType() const;         // C99 6.2.5p19
  bool isDerivedType() const;      // C99 6.2.5p20
  bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
  bool isAggregateType() const;
  bool isFundamentalType() const;
  bool isCompoundType() const;

  // Type Predicates: Check to see if this type is structurally the specified
  // type, ignoring typedefs and qualifiers.
  bool isFunctionType() const;
  bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
  bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
  bool isPointerType() const;
  bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
  bool isBlockPointerType() const;
  bool isVoidPointerType() const;
  bool isReferenceType() const;
  bool isLValueReferenceType() const;
  bool isRValueReferenceType() const;
  bool isFunctionPointerType() const;
  bool isMemberPointerType() const;
  bool isMemberFunctionPointerType() const;
  bool isMemberDataPointerType() const;
  bool isArrayType() const;
  bool isConstantArrayType() const;
  bool isIncompleteArrayType() const;
  bool isVariableArrayType() const;
  bool isDependentSizedArrayType() const;
  bool isRecordType() const;
  bool isClassType() const;
  bool isStructureType() const;
  bool isInterfaceType() const;
  bool isStructureOrClassType() const;
  bool isUnionType() const;
  bool isComplexIntegerType() const;            // GCC _Complex integer type.
  bool isVectorType() const;                    // GCC vector type.
  bool isExtVectorType() const;                 // Extended vector type.
  bool isObjCObjectPointerType() const;         // pointer to ObjC object
  bool isObjCRetainableType() const;            // ObjC object or block pointer
  bool isObjCLifetimeType() const;              // (array of)* retainable type
  bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
  bool isObjCNSObjectType() const;              // __attribute__((NSObject))
  // FIXME: change this to 'raw' interface type, so we can used 'interface' type
  // for the common case.
  bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
  bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
  bool isObjCQualifiedIdType() const;           // id<foo>
  bool isObjCQualifiedClassType() const;        // Class<foo>
  bool isObjCObjectOrInterfaceType() const;
  bool isObjCIdType() const;                    // id
  bool isObjCClassType() const;                 // Class
  bool isObjCSelType() const;                 // Class
  bool isObjCBuiltinType() const;               // 'id' or 'Class'
  bool isObjCARCBridgableType() const;
  bool isCARCBridgableType() const;
  bool isTemplateTypeParmType() const;          // C++ template type parameter
  bool isNullPtrType() const;                   // C++0x nullptr_t
  bool isAtomicType() const;                    // C11 _Atomic()

  bool isImage1dT() const;                      // OpenCL image1d_t
  bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
  bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
  bool isImage2dT() const;                      // OpenCL image2d_t
  bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
  bool isImage3dT() const;                      // OpenCL image3d_t

  bool isImageType() const;                     // Any OpenCL image type

  bool isSamplerT() const;                      // OpenCL sampler_t
  bool isEventT() const;                        // OpenCL event_t

  bool isOpenCLSpecificType() const;            // Any OpenCL specific type

  /// Determines if this type, which must satisfy
  /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
  /// than implicitly __strong.
  bool isObjCARCImplicitlyUnretainedType() const;

  /// Return the implicit lifetime for this type, which must not be dependent.
  Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;

  enum ScalarTypeKind {
    STK_CPointer,
    STK_BlockPointer,
    STK_ObjCObjectPointer,
    STK_MemberPointer,
    STK_Bool,
    STK_Integral,
    STK_Floating,
    STK_IntegralComplex,
    STK_FloatingComplex
  };
  /// getScalarTypeKind - Given that this is a scalar type, classify it.
  ScalarTypeKind getScalarTypeKind() const;

  /// isDependentType - Whether this type is a dependent type, meaning
  /// that its definition somehow depends on a template parameter
  /// (C++ [temp.dep.type]).
  bool isDependentType() const { return TypeBits.Dependent; }

  /// \brief Determine whether this type is an instantiation-dependent type,
  /// meaning that the type involves a template parameter (even if the
  /// definition does not actually depend on the type substituted for that
  /// template parameter).
  bool isInstantiationDependentType() const {
    return TypeBits.InstantiationDependent;
  }

  /// \brief Determine whether this type is an undeduced type, meaning that
  /// it somehow involves a C++11 'auto' type which has not yet been deduced.
  bool isUndeducedType() const;

  /// \brief Whether this type is a variably-modified type (C99 6.7.5).
  bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }

  /// \brief Whether this type involves a variable-length array type
  /// with a definite size.
  bool hasSizedVLAType() const;

  /// \brief Whether this type is or contains a local or unnamed type.
  bool hasUnnamedOrLocalType() const;

  bool isOverloadableType() const;

  /// \brief Determine wither this type is a C++ elaborated-type-specifier.
  bool isElaboratedTypeSpecifier() const;

  bool canDecayToPointerType() const;

  /// hasPointerRepresentation - Whether this type is represented
  /// natively as a pointer; this includes pointers, references, block
  /// pointers, and Objective-C interface, qualified id, and qualified
  /// interface types, as well as nullptr_t.
  bool hasPointerRepresentation() const;

  /// hasObjCPointerRepresentation - Whether this type can represent
  /// an objective pointer type for the purpose of GC'ability
  bool hasObjCPointerRepresentation() const;

  /// \brief Determine whether this type has an integer representation
  /// of some sort, e.g., it is an integer type or a vector.
  bool hasIntegerRepresentation() const;

  /// \brief Determine whether this type has an signed integer representation
  /// of some sort, e.g., it is an signed integer type or a vector.
  bool hasSignedIntegerRepresentation() const;

  /// \brief Determine whether this type has an unsigned integer representation
  /// of some sort, e.g., it is an unsigned integer type or a vector.
  bool hasUnsignedIntegerRepresentation() const;

  /// \brief Determine whether this type has a floating-point representation
  /// of some sort, e.g., it is a floating-point type or a vector thereof.
  bool hasFloatingRepresentation() const;

  // Type Checking Functions: Check to see if this type is structurally the
  // specified type, ignoring typedefs and qualifiers, and return a pointer to
  // the best type we can.
  const RecordType *getAsStructureType() const;
  /// NOTE: getAs*ArrayType are methods on ASTContext.
  const RecordType *getAsUnionType() const;
  const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
  // The following is a convenience method that returns an ObjCObjectPointerType
  // for object declared using an interface.
  const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
  const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
  const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
  const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;

  /// \brief Retrieves the CXXRecordDecl that this type refers to, either
  /// because the type is a RecordType or because it is the injected-class-name
  /// type of a class template or class template partial specialization.
  CXXRecordDecl *getAsCXXRecordDecl() const;

  /// If this is a pointer or reference to a RecordType, return the
  /// CXXRecordDecl that that type refers to.
  ///
  /// If this is not a pointer or reference, or the type being pointed to does
  /// not refer to a CXXRecordDecl, returns NULL.
  const CXXRecordDecl *getPointeeCXXRecordDecl() const;

  /// \brief Get the AutoType whose type will be deduced for a variable with
  /// an initializer of this type. This looks through declarators like pointer
  /// types, but not through decltype or typedefs.
  AutoType *getContainedAutoType() const;

  /// Member-template getAs<specific type>'.  Look through sugar for
  /// an instance of \<specific type>.   This scheme will eventually
  /// replace the specific getAsXXXX methods above.
  ///
  /// There are some specializations of this member template listed
  /// immediately following this class.
  template <typename T> const T *getAs() const;

  /// A variant of getAs<> for array types which silently discards
  /// qualifiers from the outermost type.
  const ArrayType *getAsArrayTypeUnsafe() const;

  /// Member-template castAs<specific type>.  Look through sugar for
  /// the underlying instance of \<specific type>.
  ///
  /// This method has the same relationship to getAs<T> as cast<T> has
  /// to dyn_cast<T>; which is to say, the underlying type *must*
  /// have the intended type, and this method will never return null.
  template <typename T> const T *castAs() const;

  /// A variant of castAs<> for array type which silently discards
  /// qualifiers from the outermost type.
  const ArrayType *castAsArrayTypeUnsafe() const;

  /// getBaseElementTypeUnsafe - Get the base element type of this
  /// type, potentially discarding type qualifiers.  This method
  /// should never be used when type qualifiers are meaningful.
  const Type *getBaseElementTypeUnsafe() const;

  /// getArrayElementTypeNoTypeQual - If this is an array type, return the
  /// element type of the array, potentially with type qualifiers missing.
  /// This method should never be used when type qualifiers are meaningful.
  const Type *getArrayElementTypeNoTypeQual() const;

  /// getPointeeType - If this is a pointer, ObjC object pointer, or block
  /// pointer, this returns the respective pointee.
  QualType getPointeeType() const;

  /// getUnqualifiedDesugaredType() - Return the specified type with
  /// any "sugar" removed from the type, removing any typedefs,
  /// typeofs, etc., as well as any qualifiers.
  const Type *getUnqualifiedDesugaredType() const;

  /// More type predicates useful for type checking/promotion
  bool isPromotableIntegerType() const; // C99 6.3.1.1p2

  /// isSignedIntegerType - Return true if this is an integer type that is
  /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
  /// or an enum decl which has a signed representation.
  bool isSignedIntegerType() const;

  /// isUnsignedIntegerType - Return true if this is an integer type that is
  /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
  /// or an enum decl which has an unsigned representation.
  bool isUnsignedIntegerType() const;

  /// Determines whether this is an integer type that is signed or an
  /// enumeration types whose underlying type is a signed integer type.
  bool isSignedIntegerOrEnumerationType() const;

  /// Determines whether this is an integer type that is unsigned or an
  /// enumeration types whose underlying type is a unsigned integer type.
  bool isUnsignedIntegerOrEnumerationType() const;

  /// isConstantSizeType - Return true if this is not a variable sized type,
  /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
  /// incomplete types.
  bool isConstantSizeType() const;

  /// isSpecifierType - Returns true if this type can be represented by some
  /// set of type specifiers.
  bool isSpecifierType() const;

  /// \brief Determine the linkage of this type.
  Linkage getLinkage() const;

  /// \brief Determine the visibility of this type.
  Visibility getVisibility() const {
    return getLinkageAndVisibility().getVisibility();
  }

  /// \brief Return true if the visibility was explicitly set is the code.
  bool isVisibilityExplicit() const {
    return getLinkageAndVisibility().isVisibilityExplicit();
  }

  /// \brief Determine the linkage and visibility of this type.
  LinkageInfo getLinkageAndVisibility() const;

  /// \brief True if the computed linkage is valid. Used for consistency
  /// checking. Should always return true.
  bool isLinkageValid() const;

  const char *getTypeClassName() const;

  QualType getCanonicalTypeInternal() const {
    return CanonicalType;
  }
  CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
  LLVM_ATTRIBUTE_USED void dump() const;

  friend class ASTReader;
  friend class ASTWriter;
};

/// \brief This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const;

/// \brief This will check for a TemplateSpecializationType by removing any
/// existing sugar until it reaches a TemplateSpecializationType or a
/// non-sugared type.
template <> const TemplateSpecializationType *Type::getAs() const;

// We can do canonical leaf types faster, because we don't have to
// worry about preserving child type decoration.
#define TYPE(Class, Base)
#define LEAF_TYPE(Class) \
template <> inline const Class##Type *Type::getAs() const { \
  return dyn_cast<Class##Type>(CanonicalType); \
} \
template <> inline const Class##Type *Type::castAs() const { \
  return cast<Class##Type>(CanonicalType); \
}
#include "clang/AST/TypeNodes.def"


/// BuiltinType - This class is used for builtin types like 'int'.  Builtin
/// types are always canonical and have a literal name field.
class BuiltinType : public Type {
public:
  enum Kind {
#define BUILTIN_TYPE(Id, SingletonId) Id,
#define LAST_BUILTIN_TYPE(Id) LastKind = Id
#include "clang/AST/BuiltinTypes.def"
  };

public:
  BuiltinType(Kind K)
    : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
           /*InstantiationDependent=*/(K == Dependent),
           /*VariablyModified=*/false,
           /*Unexpanded paramter pack=*/false) {
    BuiltinTypeBits.Kind = K;
  }

  Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
  StringRef getName(const PrintingPolicy &Policy) const;
  const char *getNameAsCString(const PrintingPolicy &Policy) const {
    // The StringRef is null-terminated.
    StringRef str = getName(Policy);
    assert(!str.empty() && str.data()[str.size()] == '\0');
    return str.data();
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  bool isInteger() const {
    return getKind() >= Bool && getKind() <= Int128;
  }

  bool isSignedInteger() const {
    return getKind() >= Char_S && getKind() <= Int128;
  }

  bool isUnsignedInteger() const {
    return getKind() >= Bool && getKind() <= UInt128;
  }

  bool isFloatingPoint() const {
    return getKind() >= Half && getKind() <= LongDouble;
  }

  /// Determines whether the given kind corresponds to a placeholder type.
  static bool isPlaceholderTypeKind(Kind K) {
    return K >= Overload;
  }

  /// Determines whether this type is a placeholder type, i.e. a type
  /// which cannot appear in arbitrary positions in a fully-formed
  /// expression.
  bool isPlaceholderType() const {
    return isPlaceholderTypeKind(getKind());
  }

  /// Determines whether this type is a placeholder type other than
  /// Overload.  Most placeholder types require only syntactic
  /// information about their context in order to be resolved (e.g.
  /// whether it is a call expression), which means they can (and
  /// should) be resolved in an earlier "phase" of analysis.
  /// Overload expressions sometimes pick up further information
  /// from their context, like whether the context expects a
  /// specific function-pointer type, and so frequently need
  /// special treatment.
  bool isNonOverloadPlaceholderType() const {
    return getKind() > Overload;
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
};

/// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
/// types (_Complex float etc) as well as the GCC integer complex extensions.
///
class ComplexType : public Type, public llvm::FoldingSetNode {
  QualType ElementType;
  ComplexType(QualType Element, QualType CanonicalPtr) :
    Type(Complex, CanonicalPtr, Element->isDependentType(),
         Element->isInstantiationDependentType(),
         Element->isVariablyModifiedType(),
         Element->containsUnexpandedParameterPack()),
    ElementType(Element) {
  }
  friend class ASTContext;  // ASTContext creates these.

public:
  QualType getElementType() const { return ElementType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
    ID.AddPointer(Element.getAsOpaquePtr());
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
};

/// ParenType - Sugar for parentheses used when specifying types.
///
class ParenType : public Type, public llvm::FoldingSetNode {
  QualType Inner;

  ParenType(QualType InnerType, QualType CanonType) :
    Type(Paren, CanonType, InnerType->isDependentType(),
         InnerType->isInstantiationDependentType(),
         InnerType->isVariablyModifiedType(),
         InnerType->containsUnexpandedParameterPack()),
    Inner(InnerType) {
  }
  friend class ASTContext;  // ASTContext creates these.

public:

  QualType getInnerType() const { return Inner; }

  bool isSugared() const { return true; }
  QualType desugar() const { return getInnerType(); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getInnerType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
    Inner.Profile(ID);
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
};

/// PointerType - C99 6.7.5.1 - Pointer Declarators.
///
class PointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

  PointerType(QualType Pointee, QualType CanonicalPtr) :
    Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
         Pointee->isInstantiationDependentType(),
         Pointee->isVariablyModifiedType(),
         Pointee->containsUnexpandedParameterPack()),
    PointeeType(Pointee) {
  }
  friend class ASTContext;  // ASTContext creates these.

public:

  QualType getPointeeType() const { return PointeeType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
  }

  static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
};

/// BlockPointerType - pointer to a block type.
/// This type is to represent types syntactically represented as
/// "void (^)(int)", etc. Pointee is required to always be a function type.
///
class BlockPointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;  // Block is some kind of pointer type
  BlockPointerType(QualType Pointee, QualType CanonicalCls) :
    Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
         Pointee->isInstantiationDependentType(),
         Pointee->isVariablyModifiedType(),
         Pointee->containsUnexpandedParameterPack()),
    PointeeType(Pointee) {
  }
  friend class ASTContext;  // ASTContext creates these.

public:

  // Get the pointee type. Pointee is required to always be a function type.
  QualType getPointeeType() const { return PointeeType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
      Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
      ID.AddPointer(Pointee.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == BlockPointer;
  }
};

/// ReferenceType - Base for LValueReferenceType and RValueReferenceType
///
class ReferenceType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

protected:
  ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
                bool SpelledAsLValue) :
    Type(tc, CanonicalRef, Referencee->isDependentType(),
         Referencee->isInstantiationDependentType(),
         Referencee->isVariablyModifiedType(),
         Referencee->containsUnexpandedParameterPack()),
    PointeeType(Referencee)
  {
    ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
    ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
  }

public:
  bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
  bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }

  QualType getPointeeTypeAsWritten() const { return PointeeType; }
  QualType getPointeeType() const {
    // FIXME: this might strip inner qualifiers; okay?
    const ReferenceType *T = this;
    while (T->isInnerRef())
      T = T->PointeeType->castAs<ReferenceType>();
    return T->PointeeType;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, PointeeType, isSpelledAsLValue());
  }
  static void Profile(llvm::FoldingSetNodeID &ID,
                      QualType Referencee,
                      bool SpelledAsLValue) {
    ID.AddPointer(Referencee.getAsOpaquePtr());
    ID.AddBoolean(SpelledAsLValue);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference ||
           T->getTypeClass() == RValueReference;
  }
};

/// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
///
class LValueReferenceType : public ReferenceType {
  LValueReferenceType(QualType Referencee, QualType CanonicalRef,
                      bool SpelledAsLValue) :
    ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
  {}
  friend class ASTContext; // ASTContext creates these
public:
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == LValueReference;
  }
};

/// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
///
class RValueReferenceType : public ReferenceType {
  RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
    ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
  }
  friend class ASTContext; // ASTContext creates these
public:
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == RValueReference;
  }
};

/// MemberPointerType - C++ 8.3.3 - Pointers to members
///
class MemberPointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;
  /// The class of which the pointee is a member. Must ultimately be a
  /// RecordType, but could be a typedef or a template parameter too.
  const Type *Class;

  MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
    Type(MemberPointer, CanonicalPtr,
         Cls->isDependentType() || Pointee->isDependentType(),
         (Cls->isInstantiationDependentType() ||
          Pointee->isInstantiationDependentType()),
         Pointee->isVariablyModifiedType(),
         (Cls->containsUnexpandedParameterPack() ||
          Pointee->containsUnexpandedParameterPack())),
    PointeeType(Pointee), Class(Cls) {
  }
  friend class ASTContext; // ASTContext creates these.

public:
  QualType getPointeeType() const { return PointeeType; }

  /// Returns true if the member type (i.e. the pointee type) is a
  /// function type rather than a data-member type.
  bool isMemberFunctionPointer() const {
    return PointeeType->isFunctionProtoType();
  }

  /// Returns true if the member type (i.e. the pointee type) is a
  /// data type rather than a function type.
  bool isMemberDataPointer() const {
    return !PointeeType->isFunctionProtoType();
  }

  const Type *getClass() const { return Class; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType(), getClass());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
                      const Type *Class) {
    ID.AddPointer(Pointee.getAsOpaquePtr());
    ID.AddPointer(Class);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == MemberPointer;
  }
};

/// ArrayType - C99 6.7.5.2 - Array Declarators.
///
class ArrayType : public Type, public llvm::FoldingSetNode {
public:
  /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
  /// an array with a static size (e.g. int X[static 4]), or an array
  /// with a star size (e.g. int X[*]).
  /// 'static' is only allowed on function parameters.
  enum ArraySizeModifier {
    Normal, Static, Star
  };
private:
  /// ElementType - The element type of the array.
  QualType ElementType;

protected:
  // C++ [temp.dep.type]p1:
  //   A type is dependent if it is...
  //     - an array type constructed from any dependent type or whose
  //       size is specified by a constant expression that is
  //       value-dependent,
  ArrayType(TypeClass tc, QualType et, QualType can,
            ArraySizeModifier sm, unsigned tq,
            bool ContainsUnexpandedParameterPack)
    : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
           et->isInstantiationDependentType() || tc == DependentSizedArray,
           (tc == VariableArray || et->isVariablyModifiedType()),
           ContainsUnexpandedParameterPack),
      ElementType(et) {
    ArrayTypeBits.IndexTypeQuals = tq;
    ArrayTypeBits.SizeModifier = sm;
  }

  friend class ASTContext;  // ASTContext creates these.

public:
  QualType getElementType() const { return ElementType; }
  ArraySizeModifier getSizeModifier() const {
    return ArraySizeModifier(ArrayTypeBits.SizeModifier);
  }
  Qualifiers getIndexTypeQualifiers() const {
    return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
  }
  unsigned getIndexTypeCVRQualifiers() const {
    return ArrayTypeBits.IndexTypeQuals;
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ConstantArray ||
           T->getTypeClass() == VariableArray ||
           T->getTypeClass() == IncompleteArray ||
           T->getTypeClass() == DependentSizedArray;
  }
};

/// ConstantArrayType - This class represents the canonical version of
/// C arrays with a specified constant size.  For example, the canonical
/// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
/// type is 'int' and the size is 404.
class ConstantArrayType : public ArrayType {
  llvm::APInt Size; // Allows us to unique the type.

  ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
                    ArraySizeModifier sm, unsigned tq)
    : ArrayType(ConstantArray, et, can, sm, tq,
                et->containsUnexpandedParameterPack()),
      Size(size) {}
protected:
  ConstantArrayType(TypeClass tc, QualType et, QualType can,
                    const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
    : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
      Size(size) {}
  friend class ASTContext;  // ASTContext creates these.
public:
  const llvm::APInt &getSize() const { return Size; }
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }


  /// \brief Determine the number of bits required to address a member of
  // an array with the given element type and number of elements.
  static unsigned getNumAddressingBits(ASTContext &Context,
                                       QualType ElementType,
                                       const llvm::APInt &NumElements);

  /// \brief Determine the maximum number of active bits that an array's size
  /// can require, which limits the maximum size of the array.
  static unsigned getMaxSizeBits(ASTContext &Context);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSize(),
            getSizeModifier(), getIndexTypeCVRQualifiers());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
                      unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(ArraySize.getZExtValue());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }
  static bool classof(const Type *T) {
    return T->getTypeClass() == ConstantArray;
  }
};

/// IncompleteArrayType - This class represents C arrays with an unspecified
/// size.  For example 'int A[]' has an IncompleteArrayType where the element
/// type is 'int' and the size is unspecified.
class IncompleteArrayType : public ArrayType {

  IncompleteArrayType(QualType et, QualType can,
                      ArraySizeModifier sm, unsigned tq)
    : ArrayType(IncompleteArray, et, can, sm, tq,
                et->containsUnexpandedParameterPack()) {}
  friend class ASTContext;  // ASTContext creates these.
public:
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == IncompleteArray;
  }

  friend class StmtIteratorBase;

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getSizeModifier(),
            getIndexTypeCVRQualifiers());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
                      ArraySizeModifier SizeMod, unsigned TypeQuals) {
    ID.AddPointer(ET.getAsOpaquePtr());
    ID.AddInteger(SizeMod);
    ID.AddInteger(TypeQuals);
  }
};

/// VariableArrayType - This class represents C arrays with a specified size
/// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
/// Since the size expression is an arbitrary expression, we store it as such.
///
/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
/// should not be: two lexically equivalent variable array types could mean
/// different things, for example, these variables do not have the same type
/// dynamically:
///
/// void foo(int x) {
///   int Y[x];
///   ++x;
///   int Z[x];
/// }
///
class VariableArrayType : public ArrayType {
  /// SizeExpr - An assignment expression. VLA's are only permitted within
  /// a function block.
  Stmt *SizeExpr;
  /// Brackets - The left and right array brackets.
  SourceRange Brackets;

  VariableArrayType(QualType et, QualType can, Expr *e,
                    ArraySizeModifier sm, unsigned tq,
                    SourceRange brackets)
    : ArrayType(VariableArray, et, can, sm, tq,
                et->containsUnexpandedParameterPack()),
      SizeExpr((Stmt*) e), Brackets(brackets) {}
  friend class ASTContext;  // ASTContext creates these.

public:
  Expr *getSizeExpr() const {
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }
  SourceRange getBracketsRange() const { return Brackets; }
  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == VariableArray;
  }

  friend class StmtIteratorBase;

  void Profile(llvm::FoldingSetNodeID &ID) {
    llvm_unreachable("Cannot unique VariableArrayTypes.");
  }
};

/// DependentSizedArrayType - This type represents an array type in
/// C++ whose size is a value-dependent expression. For example:
///
/// \code
/// template<typename T, int Size>
/// class array {
///   T data[Size];
/// };
/// \endcode
///
/// For these types, we won't actually know what the array bound is
/// until template instantiation occurs, at which point this will
/// become either a ConstantArrayType or a VariableArrayType.
class DependentSizedArrayType : public ArrayType {
  const ASTContext &Context;

  /// \brief An assignment expression that will instantiate to the
  /// size of the array.
  ///
  /// The expression itself might be NULL, in which case the array
  /// type will have its size deduced from an initializer.
  Stmt *SizeExpr;

  /// Brackets - The left and right array brackets.
  SourceRange Brackets;

  DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
                          Expr *e, ArraySizeModifier sm, unsigned tq,
                          SourceRange brackets);

  friend class ASTContext;  // ASTContext creates these.

public:
  Expr *getSizeExpr() const {
    // We use C-style casts instead of cast<> here because we do not wish
    // to have a dependency of Type.h on Stmt.h/Expr.h.
    return (Expr*) SizeExpr;
  }
  SourceRange getBracketsRange() const { return Brackets; }
  SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
  SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentSizedArray;
  }

  friend class StmtIteratorBase;


  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getElementType(),
            getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType ET, ArraySizeModifier SizeMod,
                      unsigned TypeQuals, Expr *E);
};

/// DependentSizedExtVectorType - This type represent an extended vector type
/// where either the type or size is dependent. For example:
/// @code
/// template<typename T, int Size>
/// class vector {
///   typedef T __attribute__((ext_vector_type(Size))) type;
/// }
/// @endcode
class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
  const ASTContext &Context;
  Expr *SizeExpr;
  /// ElementType - The element type of the array.
  QualType ElementType;
  SourceLocation loc;

  DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
                              QualType can, Expr *SizeExpr, SourceLocation loc);

  friend class ASTContext;

public:
  Expr *getSizeExpr() const { return SizeExpr; }
  QualType getElementType() const { return ElementType; }
  SourceLocation getAttributeLoc() const { return loc; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentSizedExtVector;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getElementType(), getSizeExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      QualType ElementType, Expr *SizeExpr);
};


/// VectorType - GCC generic vector type. This type is created using
/// __attribute__((vector_size(n)), where "n" specifies the vector size in
/// bytes; or from an Altivec __vector or vector declaration.
/// Since the constructor takes the number of vector elements, the
/// client is responsible for converting the size into the number of elements.
class VectorType : public Type, public llvm::FoldingSetNode {
public:
  enum VectorKind {
    GenericVector,  // not a target-specific vector type
    AltiVecVector,  // is AltiVec vector
    AltiVecPixel,   // is AltiVec 'vector Pixel'
    AltiVecBool,    // is AltiVec 'vector bool ...'
    NeonVector,     // is ARM Neon vector
    NeonPolyVector  // is ARM Neon polynomial vector
  };
protected:
  /// ElementType - The element type of the vector.
  QualType ElementType;

  VectorType(QualType vecType, unsigned nElements, QualType canonType,
             VectorKind vecKind);

  VectorType(TypeClass tc, QualType vecType, unsigned nElements,
             QualType canonType, VectorKind vecKind);

  friend class ASTContext;  // ASTContext creates these.

public:

  QualType getElementType() const { return ElementType; }
  unsigned getNumElements() const { return VectorTypeBits.NumElements; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  VectorKind getVectorKind() const {
    return VectorKind(VectorTypeBits.VecKind);
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getElementType(), getNumElements(),
            getTypeClass(), getVectorKind());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
                      unsigned NumElements, TypeClass TypeClass,
                      VectorKind VecKind) {
    ID.AddPointer(ElementType.getAsOpaquePtr());
    ID.AddInteger(NumElements);
    ID.AddInteger(TypeClass);
    ID.AddInteger(VecKind);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
  }
};

/// ExtVectorType - Extended vector type. This type is created using
/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
/// class enables syntactic extensions, like Vector Components for accessing
/// points, colors, and textures (modeled after OpenGL Shading Language).
class ExtVectorType : public VectorType {
  ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
    VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
  friend class ASTContext;  // ASTContext creates these.
public:
  static int getPointAccessorIdx(char c) {
    switch (c) {
    default: return -1;
    case 'x': return 0;
    case 'y': return 1;
    case 'z': return 2;
    case 'w': return 3;
    }
  }
  static int getNumericAccessorIdx(char c) {
    switch (c) {
      default: return -1;
      case '0': return 0;
      case '1': return 1;
      case '2': return 2;
      case '3': return 3;
      case '4': return 4;
      case '5': return 5;
      case '6': return 6;
      case '7': return 7;
      case '8': return 8;
      case '9': return 9;
      case 'A':
      case 'a': return 10;
      case 'B':
      case 'b': return 11;
      case 'C':
      case 'c': return 12;
      case 'D':
      case 'd': return 13;
      case 'E':
      case 'e': return 14;
      case 'F':
      case 'f': return 15;
    }
  }

  static int getAccessorIdx(char c) {
    if (int idx = getPointAccessorIdx(c)+1) return idx-1;
    return getNumericAccessorIdx(c);
  }

  bool isAccessorWithinNumElements(char c) const {
    if (int idx = getAccessorIdx(c)+1)
      return unsigned(idx-1) < getNumElements();
    return false;
  }
  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ExtVector;
  }
};

/// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
/// class of FunctionNoProtoType and FunctionProtoType.
///
class FunctionType : public Type {
  // The type returned by the function.
  QualType ResultType;

 public:
  /// ExtInfo - A class which abstracts out some details necessary for
  /// making a call.
  ///
  /// It is not actually used directly for storing this information in
  /// a FunctionType, although FunctionType does currently use the
  /// same bit-pattern.
  ///
  // If you add a field (say Foo), other than the obvious places (both,
  // constructors, compile failures), what you need to update is
  // * Operator==
  // * getFoo
  // * withFoo
  // * functionType. Add Foo, getFoo.
  // * ASTContext::getFooType
  // * ASTContext::mergeFunctionTypes
  // * FunctionNoProtoType::Profile
  // * FunctionProtoType::Profile
  // * TypePrinter::PrintFunctionProto
  // * AST read and write
  // * Codegen
  class ExtInfo {
    // Feel free to rearrange or add bits, but if you go over 9,
    // you'll need to adjust both the Bits field below and
    // Type::FunctionTypeBitfields.

    //   |  CC  |noreturn|produces|regparm|
    //   |0 .. 3|   4    |    5   | 6 .. 8|
    //
    // regparm is either 0 (no regparm attribute) or the regparm value+1.
    enum { CallConvMask = 0xF };
    enum { NoReturnMask = 0x10 };
    enum { ProducesResultMask = 0x20 };
    enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
           RegParmOffset = 6 }; // Assumed to be the last field

    uint16_t Bits;

    ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}

    friend class FunctionType;

   public:
    // Constructor with no defaults. Use this when you know that you
    // have all the elements (when reading an AST file for example).
    ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
            bool producesResult) {
      assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
      Bits = ((unsigned) cc) |
             (noReturn ? NoReturnMask : 0) |
             (producesResult ? ProducesResultMask : 0) |
             (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
    }

    // Constructor with all defaults. Use when for example creating a
    // function know to use defaults.
    ExtInfo() : Bits(0) {}

    bool getNoReturn() const { return Bits & NoReturnMask; }
    bool getProducesResult() const { return Bits & ProducesResultMask; }
    bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
    unsigned getRegParm() const {
      unsigned RegParm = Bits >> RegParmOffset;
      if (RegParm > 0)
        --RegParm;
      return RegParm;
    }
    CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }

    bool operator==(ExtInfo Other) const {
      return Bits == Other.Bits;
    }
    bool operator!=(ExtInfo Other) const {
      return Bits != Other.Bits;
    }

    // Note that we don't have setters. That is by design, use
    // the following with methods instead of mutating these objects.

    ExtInfo withNoReturn(bool noReturn) const {
      if (noReturn)
        return ExtInfo(Bits | NoReturnMask);
      else
        return ExtInfo(Bits & ~NoReturnMask);
    }

    ExtInfo withProducesResult(bool producesResult) const {
      if (producesResult)
        return ExtInfo(Bits | ProducesResultMask);
      else
        return ExtInfo(Bits & ~ProducesResultMask);
    }

    ExtInfo withRegParm(unsigned RegParm) const {
      assert(RegParm < 7 && "Invalid regparm value");
      return ExtInfo((Bits & ~RegParmMask) |
                     ((RegParm + 1) << RegParmOffset));
    }

    ExtInfo withCallingConv(CallingConv cc) const {
      return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
    }

    void Profile(llvm::FoldingSetNodeID &ID) const {
      ID.AddInteger(Bits);
    }
  };

protected:
  FunctionType(TypeClass tc, QualType res,
               unsigned typeQuals, QualType Canonical, bool Dependent,
               bool InstantiationDependent,
               bool VariablyModified, bool ContainsUnexpandedParameterPack,
               ExtInfo Info)
    : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
           ContainsUnexpandedParameterPack),
      ResultType(res) {
    FunctionTypeBits.ExtInfo = Info.Bits;
    FunctionTypeBits.TypeQuals = typeQuals;
  }
  unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }

public:

  QualType getResultType() const { return ResultType; }

  bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
  unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
  /// \brief Determine whether this function type includes the GNU noreturn
  /// attribute. The C++11 [[noreturn]] attribute does not affect the function
  /// type.
  bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
  CallingConv getCallConv() const { return getExtInfo().getCC(); }
  ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
  bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
  bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
  bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }

  /// \brief Determine the type of an expression that calls a function of
  /// this type.
  QualType getCallResultType(ASTContext &Context) const {
    return getResultType().getNonLValueExprType(Context);
  }

  static StringRef getNameForCallConv(CallingConv CC);

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto ||
           T->getTypeClass() == FunctionProto;
  }
};

/// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
/// no information available about its arguments.
class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
  FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
    : FunctionType(FunctionNoProto, Result, 0, Canonical,
                   /*Dependent=*/false, /*InstantiationDependent=*/false,
                   Result->isVariablyModifiedType(),
                   /*ContainsUnexpandedParameterPack=*/false, Info) {}

  friend class ASTContext;  // ASTContext creates these.

public:
  // No additional state past what FunctionType provides.

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getResultType(), getExtInfo());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
                      ExtInfo Info) {
    Info.Profile(ID);
    ID.AddPointer(ResultType.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionNoProto;
  }
};

/// FunctionProtoType - Represents a prototype with argument type info, e.g.
/// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
/// arguments, not as having a single void argument. Such a type can have an
/// exception specification, but this specification is not part of the canonical
/// type.
class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
public:
  /// ExtProtoInfo - Extra information about a function prototype.
  struct ExtProtoInfo {
    ExtProtoInfo() :
      Variadic(false), HasTrailingReturn(false), TypeQuals(0),
      ExceptionSpecType(EST_None), RefQualifier(RQ_None),
      NumExceptions(0), Exceptions(0), NoexceptExpr(0),
      ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
      ConsumedArguments(0) {}

    FunctionType::ExtInfo ExtInfo;
    bool Variadic : 1;
    bool HasTrailingReturn : 1;
    unsigned char TypeQuals;
    ExceptionSpecificationType ExceptionSpecType;
    RefQualifierKind RefQualifier;
    unsigned NumExceptions;
    const QualType *Exceptions;
    Expr *NoexceptExpr;
    FunctionDecl *ExceptionSpecDecl;
    FunctionDecl *ExceptionSpecTemplate;
    const bool *ConsumedArguments;
  };

private:
  /// \brief Determine whether there are any argument types that
  /// contain an unexpanded parameter pack.
  static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
                                                 unsigned numArgs) {
    for (unsigned Idx = 0; Idx < numArgs; ++Idx)
      if (ArgArray[Idx]->containsUnexpandedParameterPack())
        return true;

    return false;
  }

  FunctionProtoType(QualType result, ArrayRef<QualType> args,
                    QualType canonical, const ExtProtoInfo &epi);

  /// NumArgs - The number of arguments this function has, not counting '...'.
  unsigned NumArgs : 15;

  /// NumExceptions - The number of types in the exception spec, if any.
  unsigned NumExceptions : 9;

  /// ExceptionSpecType - The type of exception specification this function has.
  unsigned ExceptionSpecType : 3;

  /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
  unsigned HasAnyConsumedArgs : 1;

  /// Variadic - Whether the function is variadic.
  unsigned Variadic : 1;

  /// HasTrailingReturn - Whether this function has a trailing return type.
  unsigned HasTrailingReturn : 1;

  /// \brief The ref-qualifier associated with a \c FunctionProtoType.
  ///
  /// This is a value of type \c RefQualifierKind.
  unsigned RefQualifier : 2;

  // ArgInfo - There is an variable size array after the class in memory that
  // holds the argument types.

  // Exceptions - There is another variable size array after ArgInfo that
  // holds the exception types.

  // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
  // to the expression in the noexcept() specifier.

  // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
  // be a pair of FunctionDecl* pointing to the function which should be used to
  // instantiate this function type's exception specification, and the function
  // from which it should be instantiated.

  // ConsumedArgs - A variable size array, following Exceptions
  // and of length NumArgs, holding flags indicating which arguments
  // are consumed.  This only appears if HasAnyConsumedArgs is true.

  friend class ASTContext;  // ASTContext creates these.

  const bool *getConsumedArgsBuffer() const {
    assert(hasAnyConsumedArgs());

    // Find the end of the exceptions.
    Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
    if (getExceptionSpecType() != EST_ComputedNoexcept)
      eh_end += NumExceptions;
    else
      eh_end += 1; // NoexceptExpr

    return reinterpret_cast<const bool*>(eh_end);
  }

public:
  unsigned getNumArgs() const { return NumArgs; }
  QualType getArgType(unsigned i) const {
    assert(i < NumArgs && "Invalid argument number!");
    return arg_type_begin()[i];
  }
  ArrayRef<QualType> getArgTypes() const {
    return ArrayRef<QualType>(arg_type_begin(), arg_type_end());
  }

  ExtProtoInfo getExtProtoInfo() const {
    ExtProtoInfo EPI;
    EPI.ExtInfo = getExtInfo();
    EPI.Variadic = isVariadic();
    EPI.HasTrailingReturn = hasTrailingReturn();
    EPI.ExceptionSpecType = getExceptionSpecType();
    EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
    EPI.RefQualifier = getRefQualifier();
    if (EPI.ExceptionSpecType == EST_Dynamic) {
      EPI.NumExceptions = NumExceptions;
      EPI.Exceptions = exception_begin();
    } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
      EPI.NoexceptExpr = getNoexceptExpr();
    } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
      EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
    } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
      EPI.ExceptionSpecDecl = getExceptionSpecDecl();
    }
    if (hasAnyConsumedArgs())
      EPI.ConsumedArguments = getConsumedArgsBuffer();
    return EPI;
  }

  /// \brief Get the kind of exception specification on this function.
  ExceptionSpecificationType getExceptionSpecType() const {
    return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
  }
  /// \brief Return whether this function has any kind of exception spec.
  bool hasExceptionSpec() const {
    return getExceptionSpecType() != EST_None;
  }
  /// \brief Return whether this function has a dynamic (throw) exception spec.
  bool hasDynamicExceptionSpec() const {
    return isDynamicExceptionSpec(getExceptionSpecType());
  }
  /// \brief Return whether this function has a noexcept exception spec.
  bool hasNoexceptExceptionSpec() const {
    return isNoexceptExceptionSpec(getExceptionSpecType());
  }
  /// \brief Result type of getNoexceptSpec().
  enum NoexceptResult {
    NR_NoNoexcept,  ///< There is no noexcept specifier.
    NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
    NR_Dependent,   ///< The noexcept specifier is dependent.
    NR_Throw,       ///< The noexcept specifier evaluates to false.
    NR_Nothrow      ///< The noexcept specifier evaluates to true.
  };
  /// \brief Get the meaning of the noexcept spec on this function, if any.
  NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
  unsigned getNumExceptions() const { return NumExceptions; }
  QualType getExceptionType(unsigned i) const {
    assert(i < NumExceptions && "Invalid exception number!");
    return exception_begin()[i];
  }
  Expr *getNoexceptExpr() const {
    if (getExceptionSpecType() != EST_ComputedNoexcept)
      return 0;
    // NoexceptExpr sits where the arguments end.
    return *reinterpret_cast<Expr *const *>(arg_type_end());
  }
  /// \brief If this function type has an exception specification which hasn't
  /// been determined yet (either because it has not been evaluated or because
  /// it has not been instantiated), this is the function whose exception
  /// specification is represented by this type.
  FunctionDecl *getExceptionSpecDecl() const {
    if (getExceptionSpecType() != EST_Uninstantiated &&
        getExceptionSpecType() != EST_Unevaluated)
      return 0;
    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
  }
  /// \brief If this function type has an uninstantiated exception
  /// specification, this is the function whose exception specification
  /// should be instantiated to find the exception specification for
  /// this type.
  FunctionDecl *getExceptionSpecTemplate() const {
    if (getExceptionSpecType() != EST_Uninstantiated)
      return 0;
    return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
  }
  bool isNothrow(ASTContext &Ctx) const {
    ExceptionSpecificationType EST = getExceptionSpecType();
    assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
    if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
      return true;
    if (EST != EST_ComputedNoexcept)
      return false;
    return getNoexceptSpec(Ctx) == NR_Nothrow;
  }

  bool isVariadic() const { return Variadic; }

  /// \brief Determines whether this function prototype contains a
  /// parameter pack at the end.
  ///
  /// A function template whose last parameter is a parameter pack can be
  /// called with an arbitrary number of arguments, much like a variadic
  /// function.
  bool isTemplateVariadic() const;

  bool hasTrailingReturn() const { return HasTrailingReturn; }

  unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }


  /// \brief Retrieve the ref-qualifier associated with this function type.
  RefQualifierKind getRefQualifier() const {
    return static_cast<RefQualifierKind>(RefQualifier);
  }

  typedef const QualType *arg_type_iterator;
  arg_type_iterator arg_type_begin() const {
    return reinterpret_cast<const QualType *>(this+1);
  }
  arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }

  typedef const QualType *exception_iterator;
  exception_iterator exception_begin() const {
    // exceptions begin where arguments end
    return arg_type_end();
  }
  exception_iterator exception_end() const {
    if (getExceptionSpecType() != EST_Dynamic)
      return exception_begin();
    return exception_begin() + NumExceptions;
  }

  bool hasAnyConsumedArgs() const {
    return HasAnyConsumedArgs;
  }
  bool isArgConsumed(unsigned I) const {
    assert(I < getNumArgs() && "argument index out of range!");
    if (hasAnyConsumedArgs())
      return getConsumedArgsBuffer()[I];
    return false;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void printExceptionSpecification(raw_ostream &OS, 
                                   const PrintingPolicy &Policy) const;

  static bool classof(const Type *T) {
    return T->getTypeClass() == FunctionProto;
  }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
  static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
                      arg_type_iterator ArgTys, unsigned NumArgs,
                      const ExtProtoInfo &EPI, const ASTContext &Context);
};


/// \brief Represents the dependent type named by a dependently-scoped
/// typename using declaration, e.g.
///   using typename Base<T>::foo;
/// Template instantiation turns these into the underlying type.
class UnresolvedUsingType : public Type {
  UnresolvedUsingTypenameDecl *Decl;

  UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
    : Type(UnresolvedUsing, QualType(), true, true, false,
           /*ContainsUnexpandedParameterPack=*/false),
      Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
  friend class ASTContext; // ASTContext creates these.
public:

  UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == UnresolvedUsing;
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    return Profile(ID, Decl);
  }
  static void Profile(llvm::FoldingSetNodeID &ID,
                      UnresolvedUsingTypenameDecl *D) {
    ID.AddPointer(D);
  }
};


class TypedefType : public Type {
  TypedefNameDecl *Decl;
protected:
  TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
    : Type(tc, can, can->isDependentType(),
           can->isInstantiationDependentType(),
           can->isVariablyModifiedType(),
           /*ContainsUnexpandedParameterPack=*/false),
      Decl(const_cast<TypedefNameDecl*>(D)) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }
  friend class ASTContext;  // ASTContext creates these.
public:

  TypedefNameDecl *getDecl() const { return Decl; }

  bool isSugared() const { return true; }
  QualType desugar() const;

  static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
};

/// TypeOfExprType (GCC extension).
class TypeOfExprType : public Type {
  Expr *TOExpr;

protected:
  TypeOfExprType(Expr *E, QualType can = QualType());
  friend class ASTContext;  // ASTContext creates these.
public:
  Expr *getUnderlyingExpr() const { return TOExpr; }

  /// \brief Remove a single level of sugar.
  QualType desugar() const;

  /// \brief Returns whether this type directly provides sugar.
  bool isSugared() const;

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
};

/// \brief Internal representation of canonical, dependent
/// typeof(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via TypeOfExprType nodes.
class DependentTypeOfExprType
  : public TypeOfExprType, public llvm::FoldingSetNode {
  const ASTContext &Context;

public:
  DependentTypeOfExprType(const ASTContext &Context, Expr *E)
    : TypeOfExprType(E), Context(Context) { }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getUnderlyingExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      Expr *E);
};

/// TypeOfType (GCC extension).
class TypeOfType : public Type {
  QualType TOType;
  TypeOfType(QualType T, QualType can)
    : Type(TypeOf, can, T->isDependentType(),
           T->isInstantiationDependentType(),
           T->isVariablyModifiedType(),
           T->containsUnexpandedParameterPack()),
      TOType(T) {
    assert(!isa<TypedefType>(can) && "Invalid canonical type");
  }
  friend class ASTContext;  // ASTContext creates these.
public:
  QualType getUnderlyingType() const { return TOType; }

  /// \brief Remove a single level of sugar.
  QualType desugar() const { return getUnderlyingType(); }

  /// \brief Returns whether this type directly provides sugar.
  bool isSugared() const { return true; }

  static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
};

/// DecltypeType (C++0x)
class DecltypeType : public Type {
  Expr *E;
  QualType UnderlyingType;

protected:
  DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
  friend class ASTContext;  // ASTContext creates these.
public:
  Expr *getUnderlyingExpr() const { return E; }
  QualType getUnderlyingType() const { return UnderlyingType; }

  /// \brief Remove a single level of sugar.
  QualType desugar() const;

  /// \brief Returns whether this type directly provides sugar.
  bool isSugared() const;

  static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
};

/// \brief Internal representation of canonical, dependent
/// decltype(expr) types.
///
/// This class is used internally by the ASTContext to manage
/// canonical, dependent types, only. Clients will only see instances
/// of this class via DecltypeType nodes.
class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
  const ASTContext &Context;

public:
  DependentDecltypeType(const ASTContext &Context, Expr *E);

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, Context, getUnderlyingExpr());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
                      Expr *E);
};

/// \brief A unary type transform, which is a type constructed from another
class UnaryTransformType : public Type {
public:
  enum UTTKind {
    EnumUnderlyingType
  };

private:
  /// The untransformed type.
  QualType BaseType;
  /// The transformed type if not dependent, otherwise the same as BaseType.
  QualType UnderlyingType;

  UTTKind UKind;
protected:
  UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
                     QualType CanonicalTy);
  friend class ASTContext;
public:
  bool isSugared() const { return !isDependentType(); }
  QualType desugar() const { return UnderlyingType; }

  QualType getUnderlyingType() const { return UnderlyingType; }
  QualType getBaseType() const { return BaseType; }

  UTTKind getUTTKind() const { return UKind; }

  static bool classof(const Type *T) {
    return T->getTypeClass() == UnaryTransform;
  }
};

class TagType : public Type {
  /// Stores the TagDecl associated with this type. The decl may point to any
  /// TagDecl that declares the entity.
  TagDecl * decl;

  friend class ASTReader;
  
protected:
  TagType(TypeClass TC, const TagDecl *D, QualType can);

public:
  TagDecl *getDecl() const;

  /// @brief Determines whether this type is in the process of being
  /// defined.
  bool isBeingDefined() const;

  static bool classof(const Type *T) {
    return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
  }
};

/// RecordType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of structs/unions/classes.
class RecordType : public TagType {
protected:
  explicit RecordType(const RecordDecl *D)
    : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
  explicit RecordType(TypeClass TC, RecordDecl *D)
    : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
  friend class ASTContext;   // ASTContext creates these.
public:

  RecordDecl *getDecl() const {
    return reinterpret_cast<RecordDecl*>(TagType::getDecl());
  }

  // FIXME: This predicate is a helper to QualType/Type. It needs to
  // recursively check all fields for const-ness. If any field is declared
  // const, it needs to return false.
  bool hasConstFields() const { return false; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) { return T->getTypeClass() == Record; }
};

/// EnumType - This is a helper class that allows the use of isa/cast/dyncast
/// to detect TagType objects of enums.
class EnumType : public TagType {
  explicit EnumType(const EnumDecl *D)
    : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
  friend class ASTContext;   // ASTContext creates these.
public:

  EnumDecl *getDecl() const {
    return reinterpret_cast<EnumDecl*>(TagType::getDecl());
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
};

/// AttributedType - An attributed type is a type to which a type
/// attribute has been applied.  The "modified type" is the
/// fully-sugared type to which the attributed type was applied;
/// generally it is not canonically equivalent to the attributed type.
/// The "equivalent type" is the minimally-desugared type which the
/// type is canonically equivalent to.
///
/// For example, in the following attributed type:
///     int32_t __attribute__((vector_size(16)))
///   - the modified type is the TypedefType for int32_t
///   - the equivalent type is VectorType(16, int32_t)
///   - the canonical type is VectorType(16, int)
class AttributedType : public Type, public llvm::FoldingSetNode {
public:
  // It is really silly to have yet another attribute-kind enum, but
  // clang::attr::Kind doesn't currently cover the pure type attrs.
  enum Kind {
    // Expression operand.
    attr_address_space,
    attr_regparm,
    attr_vector_size,
    attr_neon_vector_type,
    attr_neon_polyvector_type,

    FirstExprOperandKind = attr_address_space,
    LastExprOperandKind = attr_neon_polyvector_type,

    // Enumerated operand (string or keyword).
    attr_objc_gc,
    attr_objc_ownership,
    attr_pcs,

    FirstEnumOperandKind = attr_objc_gc,
    LastEnumOperandKind = attr_pcs,

    // No operand.
    attr_noreturn,
    attr_cdecl,
    attr_fastcall,
    attr_stdcall,
    attr_thiscall,
    attr_pascal,
    attr_pnaclcall,
    attr_inteloclbicc
  };

private:
  QualType ModifiedType;
  QualType EquivalentType;

  friend class ASTContext; // creates these

  AttributedType(QualType canon, Kind attrKind,
                 QualType modified, QualType equivalent)
    : Type(Attributed, canon, canon->isDependentType(),
           canon->isInstantiationDependentType(),
           canon->isVariablyModifiedType(),
           canon->containsUnexpandedParameterPack()),
      ModifiedType(modified), EquivalentType(equivalent) {
    AttributedTypeBits.AttrKind = attrKind;
  }

public:
  Kind getAttrKind() const {
    return static_cast<Kind>(AttributedTypeBits.AttrKind);
  }

  QualType getModifiedType() const { return ModifiedType; }
  QualType getEquivalentType() const { return EquivalentType; }

  bool isSugared() const { return true; }
  QualType desugar() const { return getEquivalentType(); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
                      QualType modified, QualType equivalent) {
    ID.AddInteger(attrKind);
    ID.AddPointer(modified.getAsOpaquePtr());
    ID.AddPointer(equivalent.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Attributed;
  }
};

class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
  // Helper data collector for canonical types.
  struct CanonicalTTPTInfo {
    unsigned Depth : 15;
    unsigned ParameterPack : 1;
    unsigned Index : 16;
  };

  union {
    // Info for the canonical type.
    CanonicalTTPTInfo CanTTPTInfo;
    // Info for the non-canonical type.
    TemplateTypeParmDecl *TTPDecl;
  };

  /// Build a non-canonical type.
  TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
    : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
           /*InstantiationDependent=*/true,
           /*VariablyModified=*/false,
           Canon->containsUnexpandedParameterPack()),
      TTPDecl(TTPDecl) { }

  /// Build the canonical type.
  TemplateTypeParmType(unsigned D, unsigned I, bool PP)
    : Type(TemplateTypeParm, QualType(this, 0),
           /*Dependent=*/true,
           /*InstantiationDependent=*/true,
           /*VariablyModified=*/false, PP) {
    CanTTPTInfo.Depth = D;
    CanTTPTInfo.Index = I;
    CanTTPTInfo.ParameterPack = PP;
  }

  friend class ASTContext;  // ASTContext creates these

  const CanonicalTTPTInfo& getCanTTPTInfo() const {
    QualType Can = getCanonicalTypeInternal();
    return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
  }

public:
  unsigned getDepth() const { return getCanTTPTInfo().Depth; }
  unsigned getIndex() const { return getCanTTPTInfo().Index; }
  bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }

  TemplateTypeParmDecl *getDecl() const {
    return isCanonicalUnqualified() ? 0 : TTPDecl;
  }

  IdentifierInfo *getIdentifier() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
                      unsigned Index, bool ParameterPack,
                      TemplateTypeParmDecl *TTPDecl) {
    ID.AddInteger(Depth);
    ID.AddInteger(Index);
    ID.AddBoolean(ParameterPack);
    ID.AddPointer(TTPDecl);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == TemplateTypeParm;
  }
};

/// \brief Represents the result of substituting a type for a template
/// type parameter.
///
/// Within an instantiated template, all template type parameters have
/// been replaced with these.  They are used solely to record that a
/// type was originally written as a template type parameter;
/// therefore they are never canonical.
class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
  // The original type parameter.
  const TemplateTypeParmType *Replaced;

  SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
    : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
           Canon->isInstantiationDependentType(),
           Canon->isVariablyModifiedType(),
           Canon->containsUnexpandedParameterPack()),
      Replaced(Param) { }

  friend class ASTContext;

public:
  /// Gets the template parameter that was substituted for.
  const TemplateTypeParmType *getReplacedParameter() const {
    return Replaced;
  }

  /// Gets the type that was substituted for the template
  /// parameter.
  QualType getReplacementType() const {
    return getCanonicalTypeInternal();
  }

  bool isSugared() const { return true; }
  QualType desugar() const { return getReplacementType(); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getReplacedParameter(), getReplacementType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const TemplateTypeParmType *Replaced,
                      QualType Replacement) {
    ID.AddPointer(Replaced);
    ID.AddPointer(Replacement.getAsOpaquePtr());
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == SubstTemplateTypeParm;
  }
};

/// \brief Represents the result of substituting a set of types for a template
/// type parameter pack.
///
/// When a pack expansion in the source code contains multiple parameter packs
/// and those parameter packs correspond to different levels of template
/// parameter lists, this type node is used to represent a template type
/// parameter pack from an outer level, which has already had its argument pack
/// substituted but that still lives within a pack expansion that itself
/// could not be instantiated. When actually performing a substitution into
/// that pack expansion (e.g., when all template parameters have corresponding
/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
/// at the current pack substitution index.
class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
  /// \brief The original type parameter.
  const TemplateTypeParmType *Replaced;

  /// \brief A pointer to the set of template arguments that this
  /// parameter pack is instantiated with.
  const TemplateArgument *Arguments;

  /// \brief The number of template arguments in \c Arguments.
  unsigned NumArguments;

  SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
                                QualType Canon,
                                const TemplateArgument &ArgPack);

  friend class ASTContext;

public:
  IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }

  /// Gets the template parameter that was substituted for.
  const TemplateTypeParmType *getReplacedParameter() const {
    return Replaced;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  TemplateArgument getArgumentPack() const;

  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      const TemplateTypeParmType *Replaced,
                      const TemplateArgument &ArgPack);

  static bool classof(const Type *T) {
    return T->getTypeClass() == SubstTemplateTypeParmPack;
  }
};

/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
///
/// These types are usually a placeholder for a deduced type. However, before
/// the initializer is attached, or if the initializer is type-dependent, there
/// is no deduced type and an auto type is canonical. In the latter case, it is
/// also a dependent type.
class AutoType : public Type, public llvm::FoldingSetNode {
  AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
    : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
           /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
           /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
    assert((DeducedType.isNull() || !IsDependent) &&
           "auto deduced to dependent type");
    AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
  }

  friend class ASTContext;  // ASTContext creates these

public:
  bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }

  bool isSugared() const { return !isCanonicalUnqualified(); }
  QualType desugar() const { return getCanonicalTypeInternal(); }

  /// \brief Get the type deduced for this auto type, or null if it's either
  /// not been deduced or was deduced to a dependent type.
  QualType getDeducedType() const {
    return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
  }
  bool isDeduced() const {
    return !isCanonicalUnqualified() || isDependentType();
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
                      bool IsDecltypeAuto, bool IsDependent) {
    ID.AddPointer(Deduced.getAsOpaquePtr());
    ID.AddBoolean(IsDecltypeAuto);
    ID.AddBoolean(IsDependent);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Auto;
  }
};

/// \brief Represents a type template specialization; the template
/// must be a class template, a type alias template, or a template
/// template parameter.  A template which cannot be resolved to one of
/// these, e.g. because it is written with a dependent scope
/// specifier, is instead represented as a
/// @c DependentTemplateSpecializationType.
///
/// A non-dependent template specialization type is always "sugar",
/// typically for a @c RecordType.  For example, a class template
/// specialization type of @c vector<int> will refer to a tag type for
/// the instantiation @c std::vector<int, std::allocator<int>>
///
/// Template specializations are dependent if either the template or
/// any of the template arguments are dependent, in which case the
/// type may also be canonical.
///
/// Instances of this type are allocated with a trailing array of
/// TemplateArguments, followed by a QualType representing the
/// non-canonical aliased type when the template is a type alias
/// template.
class TemplateSpecializationType
  : public Type, public llvm::FoldingSetNode {
  /// \brief The name of the template being specialized.  This is
  /// either a TemplateName::Template (in which case it is a
  /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
  /// TypeAliasTemplateDecl*), a
  /// TemplateName::SubstTemplateTemplateParmPack, or a
  /// TemplateName::SubstTemplateTemplateParm (in which case the
  /// replacement must, recursively, be one of these).
  TemplateName Template;

  /// \brief - The number of template arguments named in this class
  /// template specialization.
  unsigned NumArgs : 31;

  /// \brief Whether this template specialization type is a substituted
  /// type alias.
  bool TypeAlias : 1;
    
  TemplateSpecializationType(TemplateName T,
                             const TemplateArgument *Args,
                             unsigned NumArgs, QualType Canon,
                             QualType Aliased);

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Determine whether any of the given template arguments are
  /// dependent.
  static bool anyDependentTemplateArguments(const TemplateArgument *Args,
                                            unsigned NumArgs,
                                            bool &InstantiationDependent);

  static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
                                            unsigned NumArgs,
                                            bool &InstantiationDependent);

  static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
                                            bool &InstantiationDependent);

  /// \brief Print a template argument list, including the '<' and '>'
  /// enclosing the template arguments.
  static void PrintTemplateArgumentList(raw_ostream &OS,
                                        const TemplateArgument *Args,
                                        unsigned NumArgs,
                                        const PrintingPolicy &Policy,
                                        bool SkipBrackets = false);

  static void PrintTemplateArgumentList(raw_ostream &OS,
                                        const TemplateArgumentLoc *Args,
                                        unsigned NumArgs,
                                        const PrintingPolicy &Policy);

  static void PrintTemplateArgumentList(raw_ostream &OS,
                                        const TemplateArgumentListInfo &,
                                        const PrintingPolicy &Policy);

  /// True if this template specialization type matches a current
  /// instantiation in the context in which it is found.
  bool isCurrentInstantiation() const {
    return isa<InjectedClassNameType>(getCanonicalTypeInternal());
  }

  /// \brief Determine if this template specialization type is for a type alias
  /// template that has been substituted.
  ///
  /// Nearly every template specialization type whose template is an alias
  /// template will be substituted. However, this is not the case when
  /// the specialization contains a pack expansion but the template alias
  /// does not have a corresponding parameter pack, e.g.,
  ///
  /// \code
  /// template<typename T, typename U, typename V> struct S;
  /// template<typename T, typename U> using A = S<T, int, U>;
  /// template<typename... Ts> struct X {
  ///   typedef A<Ts...> type; // not a type alias
  /// };
  /// \endcode
  bool isTypeAlias() const { return TypeAlias; }
    
  /// Get the aliased type, if this is a specialization of a type alias
  /// template.
  QualType getAliasedType() const {
    assert(isTypeAlias() && "not a type alias template specialization");
    return *reinterpret_cast<const QualType*>(end());
  }

  typedef const TemplateArgument * iterator;

  iterator begin() const { return getArgs(); }
  iterator end() const; // defined inline in TemplateBase.h

  /// \brief Retrieve the name of the template that we are specializing.
  TemplateName getTemplateName() const { return Template; }

  /// \brief Retrieve the template arguments.
  const TemplateArgument *getArgs() const {
    return reinterpret_cast<const TemplateArgument *>(this + 1);
  }

  /// \brief Retrieve the number of template arguments.
  unsigned getNumArgs() const { return NumArgs; }

  /// \brief Retrieve a specific template argument as a type.
  /// \pre @c isArgType(Arg)
  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h

  bool isSugared() const {
    return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
  }
  QualType desugar() const { return getCanonicalTypeInternal(); }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
    Profile(ID, Template, getArgs(), NumArgs, Ctx);
    if (isTypeAlias())
      getAliasedType().Profile(ID);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
                      const TemplateArgument *Args,
                      unsigned NumArgs,
                      const ASTContext &Context);

  static bool classof(const Type *T) {
    return T->getTypeClass() == TemplateSpecialization;
  }
};

/// \brief The injected class name of a C++ class template or class
/// template partial specialization.  Used to record that a type was
/// spelled with a bare identifier rather than as a template-id; the
/// equivalent for non-templated classes is just RecordType.
///
/// Injected class name types are always dependent.  Template
/// instantiation turns these into RecordTypes.
///
/// Injected class name types are always canonical.  This works
/// because it is impossible to compare an injected class name type
/// with the corresponding non-injected template type, for the same
/// reason that it is impossible to directly compare template
/// parameters from different dependent contexts: injected class name
/// types can only occur within the scope of a particular templated
/// declaration, and within that scope every template specialization
/// will canonicalize to the injected class name (when appropriate
/// according to the rules of the language).
class InjectedClassNameType : public Type {
  CXXRecordDecl *Decl;

  /// The template specialization which this type represents.
  /// For example, in
  ///   template <class T> class A { ... };
  /// this is A<T>, whereas in
  ///   template <class X, class Y> class A<B<X,Y> > { ... };
  /// this is A<B<X,Y> >.
  ///
  /// It is always unqualified, always a template specialization type,
  /// and always dependent.
  QualType InjectedType;

  friend class ASTContext; // ASTContext creates these.
  friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
                          // currently suitable for AST reading, too much
                          // interdependencies.
  InjectedClassNameType(CXXRecordDecl *D, QualType TST)
    : Type(InjectedClassName, QualType(), /*Dependent=*/true,
           /*InstantiationDependent=*/true,
           /*VariablyModified=*/false,
           /*ContainsUnexpandedParameterPack=*/false),
      Decl(D), InjectedType(TST) {
    assert(isa<TemplateSpecializationType>(TST));
    assert(!TST.hasQualifiers());
    assert(TST->isDependentType());
  }

public:
  QualType getInjectedSpecializationType() const { return InjectedType; }
  const TemplateSpecializationType *getInjectedTST() const {
    return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
  }

  CXXRecordDecl *getDecl() const;

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == InjectedClassName;
  }
};

/// \brief The kind of a tag type.
enum TagTypeKind {
  /// \brief The "struct" keyword.
  TTK_Struct,
  /// \brief The "__interface" keyword.
  TTK_Interface,
  /// \brief The "union" keyword.
  TTK_Union,
  /// \brief The "class" keyword.
  TTK_Class,
  /// \brief The "enum" keyword.
  TTK_Enum
};

/// \brief The elaboration keyword that precedes a qualified type name or
/// introduces an elaborated-type-specifier.
enum ElaboratedTypeKeyword {
  /// \brief The "struct" keyword introduces the elaborated-type-specifier.
  ETK_Struct,
  /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
  ETK_Interface,
  /// \brief The "union" keyword introduces the elaborated-type-specifier.
  ETK_Union,
  /// \brief The "class" keyword introduces the elaborated-type-specifier.
  ETK_Class,
  /// \brief The "enum" keyword introduces the elaborated-type-specifier.
  ETK_Enum,
  /// \brief The "typename" keyword precedes the qualified type name, e.g.,
  /// \c typename T::type.
  ETK_Typename,
  /// \brief No keyword precedes the qualified type name.
  ETK_None
};

/// A helper class for Type nodes having an ElaboratedTypeKeyword.
/// The keyword in stored in the free bits of the base class.
/// Also provides a few static helpers for converting and printing
/// elaborated type keyword and tag type kind enumerations.
class TypeWithKeyword : public Type {
protected:
  TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
                  QualType Canonical, bool Dependent,
                  bool InstantiationDependent, bool VariablyModified,
                  bool ContainsUnexpandedParameterPack)
  : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
         ContainsUnexpandedParameterPack) {
    TypeWithKeywordBits.Keyword = Keyword;
  }

public:
  ElaboratedTypeKeyword getKeyword() const {
    return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
  }

  /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
  /// into an elaborated type keyword.
  static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);

  /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
  /// into a tag type kind.  It is an error to provide a type specifier
  /// which *isn't* a tag kind here.
  static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);

  /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
  /// elaborated type keyword.
  static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);

  /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
  // a TagTypeKind. It is an error to provide an elaborated type keyword
  /// which *isn't* a tag kind here.
  static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);

  static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);

  static const char *getKeywordName(ElaboratedTypeKeyword Keyword);

  static const char *getTagTypeKindName(TagTypeKind Kind) {
    return getKeywordName(getKeywordForTagTypeKind(Kind));
  }

  class CannotCastToThisType {};
  static CannotCastToThisType classof(const Type *);
};

/// \brief Represents a type that was referred to using an elaborated type
/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
/// or both.
///
/// This type is used to keep track of a type name as written in the
/// source code, including tag keywords and any nested-name-specifiers.
/// The type itself is always "sugar", used to express what was written
/// in the source code but containing no additional semantic information.
class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {

  /// \brief The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// \brief The type that this qualified name refers to.
  QualType NamedType;

  ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
                 QualType NamedType, QualType CanonType)
    : TypeWithKeyword(Keyword, Elaborated, CanonType,
                      NamedType->isDependentType(),
                      NamedType->isInstantiationDependentType(),
                      NamedType->isVariablyModifiedType(),
                      NamedType->containsUnexpandedParameterPack()),
      NNS(NNS), NamedType(NamedType) {
    assert(!(Keyword == ETK_None && NNS == 0) &&
           "ElaboratedType cannot have elaborated type keyword "
           "and name qualifier both null.");
  }

  friend class ASTContext;  // ASTContext creates these

public:
  ~ElaboratedType();

  /// \brief Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// \brief Retrieve the type named by the qualified-id.
  QualType getNamedType() const { return NamedType; }

  /// \brief Remove a single level of sugar.
  QualType desugar() const { return getNamedType(); }

  /// \brief Returns whether this type directly provides sugar.
  bool isSugared() const { return true; }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getKeyword(), NNS, NamedType);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *NNS, QualType NamedType) {
    ID.AddInteger(Keyword);
    ID.AddPointer(NNS);
    NamedType.Profile(ID);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == Elaborated;
  }
};

/// \brief Represents a qualified type name for which the type name is
/// dependent.
///
/// DependentNameType represents a class of dependent types that involve a
/// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
/// name of a type. The DependentNameType may start with a "typename" (for a
/// typename-specifier), "class", "struct", "union", or "enum" (for a
/// dependent elaborated-type-specifier), or nothing (in contexts where we
/// know that we must be referring to a type, e.g., in a base class specifier).
class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {

  /// \brief The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// \brief The type that this typename specifier refers to.
  const IdentifierInfo *Name;

  DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
                    const IdentifierInfo *Name, QualType CanonType)
    : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
                      /*InstantiationDependent=*/true,
                      /*VariablyModified=*/false,
                      NNS->containsUnexpandedParameterPack()),
      NNS(NNS), Name(Name) {
    assert(NNS->isDependent() &&
           "DependentNameType requires a dependent nested-name-specifier");
  }

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Retrieve the qualification on this type.
  NestedNameSpecifier *getQualifier() const { return NNS; }

  /// \brief Retrieve the type named by the typename specifier as an
  /// identifier.
  ///
  /// This routine will return a non-NULL identifier pointer when the
  /// form of the original typename was terminated by an identifier,
  /// e.g., "typename T::type".
  const IdentifierInfo *getIdentifier() const {
    return Name;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getKeyword(), NNS, Name);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
    ID.AddInteger(Keyword);
    ID.AddPointer(NNS);
    ID.AddPointer(Name);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentName;
  }
};

/// DependentTemplateSpecializationType - Represents a template
/// specialization type whose template cannot be resolved, e.g.
///   A<T>::template B<T>
class DependentTemplateSpecializationType :
  public TypeWithKeyword, public llvm::FoldingSetNode {

  /// \brief The nested name specifier containing the qualifier.
  NestedNameSpecifier *NNS;

  /// \brief The identifier of the template.
  const IdentifierInfo *Name;

  /// \brief - The number of template arguments named in this class
  /// template specialization.
  unsigned NumArgs;

  const TemplateArgument *getArgBuffer() const {
    return reinterpret_cast<const TemplateArgument*>(this+1);
  }
  TemplateArgument *getArgBuffer() {
    return reinterpret_cast<TemplateArgument*>(this+1);
  }

  DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
                                      NestedNameSpecifier *NNS,
                                      const IdentifierInfo *Name,
                                      unsigned NumArgs,
                                      const TemplateArgument *Args,
                                      QualType Canon);

  friend class ASTContext;  // ASTContext creates these

public:
  NestedNameSpecifier *getQualifier() const { return NNS; }
  const IdentifierInfo *getIdentifier() const { return Name; }

  /// \brief Retrieve the template arguments.
  const TemplateArgument *getArgs() const {
    return getArgBuffer();
  }

  /// \brief Retrieve the number of template arguments.
  unsigned getNumArgs() const { return NumArgs; }

  const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h

  typedef const TemplateArgument * iterator;
  iterator begin() const { return getArgs(); }
  iterator end() const; // inline in TemplateBase.h

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
    Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
  }

  static void Profile(llvm::FoldingSetNodeID &ID,
                      const ASTContext &Context,
                      ElaboratedTypeKeyword Keyword,
                      NestedNameSpecifier *Qualifier,
                      const IdentifierInfo *Name,
                      unsigned NumArgs,
                      const TemplateArgument *Args);

  static bool classof(const Type *T) {
    return T->getTypeClass() == DependentTemplateSpecialization;
  }
};

/// \brief Represents a pack expansion of types.
///
/// Pack expansions are part of C++0x variadic templates. A pack
/// expansion contains a pattern, which itself contains one or more
/// "unexpanded" parameter packs. When instantiated, a pack expansion
/// produces a series of types, each instantiated from the pattern of
/// the expansion, where the Ith instantiation of the pattern uses the
/// Ith arguments bound to each of the unexpanded parameter packs. The
/// pack expansion is considered to "expand" these unexpanded
/// parameter packs.
///
/// \code
/// template<typename ...Types> struct tuple;
///
/// template<typename ...Types>
/// struct tuple_of_references {
///   typedef tuple<Types&...> type;
/// };
/// \endcode
///
/// Here, the pack expansion \c Types&... is represented via a
/// PackExpansionType whose pattern is Types&.
class PackExpansionType : public Type, public llvm::FoldingSetNode {
  /// \brief The pattern of the pack expansion.
  QualType Pattern;

  /// \brief The number of expansions that this pack expansion will
  /// generate when substituted (+1), or indicates that
  ///
  /// This field will only have a non-zero value when some of the parameter
  /// packs that occur within the pattern have been substituted but others have
  /// not.
  unsigned NumExpansions;

  PackExpansionType(QualType Pattern, QualType Canon,
                    Optional<unsigned> NumExpansions)
    : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
           /*InstantiationDependent=*/true,
           /*VariableModified=*/Pattern->isVariablyModifiedType(),
           /*ContainsUnexpandedParameterPack=*/false),
      Pattern(Pattern),
      NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }

  friend class ASTContext;  // ASTContext creates these

public:
  /// \brief Retrieve the pattern of this pack expansion, which is the
  /// type that will be repeatedly instantiated when instantiating the
  /// pack expansion itself.
  QualType getPattern() const { return Pattern; }

  /// \brief Retrieve the number of expansions that this pack expansion will
  /// generate, if known.
  Optional<unsigned> getNumExpansions() const {
    if (NumExpansions)
      return NumExpansions - 1;

    return None;
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPattern(), getNumExpansions());
  }

  static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
                      Optional<unsigned> NumExpansions) {
    ID.AddPointer(Pattern.getAsOpaquePtr());
    ID.AddBoolean(NumExpansions.hasValue());
    if (NumExpansions)
      ID.AddInteger(*NumExpansions);
  }

  static bool classof(const Type *T) {
    return T->getTypeClass() == PackExpansion;
  }
};

/// ObjCObjectType - Represents a class type in Objective C.
/// Every Objective C type is a combination of a base type and a
/// list of protocols.
///
/// Given the following declarations:
/// \code
///   \@class C;
///   \@protocol P;
/// \endcode
///
/// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
/// with base C and no protocols.
///
/// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
///
/// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
/// and no protocols.
///
/// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
/// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
/// this should get its own sugar class to better represent the source.
class ObjCObjectType : public Type {
  // ObjCObjectType.NumProtocols - the number of protocols stored
  // after the ObjCObjectPointerType node.
  //
  // These protocols are those written directly on the type.  If
  // protocol qualifiers ever become additive, the iterators will need
  // to get kindof complicated.
  //
  // In the canonical object type, these are sorted alphabetically
  // and uniqued.

  /// Either a BuiltinType or an InterfaceType or sugar for either.
  QualType BaseType;

  ObjCProtocolDecl * const *getProtocolStorage() const {
    return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
  }

  ObjCProtocolDecl **getProtocolStorage();

protected:
  ObjCObjectType(QualType Canonical, QualType Base,
                 ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);

  enum Nonce_ObjCInterface { Nonce_ObjCInterface };
  ObjCObjectType(enum Nonce_ObjCInterface)
        : Type(ObjCInterface, QualType(), false, false, false, false),
      BaseType(QualType(this_(), 0)) {
    ObjCObjectTypeBits.NumProtocols = 0;
  }

public:
  /// getBaseType - Gets the base type of this object type.  This is
  /// always (possibly sugar for) one of:
  ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
  ///    user, which is a typedef for an ObjCPointerType)
  ///  - the 'Class' builtin type (same caveat)
  ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
  QualType getBaseType() const { return BaseType; }

  bool isObjCId() const {
    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
  }
  bool isObjCClass() const {
    return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
  }
  bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
  bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
  bool isObjCUnqualifiedIdOrClass() const {
    if (!qual_empty()) return false;
    if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
      return T->getKind() == BuiltinType::ObjCId ||
             T->getKind() == BuiltinType::ObjCClass;
    return false;
  }
  bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
  bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }

  /// Gets the interface declaration for this object type, if the base type
  /// really is an interface.
  ObjCInterfaceDecl *getInterface() const;

  typedef ObjCProtocolDecl * const *qual_iterator;

  qual_iterator qual_begin() const { return getProtocolStorage(); }
  qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }

  bool qual_empty() const { return getNumProtocols() == 0; }

  /// getNumProtocols - Return the number of qualifying protocols in this
  /// interface type, or 0 if there are none.
  unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }

  /// \brief Fetch a protocol by index.
  ObjCProtocolDecl *getProtocol(unsigned I) const {
    assert(I < getNumProtocols() && "Out-of-range protocol access");
    return qual_begin()[I];
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCObject ||
           T->getTypeClass() == ObjCInterface;
  }
};

/// ObjCObjectTypeImpl - A class providing a concrete implementation
/// of ObjCObjectType, so as to not increase the footprint of
/// ObjCInterfaceType.  Code outside of ASTContext and the core type
/// system should not reference this type.
class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
  friend class ASTContext;

  // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
  // will need to be modified.

  ObjCObjectTypeImpl(QualType Canonical, QualType Base,
                     ObjCProtocolDecl * const *Protocols,
                     unsigned NumProtocols)
    : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}

public:
  void Profile(llvm::FoldingSetNodeID &ID);
  static void Profile(llvm::FoldingSetNodeID &ID,
                      QualType Base,
                      ObjCProtocolDecl *const *protocols,
                      unsigned NumProtocols);
};

inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
  return reinterpret_cast<ObjCProtocolDecl**>(
            static_cast<ObjCObjectTypeImpl*>(this) + 1);
}

/// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
/// object oriented design.  They basically correspond to C++ classes.  There
/// are two kinds of interface types, normal interfaces like "NSString" and
/// qualified interfaces, which are qualified with a protocol list like
/// "NSString<NSCopyable, NSAmazing>".
///
/// ObjCInterfaceType guarantees the following properties when considered
/// as a subtype of its superclass, ObjCObjectType:
///   - There are no protocol qualifiers.  To reinforce this, code which
///     tries to invoke the protocol methods via an ObjCInterfaceType will
///     fail to compile.
///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
///     T->getBaseType() == QualType(T, 0).
class ObjCInterfaceType : public ObjCObjectType {
  mutable ObjCInterfaceDecl *Decl;

  ObjCInterfaceType(const ObjCInterfaceDecl *D)
    : ObjCObjectType(Nonce_ObjCInterface),
      Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
  friend class ASTContext;  // ASTContext creates these.
  friend class ASTReader;
  friend class ObjCInterfaceDecl;

public:
  /// getDecl - Get the declaration of this interface.
  ObjCInterfaceDecl *getDecl() const { return Decl; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCInterface;
  }

  // Nonsense to "hide" certain members of ObjCObjectType within this
  // class.  People asking for protocols on an ObjCInterfaceType are
  // not going to get what they want: ObjCInterfaceTypes are
  // guaranteed to have no protocols.
  enum {
    qual_iterator,
    qual_begin,
    qual_end,
    getNumProtocols,
    getProtocol
  };
};

inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
  if (const ObjCInterfaceType *T =
        getBaseType()->getAs<ObjCInterfaceType>())
    return T->getDecl();
  return 0;
}

/// ObjCObjectPointerType - Used to represent a pointer to an
/// Objective C object.  These are constructed from pointer
/// declarators when the pointee type is an ObjCObjectType (or sugar
/// for one).  In addition, the 'id' and 'Class' types are typedefs
/// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
/// are translated into these.
///
/// Pointers to pointers to Objective C objects are still PointerTypes;
/// only the first level of pointer gets it own type implementation.
class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
  QualType PointeeType;

  ObjCObjectPointerType(QualType Canonical, QualType Pointee)
    : Type(ObjCObjectPointer, Canonical, false, false, false, false),
      PointeeType(Pointee) {}
  friend class ASTContext;  // ASTContext creates these.

public:
  /// getPointeeType - Gets the type pointed to by this ObjC pointer.
  /// The result will always be an ObjCObjectType or sugar thereof.
  QualType getPointeeType() const { return PointeeType; }

  /// getObjCObjectType - Gets the type pointed to by this ObjC
  /// pointer.  This method always returns non-null.
  ///
  /// This method is equivalent to getPointeeType() except that
  /// it discards any typedefs (or other sugar) between this
  /// type and the "outermost" object type.  So for:
  /// \code
  ///   \@class A; \@protocol P; \@protocol Q;
  ///   typedef A<P> AP;
  ///   typedef A A1;
  ///   typedef A1<P> A1P;
  ///   typedef A1P<Q> A1PQ;
  /// \endcode
  /// For 'A*', getObjectType() will return 'A'.
  /// For 'A<P>*', getObjectType() will return 'A<P>'.
  /// For 'AP*', getObjectType() will return 'A<P>'.
  /// For 'A1*', getObjectType() will return 'A'.
  /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
  /// For 'A1P*', getObjectType() will return 'A1<P>'.
  /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
  ///   adding protocols to a protocol-qualified base discards the
  ///   old qualifiers (for now).  But if it didn't, getObjectType()
  ///   would return 'A1P<Q>' (and we'd have to make iterating over
  ///   qualifiers more complicated).
  const ObjCObjectType *getObjectType() const {
    return PointeeType->castAs<ObjCObjectType>();
  }

  /// getInterfaceType - If this pointer points to an Objective C
  /// \@interface type, gets the type for that interface.  Any protocol
  /// qualifiers on the interface are ignored.
  ///
  /// \return null if the base type for this pointer is 'id' or 'Class'
  const ObjCInterfaceType *getInterfaceType() const {
    return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
  }

  /// getInterfaceDecl - If this pointer points to an Objective \@interface
  /// type, gets the declaration for that interface.
  ///
  /// \return null if the base type for this pointer is 'id' or 'Class'
  ObjCInterfaceDecl *getInterfaceDecl() const {
    return getObjectType()->getInterface();
  }

  /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
  /// its object type is the primitive 'id' type with no protocols.
  bool isObjCIdType() const {
    return getObjectType()->isObjCUnqualifiedId();
  }

  /// isObjCClassType - True if this is equivalent to the 'Class' type,
  /// i.e. if its object tive is the primitive 'Class' type with no protocols.
  bool isObjCClassType() const {
    return getObjectType()->isObjCUnqualifiedClass();
  }

  /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
  /// non-empty set of protocols.
  bool isObjCQualifiedIdType() const {
    return getObjectType()->isObjCQualifiedId();
  }

  /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
  /// some non-empty set of protocols.
  bool isObjCQualifiedClassType() const {
    return getObjectType()->isObjCQualifiedClass();
  }

  /// An iterator over the qualifiers on the object type.  Provided
  /// for convenience.  This will always iterate over the full set of
  /// protocols on a type, not just those provided directly.
  typedef ObjCObjectType::qual_iterator qual_iterator;

  qual_iterator qual_begin() const {
    return getObjectType()->qual_begin();
  }
  qual_iterator qual_end() const {
    return getObjectType()->qual_end();
  }
  bool qual_empty() const { return getObjectType()->qual_empty(); }

  /// getNumProtocols - Return the number of qualifying protocols on
  /// the object type.
  unsigned getNumProtocols() const {
    return getObjectType()->getNumProtocols();
  }

  /// \brief Retrieve a qualifying protocol by index on the object
  /// type.
  ObjCProtocolDecl *getProtocol(unsigned I) const {
    return getObjectType()->getProtocol(I);
  }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getPointeeType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
    ID.AddPointer(T.getAsOpaquePtr());
  }
  static bool classof(const Type *T) {
    return T->getTypeClass() == ObjCObjectPointer;
  }
};

class AtomicType : public Type, public llvm::FoldingSetNode {
  QualType ValueType;

  AtomicType(QualType ValTy, QualType Canonical)
    : Type(Atomic, Canonical, ValTy->isDependentType(),
           ValTy->isInstantiationDependentType(),
           ValTy->isVariablyModifiedType(),
           ValTy->containsUnexpandedParameterPack()),
      ValueType(ValTy) {}
  friend class ASTContext;  // ASTContext creates these.

  public:
  /// getValueType - Gets the type contained by this atomic type, i.e.
  /// the type returned by performing an atomic load of this atomic type.
  QualType getValueType() const { return ValueType; }

  bool isSugared() const { return false; }
  QualType desugar() const { return QualType(this, 0); }

  void Profile(llvm::FoldingSetNodeID &ID) {
    Profile(ID, getValueType());
  }
  static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
    ID.AddPointer(T.getAsOpaquePtr());
  }
  static bool classof(const Type *T) {
    return T->getTypeClass() == Atomic;
  }
};

/// A qualifier set is used to build a set of qualifiers.
class QualifierCollector : public Qualifiers {
public:
  QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}

  /// Collect any qualifiers on the given type and return an
  /// unqualified type.  The qualifiers are assumed to be consistent
  /// with those already in the type.
  const Type *strip(QualType type) {
    addFastQualifiers(type.getLocalFastQualifiers());
    if (!type.hasLocalNonFastQualifiers())
      return type.getTypePtrUnsafe();

    const ExtQuals *extQuals = type.getExtQualsUnsafe();
    addConsistentQualifiers(extQuals->getQualifiers());
    return extQuals->getBaseType();
  }

  /// Apply the collected qualifiers to the given type.
  QualType apply(const ASTContext &Context, QualType QT) const;

  /// Apply the collected qualifiers to the given type.
  QualType apply(const ASTContext &Context, const Type* T) const;
};


// Inline function definitions.

inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
  SplitQualType desugar =
    Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
  desugar.Quals.addConsistentQualifiers(Quals);
  return desugar;
}

inline const Type *QualType::getTypePtr() const {
  return getCommonPtr()->BaseType;
}

inline const Type *QualType::getTypePtrOrNull() const {
  return (isNull() ? 0 : getCommonPtr()->BaseType);
}

inline SplitQualType QualType::split() const {
  if (!hasLocalNonFastQualifiers())
    return SplitQualType(getTypePtrUnsafe(),
                         Qualifiers::fromFastMask(getLocalFastQualifiers()));

  const ExtQuals *eq = getExtQualsUnsafe();
  Qualifiers qs = eq->getQualifiers();
  qs.addFastQualifiers(getLocalFastQualifiers());
  return SplitQualType(eq->getBaseType(), qs);
}

inline Qualifiers QualType::getLocalQualifiers() const {
  Qualifiers Quals;
  if (hasLocalNonFastQualifiers())
    Quals = getExtQualsUnsafe()->getQualifiers();
  Quals.addFastQualifiers(getLocalFastQualifiers());
  return Quals;
}

inline Qualifiers QualType::getQualifiers() const {
  Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
  quals.addFastQualifiers(getLocalFastQualifiers());
  return quals;
}

inline unsigned QualType::getCVRQualifiers() const {
  unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
  cvr |= getLocalCVRQualifiers();
  return cvr;
}

inline QualType QualType::getCanonicalType() const {
  QualType canon = getCommonPtr()->CanonicalType;
  return canon.withFastQualifiers(getLocalFastQualifiers());
}

inline bool QualType::isCanonical() const {
  return getTypePtr()->isCanonicalUnqualified();
}

inline bool QualType::isCanonicalAsParam() const {
  if (!isCanonical()) return false;
  if (hasLocalQualifiers()) return false;

  const Type *T = getTypePtr();
  if (T->isVariablyModifiedType() && T->hasSizedVLAType())
    return false;

  return !isa<FunctionType>(T) && !isa<ArrayType>(T);
}

inline bool QualType::isConstQualified() const {
  return isLocalConstQualified() ||
         getCommonPtr()->CanonicalType.isLocalConstQualified();
}

inline bool QualType::isRestrictQualified() const {
  return isLocalRestrictQualified() ||
         getCommonPtr()->CanonicalType.isLocalRestrictQualified();
}


inline bool QualType::isVolatileQualified() const {
  return isLocalVolatileQualified() ||
         getCommonPtr()->CanonicalType.isLocalVolatileQualified();
}

inline bool QualType::hasQualifiers() const {
  return hasLocalQualifiers() ||
         getCommonPtr()->CanonicalType.hasLocalQualifiers();
}

inline QualType QualType::getUnqualifiedType() const {
  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
    return QualType(getTypePtr(), 0);

  return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
}
  
inline SplitQualType QualType::getSplitUnqualifiedType() const {
  if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
    return split();

  return getSplitUnqualifiedTypeImpl(*this);
}

inline void QualType::removeLocalConst() {
  removeLocalFastQualifiers(Qualifiers::Const);
}

inline void QualType::removeLocalRestrict() {
  removeLocalFastQualifiers(Qualifiers::Restrict);
}

inline void QualType::removeLocalVolatile() {
  removeLocalFastQualifiers(Qualifiers::Volatile);
}

inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
  assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
  assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);

  // Fast path: we don't need to touch the slow qualifiers.
  removeLocalFastQualifiers(Mask);
}

/// getAddressSpace - Return the address space of this type.
inline unsigned QualType::getAddressSpace() const {
  return getQualifiers().getAddressSpace();
}
  
/// getObjCGCAttr - Return the gc attribute of this type.
inline Qualifiers::GC QualType::getObjCGCAttr() const {
  return getQualifiers().getObjCGCAttr();
}

inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
  if (const PointerType *PT = t.getAs<PointerType>()) {
    if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
      return FT->getExtInfo();
  } else if (const FunctionType *FT = t.getAs<FunctionType>())
    return FT->getExtInfo();

  return FunctionType::ExtInfo();
}

inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
  return getFunctionExtInfo(*t);
}

/// isMoreQualifiedThan - Determine whether this type is more
/// qualified than the Other type. For example, "const volatile int"
/// is more qualified than "const int", "volatile int", and
/// "int". However, it is not more qualified than "const volatile
/// int".
inline bool QualType::isMoreQualifiedThan(QualType other) const {
  Qualifiers myQuals = getQualifiers();
  Qualifiers otherQuals = other.getQualifiers();
  return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
}

/// isAtLeastAsQualifiedAs - Determine whether this type is at last
/// as qualified as the Other type. For example, "const volatile
/// int" is at least as qualified as "const int", "volatile int",
/// "int", and "const volatile int".
inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
  return getQualifiers().compatiblyIncludes(other.getQualifiers());
}

/// getNonReferenceType - If Type is a reference type (e.g., const
/// int&), returns the type that the reference refers to ("const
/// int"). Otherwise, returns the type itself. This routine is used
/// throughout Sema to implement C++ 5p6:
///
///   If an expression initially has the type "reference to T" (8.3.2,
///   8.5.3), the type is adjusted to "T" prior to any further
///   analysis, the expression designates the object or function
///   denoted by the reference, and the expression is an lvalue.
inline QualType QualType::getNonReferenceType() const {
  if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
    return RefType->getPointeeType();
  else
    return *this;
}

inline bool QualType::isCForbiddenLValueType() const {
  return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
          getTypePtr()->isFunctionType());
}

/// \brief Tests whether the type is categorized as a fundamental type.
///
/// \returns True for types specified in C++0x [basic.fundamental].
inline bool Type::isFundamentalType() const {
  return isVoidType() ||
         // FIXME: It's really annoying that we don't have an
         // 'isArithmeticType()' which agrees with the standard definition.
         (isArithmeticType() && !isEnumeralType());
}

/// \brief Tests whether the type is categorized as a compound type.
///
/// \returns True for types specified in C++0x [basic.compound].
inline bool Type::isCompoundType() const {
  // C++0x [basic.compound]p1:
  //   Compound types can be constructed in the following ways:
  //    -- arrays of objects of a given type [...];
  return isArrayType() ||
  //    -- functions, which have parameters of given types [...];
         isFunctionType() ||
  //    -- pointers to void or objects or functions [...];
         isPointerType() ||
  //    -- references to objects or functions of a given type. [...]
         isReferenceType() ||
  //    -- classes containing a sequence of objects of various types, [...];
         isRecordType() ||
  //    -- unions, which are classes capable of containing objects of different
  //               types at different times;
         isUnionType() ||
  //    -- enumerations, which comprise a set of named constant values. [...];
         isEnumeralType() ||
  //    -- pointers to non-static class members, [...].
         isMemberPointerType();
}

inline bool Type::isFunctionType() const {
  return isa<FunctionType>(CanonicalType);
}
inline bool Type::isPointerType() const {
  return isa<PointerType>(CanonicalType);
}
inline bool Type::isAnyPointerType() const {
  return isPointerType() || isObjCObjectPointerType();
}
inline bool Type::isBlockPointerType() const {
  return isa<BlockPointerType>(CanonicalType);
}
inline bool Type::isReferenceType() const {
  return isa<ReferenceType>(CanonicalType);
}
inline bool Type::isLValueReferenceType() const {
  return isa<LValueReferenceType>(CanonicalType);
}
inline bool Type::isRValueReferenceType() const {
  return isa<RValueReferenceType>(CanonicalType);
}
inline bool Type::isFunctionPointerType() const {
  if (const PointerType *T = getAs<PointerType>())
    return T->getPointeeType()->isFunctionType();
  else
    return false;
}
inline bool Type::isMemberPointerType() const {
  return isa<MemberPointerType>(CanonicalType);
}
inline bool Type::isMemberFunctionPointerType() const {
  if (const MemberPointerType* T = getAs<MemberPointerType>())
    return T->isMemberFunctionPointer();
  else
    return false;
}
inline bool Type::isMemberDataPointerType() const {
  if (const MemberPointerType* T = getAs<MemberPointerType>())
    return T->isMemberDataPointer();
  else
    return false;
}
inline bool Type::isArrayType() const {
  return isa<ArrayType>(CanonicalType);
}
inline bool Type::isConstantArrayType() const {
  return isa<ConstantArrayType>(CanonicalType);
}
inline bool Type::isIncompleteArrayType() const {
  return isa<IncompleteArrayType>(CanonicalType);
}
inline bool Type::isVariableArrayType() const {
  return isa<VariableArrayType>(CanonicalType);
}
inline bool Type::isDependentSizedArrayType() const {
  return isa<DependentSizedArrayType>(CanonicalType);
}
inline bool Type::isBuiltinType() const {
  return isa<BuiltinType>(CanonicalType);
}
inline bool Type::isRecordType() const {
  return isa<RecordType>(CanonicalType);
}
inline bool Type::isEnumeralType() const {
  return isa<EnumType>(CanonicalType);
}
inline bool Type::isAnyComplexType() const {
  return isa<ComplexType>(CanonicalType);
}
inline bool Type::isVectorType() const {
  return isa<VectorType>(CanonicalType);
}
inline bool Type::isExtVectorType() const {
  return isa<ExtVectorType>(CanonicalType);
}
inline bool Type::isObjCObjectPointerType() const {
  return isa<ObjCObjectPointerType>(CanonicalType);
}
inline bool Type::isObjCObjectType() const {
  return isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isObjCObjectOrInterfaceType() const {
  return isa<ObjCInterfaceType>(CanonicalType) ||
    isa<ObjCObjectType>(CanonicalType);
}
inline bool Type::isAtomicType() const {
  return isa<AtomicType>(CanonicalType);
}

inline bool Type::isObjCQualifiedIdType() const {
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCQualifiedIdType();
  return false;
}
inline bool Type::isObjCQualifiedClassType() const {
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCQualifiedClassType();
  return false;
}
inline bool Type::isObjCIdType() const {
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCIdType();
  return false;
}
inline bool Type::isObjCClassType() const {
  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    return OPT->isObjCClassType();
  return false;
}
inline bool Type::isObjCSelType() const {
  if (const PointerType *OPT = getAs<PointerType>())
    return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
  return false;
}
inline bool Type::isObjCBuiltinType() const {
  return isObjCIdType() || isObjCClassType() || isObjCSelType();
}

inline bool Type::isImage1dT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage1d);
}

inline bool Type::isImage1dArrayT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
}

inline bool Type::isImage1dBufferT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
}

inline bool Type::isImage2dT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage2d);
}

inline bool Type::isImage2dArrayT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
}

inline bool Type::isImage3dT() const {
  return isSpecificBuiltinType(BuiltinType::OCLImage3d);
}

inline bool Type::isSamplerT() const {
  return isSpecificBuiltinType(BuiltinType::OCLSampler);
}

inline bool Type::isEventT() const {
  return isSpecificBuiltinType(BuiltinType::OCLEvent);
}

inline bool Type::isImageType() const {
  return isImage3dT() ||
         isImage2dT() || isImage2dArrayT() ||
         isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
}

inline bool Type::isOpenCLSpecificType() const {
  return isSamplerT() || isEventT() || isImageType();
}

inline bool Type::isTemplateTypeParmType() const {
  return isa<TemplateTypeParmType>(CanonicalType);
}

inline bool Type::isSpecificBuiltinType(unsigned K) const {
  if (const BuiltinType *BT = getAs<BuiltinType>())
    if (BT->getKind() == (BuiltinType::Kind) K)
      return true;
  return false;
}

inline bool Type::isPlaceholderType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
    return BT->isPlaceholderType();
  return false;
}

inline const BuiltinType *Type::getAsPlaceholderType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
    if (BT->isPlaceholderType())
      return BT;
  return 0;
}

inline bool Type::isSpecificPlaceholderType(unsigned K) const {
  assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
    return (BT->getKind() == (BuiltinType::Kind) K);
  return false;
}

inline bool Type::isNonOverloadPlaceholderType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
    return BT->isNonOverloadPlaceholderType();
  return false;
}

inline bool Type::isVoidType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Void;
  return false;
}

inline bool Type::isHalfType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Half;
  // FIXME: Should we allow complex __fp16? Probably not.
  return false;
}

inline bool Type::isNullPtrType() const {
  if (const BuiltinType *BT = getAs<BuiltinType>())
    return BT->getKind() == BuiltinType::NullPtr;
  return false;
}

extern bool IsEnumDeclComplete(EnumDecl *);
extern bool IsEnumDeclScoped(EnumDecl *);

inline bool Type::isIntegerType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::Int128;
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    // Incomplete enum types are not treated as integer types.
    // FIXME: In C++, enum types are never integer types.
    return IsEnumDeclComplete(ET->getDecl()) &&
      !IsEnumDeclScoped(ET->getDecl());
  }
  return false;
}

inline bool Type::isScalarType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() > BuiltinType::Void &&
           BT->getKind() <= BuiltinType::NullPtr;
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    // Enums are scalar types, but only if they are defined.  Incomplete enums
    // are not treated as scalar types.
    return IsEnumDeclComplete(ET->getDecl());
  return isa<PointerType>(CanonicalType) ||
         isa<BlockPointerType>(CanonicalType) ||
         isa<MemberPointerType>(CanonicalType) ||
         isa<ComplexType>(CanonicalType) ||
         isa<ObjCObjectPointerType>(CanonicalType);
}

inline bool Type::isIntegralOrEnumerationType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() >= BuiltinType::Bool &&
           BT->getKind() <= BuiltinType::Int128;

  // Check for a complete enum type; incomplete enum types are not properly an
  // enumeration type in the sense required here.
  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    return IsEnumDeclComplete(ET->getDecl());

  return false;  
}

inline bool Type::isBooleanType() const {
  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    return BT->getKind() == BuiltinType::Bool;
  return false;
}

inline bool Type::isUndeducedType() const {
  const AutoType *AT = getContainedAutoType();
  return AT && !AT->isDeduced();
}

/// \brief Determines whether this is a type for which one can define
/// an overloaded operator.
inline bool Type::isOverloadableType() const {
  return isDependentType() || isRecordType() || isEnumeralType();
}

/// \brief Determines whether this type can decay to a pointer type.
inline bool Type::canDecayToPointerType() const {
  return isFunctionType() || isArrayType();
}

inline bool Type::hasPointerRepresentation() const {
  return (isPointerType() || isReferenceType() || isBlockPointerType() ||
          isObjCObjectPointerType() || isNullPtrType());
}

inline bool Type::hasObjCPointerRepresentation() const {
  return isObjCObjectPointerType();
}

inline const Type *Type::getBaseElementTypeUnsafe() const {
  const Type *type = this;
  while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
    type = arrayType->getElementType().getTypePtr();
  return type;
}

/// Insertion operator for diagnostics.  This allows sending QualType's into a
/// diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
                                           QualType T) {
  DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
                  DiagnosticsEngine::ak_qualtype);
  return DB;
}

/// Insertion operator for partial diagnostics.  This allows sending QualType's
/// into a diagnostic with <<.
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
                                           QualType T) {
  PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
                  DiagnosticsEngine::ak_qualtype);
  return PD;
}

// Helper class template that is used by Type::getAs to ensure that one does
// not try to look through a qualified type to get to an array type.
template<typename T,
         bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
                             llvm::is_base_of<ArrayType, T>::value)>
struct ArrayType_cannot_be_used_with_getAs { };

template<typename T>
struct ArrayType_cannot_be_used_with_getAs<T, true>;

// Member-template getAs<specific type>'.
template <typename T> const T *Type::getAs() const {
  ArrayType_cannot_be_used_with_getAs<T> at;
  (void)at;

  // If this is directly a T type, return it.
  if (const T *Ty = dyn_cast<T>(this))
    return Ty;

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<T>(CanonicalType))
    return 0;

  // If this is a typedef for the type, strip the typedef off without
  // losing all typedef information.
  return cast<T>(getUnqualifiedDesugaredType());
}

inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
  // If this is directly an array type, return it.
  if (const ArrayType *arr = dyn_cast<ArrayType>(this))
    return arr;

  // If the canonical form of this type isn't the right kind, reject it.
  if (!isa<ArrayType>(CanonicalType))
    return 0;

  // If this is a typedef for the type, strip the typedef off without
  // losing all typedef information.
  return cast<ArrayType>(getUnqualifiedDesugaredType());
}

template <typename T> const T *Type::castAs() const {
  ArrayType_cannot_be_used_with_getAs<T> at;
  (void) at;

  assert(isa<T>(CanonicalType));
  if (const T *ty = dyn_cast<T>(this)) return ty;
  return cast<T>(getUnqualifiedDesugaredType());
}

inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
  assert(isa<ArrayType>(CanonicalType));
  if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
  return cast<ArrayType>(getUnqualifiedDesugaredType());
}

}  // end namespace clang

#endif