summaryrefslogtreecommitdiff
path: root/test/SemaCXX/expression-traits.cpp
blob: 2767d4a159c7fce7eb3b99fcc5af8ffd3a6241b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// RUN: %clang_cc1 -fsyntax-only -verify -fcxx-exceptions %s

//
// Tests for "expression traits" intrinsics such as __is_lvalue_expr.
//
// For the time being, these tests are written against the 2003 C++
// standard (ISO/IEC 14882:2003 -- see draft at
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2001/n1316/).
//
// C++0x has its own, more-refined, idea of lvalues and rvalues.
// If/when we need to support those, we'll need to track both
// standard documents.

#if !__has_feature(cxx_static_assert)
# define CONCAT_(X_, Y_) CONCAT1_(X_, Y_)
# define CONCAT1_(X_, Y_) X_ ## Y_

// This emulation can be used multiple times on one line (and thus in
// a macro), except at class scope
# define static_assert(b_, m_) \
  typedef int CONCAT_(sa_, __LINE__)[b_ ? 1 : -1]
#endif

// Tests are broken down according to section of the C++03 standard
// (ISO/IEC 14882:2003(E))

// Assertion macros encoding the following two paragraphs
//
// basic.lval/1 Every expression is either an lvalue or an rvalue.
//
// expr.prim/5 A parenthesized expression is a primary expression whose type
// and value are identical to those of the enclosed expression. The
// presence of parentheses does not affect whether the expression is
// an lvalue.
//
// Note: these asserts cannot be made at class scope in C++03.  Put
// them in a member function instead.
#define ASSERT_LVALUE(expr)                                             \
    static_assert(__is_lvalue_expr(expr), "should be an lvalue");       \
    static_assert(__is_lvalue_expr((expr)),                             \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)");            \
    static_assert(!__is_rvalue_expr(expr), "should be an lvalue");      \
    static_assert(!__is_rvalue_expr((expr)),                            \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)")

#define ASSERT_RVALUE(expr);                                            \
    static_assert(__is_rvalue_expr(expr), "should be an rvalue");       \
    static_assert(__is_rvalue_expr((expr)),                             \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)");            \
    static_assert(!__is_lvalue_expr(expr), "should be an rvalue");      \
    static_assert(!__is_lvalue_expr((expr)),                            \
                  "the presence of parentheses should have"             \
                  " no effect on lvalueness (expr.prim/5)")

enum Enum { Enumerator };

int ReturnInt();
void ReturnVoid();
Enum ReturnEnum();

void basic_lval_5()
{
    // basic.lval/5: The result of calling a function that does not return
    // a reference is an rvalue.
    ASSERT_RVALUE(ReturnInt());
    ASSERT_RVALUE(ReturnVoid());
    ASSERT_RVALUE(ReturnEnum());
}

int& ReturnIntReference();
extern Enum& ReturnEnumReference();

void basic_lval_6()
{
    // basic.lval/6: An expression which holds a temporary object resulting
    // from a cast to a nonreference type is an rvalue (this includes
    // the explicit creation of an object using functional notation
    struct IntClass
    {
        explicit IntClass(int = 0);
        IntClass(char const*);
        operator int() const;
    };
    
    struct ConvertibleToIntClass
    {
        operator IntClass() const;
    };

    ConvertibleToIntClass b;

    // Make sure even trivial conversions are not detected as lvalues
    int intLvalue = 0;
    ASSERT_RVALUE((int)intLvalue);
    ASSERT_RVALUE((short)intLvalue);
    ASSERT_RVALUE((long)intLvalue);
    
    // Same tests with function-call notation
    ASSERT_RVALUE(int(intLvalue));
    ASSERT_RVALUE(short(intLvalue));
    ASSERT_RVALUE(long(intLvalue));

    char charLValue = 'x';
    ASSERT_RVALUE((signed char)charLValue);
    ASSERT_RVALUE((unsigned char)charLValue);

    ASSERT_RVALUE(static_cast<int>(IntClass()));
    IntClass intClassLValue;
    ASSERT_RVALUE(static_cast<int>(intClassLValue)); 
    ASSERT_RVALUE(static_cast<IntClass>(ConvertibleToIntClass()));
    ConvertibleToIntClass convertibleToIntClassLValue;
    ASSERT_RVALUE(static_cast<IntClass>(convertibleToIntClassLValue));
    

    typedef signed char signed_char;
    typedef unsigned char unsigned_char;
    ASSERT_RVALUE(signed_char(charLValue));
    ASSERT_RVALUE(unsigned_char(charLValue));

    ASSERT_RVALUE(int(IntClass()));
    ASSERT_RVALUE(int(intClassLValue)); 
    ASSERT_RVALUE(IntClass(ConvertibleToIntClass()));
    ASSERT_RVALUE(IntClass(convertibleToIntClassLValue));
}

void conv_ptr_1()
{
    // conv.ptr/1: A null pointer constant is an integral constant
    // expression (5.19) rvalue of integer type that evaluates to
    // zero.
    ASSERT_RVALUE(0);
}

void expr_6()
{
    // expr/6: If an expression initially has the type "reference to T"
    // (8.3.2, 8.5.3), ... the expression is an lvalue.
    int x = 0;
    int& referenceToInt = x;
    ASSERT_LVALUE(referenceToInt);
    ASSERT_LVALUE(ReturnIntReference());
}

void expr_prim_2()
{
    // 5.1/2 A string literal is an lvalue; all other
    // literals are rvalues.
    ASSERT_LVALUE("foo");
    ASSERT_RVALUE(1);
    ASSERT_RVALUE(1.2);
    ASSERT_RVALUE(10UL);
}

void expr_prim_3()
{
    // 5.1/3: The keyword "this" names a pointer to the object for
    // which a nonstatic member function (9.3.2) is invoked. ...The
    // expression is an rvalue.
    struct ThisTest
    {
        void f() { ASSERT_RVALUE(this); }
    };
}

extern int variable;
void Function();

struct BaseClass
{
    virtual ~BaseClass();
    
    int BaseNonstaticMemberFunction();
    static int BaseStaticMemberFunction();
    int baseDataMember;
};

struct Class : BaseClass
{
    static void function();
    static int variable;

    template <class T>
    struct NestedClassTemplate {};

    template <class T>
    static int& NestedFuncTemplate() { return variable; }  // expected-note{{possible target for call}}

    template <class T>
    int& NestedMemfunTemplate() { return variable; }

    int operator*() const;

    template <class T>
    int operator+(T) const;

    int NonstaticMemberFunction();
    static int StaticMemberFunction();
    int dataMember;

    int& referenceDataMember;
    static int& staticReferenceDataMember;
    static int staticNonreferenceDataMember;

    enum Enum { Enumerator };

    operator long() const;
    
    Class();
    Class(int,int);

    void expr_prim_4()
    {
        // 5.1/4: The operator :: followed by an identifier, a
        // qualified-id, or an operator-function-id is a primary-
        // expression. ...The result is an lvalue if the entity is
        // a function or variable.
        ASSERT_LVALUE(::Function);         // identifier: function
        ASSERT_LVALUE(::variable);         // identifier: variable

        // the only qualified-id form that can start without "::" (and thus
        // be legal after "::" ) is
        //
        // ::<sub>opt</sub> nested-name-specifier template<sub>opt</sub> unqualified-id
        ASSERT_LVALUE(::Class::function);  // qualified-id: function
        ASSERT_LVALUE(::Class::variable);  // qualified-id: variable

        // The standard doesn't give a clear answer about whether these
        // should really be lvalues or rvalues without some surrounding
        // context that forces them to be interpreted as naming a
        // particular function template specialization (that situation
        // doesn't come up in legal pure C++ programs). This language
        // extension simply rejects them as requiring additional context
        __is_lvalue_expr(::Class::NestedFuncTemplate);    // qualified-id: template \
        // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}}
        
        __is_lvalue_expr(::Class::NestedMemfunTemplate);  // qualified-id: template \
        // expected-error{{reference to non-static member function must be called}}
        
        __is_lvalue_expr(::Class::operator+);             // operator-function-id: template \
        // expected-error{{reference to non-static member function must be called}}

        //ASSERT_RVALUE(::Class::operator*);         // operator-function-id: member function
    }

    void expr_prim_7()
    {
        // expr.prim/7 An identifier is an id-expression provided it has been
        // suitably declared (clause 7). [Note: ... ] The type of the
        // expression is the type of the identifier. The result is the
        // entity denoted by the identifier. The result is an lvalue if
        // the entity is a function, variable, or data member... (cont'd)
        ASSERT_LVALUE(Function);        // identifier: function
        ASSERT_LVALUE(StaticMemberFunction);        // identifier: function
        ASSERT_LVALUE(variable);        // identifier: variable
        ASSERT_LVALUE(dataMember);      // identifier: data member
        //ASSERT_RVALUE(NonstaticMemberFunction); // identifier: member function

        // (cont'd)...A nested-name-specifier that names a class,
        // optionally followed by the keyword template (14.2), and then
        // followed by the name of a member of either that class (9.2) or
        // one of its base classes... is a qualified-id... The result is
        // the member. The type of the result is the type of the
        // member. The result is an lvalue if the member is a static
        // member function or a data member.
        ASSERT_LVALUE(Class::dataMember);
        ASSERT_LVALUE(Class::StaticMemberFunction);
        //ASSERT_RVALUE(Class::NonstaticMemberFunction); // identifier: member function

        ASSERT_LVALUE(Class::baseDataMember);
        ASSERT_LVALUE(Class::BaseStaticMemberFunction);
        //ASSERT_RVALUE(Class::BaseNonstaticMemberFunction); // identifier: member function
    }
};

void expr_call_10()
{
    // expr.call/10: A function call is an lvalue if and only if the
    // result type is a reference.  This statement is partially
    // redundant with basic.lval/5
    basic_lval_5();
    
    ASSERT_LVALUE(ReturnIntReference());
    ASSERT_LVALUE(ReturnEnumReference());
}

namespace Namespace
{
  int x;
  void function();
}

void expr_prim_8()
{
    // expr.prim/8 A nested-name-specifier that names a namespace
    // (7.3), followed by the name of a member of that namespace (or
    // the name of a member of a namespace made visible by a
    // using-directive ) is a qualified-id; 3.4.3.2 describes name
    // lookup for namespace members that appear in qualified-ids. The
    // result is the member. The type of the result is the type of the
    // member. The result is an lvalue if the member is a function or
    // a variable.
    ASSERT_LVALUE(Namespace::x);
    ASSERT_LVALUE(Namespace::function);
}

void expr_sub_1(int* pointer)
{
    // expr.sub/1 A postfix expression followed by an expression in
    // square brackets is a postfix expression. One of the expressions
    // shall have the type "pointer to T" and the other shall have
    // enumeration or integral type. The result is an lvalue of type
    // "T."
    ASSERT_LVALUE(pointer[1]);
    
    // The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
    ASSERT_LVALUE(*(pointer+1));
}

void expr_type_conv_1()
{
    // expr.type.conv/1 A simple-type-specifier (7.1.5) followed by a
    // parenthesized expression-list constructs a value of the specified
    // type given the expression list. ... If the expression list
    // specifies more than a single value, the type shall be a class with
    // a suitably declared constructor (8.5, 12.1), and the expression
    // T(x1, x2, ...) is equivalent in effect to the declaration T t(x1,
    // x2, ...); for some invented temporary variable t, with the result
    // being the value of t as an rvalue.
    ASSERT_RVALUE(Class(2,2));
}

void expr_type_conv_2()
{
    // expr.type.conv/2 The expression T(), where T is a
    // simple-type-specifier (7.1.5.2) for a non-array complete object
    // type or the (possibly cv-qualified) void type, creates an
    // rvalue of the specified type,
    ASSERT_RVALUE(int());
    ASSERT_RVALUE(Class());
    ASSERT_RVALUE(void());
}


void expr_ref_4()
{
    // Applies to expressions of the form E1.E2
    
    // If E2 is declared to have type "reference to T", then E1.E2 is
    // an lvalue;.... Otherwise, one of the following rules applies.
    ASSERT_LVALUE(Class().staticReferenceDataMember);
    ASSERT_LVALUE(Class().referenceDataMember);
    
    // - If E2 is a static data member, and the type of E2 is T, then
    // E1.E2 is an lvalue; ...
    ASSERT_LVALUE(Class().staticNonreferenceDataMember);
    ASSERT_LVALUE(Class().staticReferenceDataMember);


    // - If E2 is a non-static data member, ... If E1 is an lvalue,
    // then E1.E2 is an lvalue...
    Class lvalue;
    ASSERT_LVALUE(lvalue.dataMember);
    ASSERT_RVALUE(Class().dataMember);

    // - If E1.E2 refers to a static member function, ... then E1.E2
    // is an lvalue
    ASSERT_LVALUE(Class().StaticMemberFunction);
    
    // - Otherwise, if E1.E2 refers to a non-static member function,
    // then E1.E2 is not an lvalue.
    //ASSERT_RVALUE(Class().NonstaticMemberFunction);

    // - If E2 is a member enumerator, and the type of E2 is T, the
    // expression E1.E2 is not an lvalue. The type of E1.E2 is T.
    ASSERT_RVALUE(Class().Enumerator);
    ASSERT_RVALUE(lvalue.Enumerator);
}


void expr_post_incr_1(int x)
{
    // expr.post.incr/1 The value obtained by applying a postfix ++ is
    // the value that the operand had before applying the
    // operator... The result is an rvalue.
    ASSERT_RVALUE(x++);
}

void expr_dynamic_cast_2()
{
    // expr.dynamic.cast/2: If T is a pointer type, v shall be an
    // rvalue of a pointer to complete class type, and the result is
    // an rvalue of type T.
    Class instance;
    ASSERT_RVALUE(dynamic_cast<Class*>(&instance));

    // If T is a reference type, v shall be an
    // lvalue of a complete class type, and the result is an lvalue of
    // the type referred to by T.
    ASSERT_LVALUE(dynamic_cast<Class&>(instance));
}

void expr_dynamic_cast_5()
{
    // expr.dynamic.cast/5: If T is "reference to cv1 B" and v has type
    // "cv2 D" such that B is a base class of D, the result is an
    // lvalue for the unique B sub-object of the D object referred
    // to by v.
    typedef BaseClass B;
    typedef Class D;
    D object;
    ASSERT_LVALUE(dynamic_cast<B&>(object));
}

// expr.dynamic.cast/8: The run-time check logically executes as follows:
//
// - If, in the most derived object pointed (referred) to by v, v
// points (refers) to a public base class subobject of a T object, and
// if only one object of type T is derived from the sub-object pointed
// (referred) to by v, the result is a pointer (an lvalue referring)
// to that T object.
//
// - Otherwise, if v points (refers) to a public base class sub-object
// of the most derived object, and the type of the most derived object
// has a base class, of type T, that is unambiguous and public, the
// result is a pointer (an lvalue referring) to the T sub-object of
// the most derived object.
//
// The mention of "lvalue" in the text above appears to be a
// defect that is being corrected by the response to UK65 (see
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2841.html).

#if 0
void expr_typeid_1()
{
    // expr.typeid/1: The result of a typeid expression is an lvalue...
    ASSERT_LVALUE(typeid(1));
}
#endif

void expr_static_cast_1(int x)
{
    // expr.static.cast/1: The result of the expression
    // static_cast<T>(v) is the result of converting the expression v
    // to type T. If T is a reference type, the result is an lvalue;
    // otherwise, the result is an rvalue.
    ASSERT_LVALUE(static_cast<int&>(x));
    ASSERT_RVALUE(static_cast<int>(x));
}

void expr_reinterpret_cast_1()
{
    // expr.reinterpret.cast/1: The result of the expression
    // reinterpret_cast<T>(v) is the result of converting the
    // expression v to type T. If T is a reference type, the result is
    // an lvalue; otherwise, the result is an rvalue
    ASSERT_RVALUE(reinterpret_cast<int*>(0));
    char const v = 0;
    ASSERT_LVALUE(reinterpret_cast<char const&>(v));
}

void expr_unary_op_1(int* pointer, struct incomplete* pointerToIncompleteType)
{
    // expr.unary.op/1: The unary * operator performs indirection: the
    // expression to which it is applied shall be a pointer to an
    // object type, or a pointer to a function type and the result is
    // an lvalue referring to the object or function to which the
    // expression points.  
    ASSERT_LVALUE(*pointer);
    ASSERT_LVALUE(*Function);

    // [Note: a pointer to an incomplete type
    // (other than cv void ) can be dereferenced. ]
    ASSERT_LVALUE(*pointerToIncompleteType);
}

void expr_pre_incr_1(int operand)
{
    // expr.pre.incr/1: The operand of prefix ++ ... shall be a
    // modifiable lvalue.... The value is the new value of the
    // operand; it is an lvalue.
    ASSERT_LVALUE(++operand);
}

void expr_cast_1(int x)
{
    // expr.cast/1: The result of the expression (T) cast-expression
    // is of type T. The result is an lvalue if T is a reference type,
    // otherwise the result is an rvalue.
    ASSERT_LVALUE((void(&)())expr_cast_1);
    ASSERT_LVALUE((int&)x);
    ASSERT_RVALUE((void(*)())expr_cast_1);
    ASSERT_RVALUE((int)x);
}

void expr_mptr_oper()
{
    // expr.mptr.oper/6: The result of a .* expression is an lvalue
    // only if its first operand is an lvalue and its second operand
    // is a pointer to data member... (cont'd)
    typedef Class MakeRValue;
    ASSERT_RVALUE(MakeRValue().*(&Class::dataMember));
    //ASSERT_RVALUE(MakeRValue().*(&Class::NonstaticMemberFunction));
    Class lvalue;
    ASSERT_LVALUE(lvalue.*(&Class::dataMember));
    //ASSERT_RVALUE(lvalue.*(&Class::NonstaticMemberFunction));
    
    // (cont'd)...The result of an ->* expression is an lvalue only
    // if its second operand is a pointer to data member. If the
    // second operand is the null pointer to member value (4.11), the
    // behavior is undefined.
    ASSERT_LVALUE((&lvalue)->*(&Class::dataMember));
    //ASSERT_RVALUE((&lvalue)->*(&Class::NonstaticMemberFunction));
}

void expr_cond(bool cond)
{
    // 5.16 Conditional operator [expr.cond]
    //
    // 2 If either the second or the third operand has type (possibly
    // cv-qualified) void, then the lvalue-to-rvalue (4.1),
    // array-to-pointer (4.2), and function-to-pointer (4.3) standard
    // conversions are performed on the second and third operands, and one
    // of the following shall hold:
    //
    // - The second or the third operand (but not both) is a
    // throw-expression (15.1); the result is of the type of the other and
    // is an rvalue.

    Class classLvalue;
    ASSERT_RVALUE(cond ? throw 1 : (void)0);
    ASSERT_RVALUE(cond ? (void)0 : throw 1);
    ASSERT_RVALUE(cond ? throw 1 : classLvalue);
    ASSERT_RVALUE(cond ? classLvalue : throw 1);

    // - Both the second and the third operands have type void; the result
    // is of type void and is an rvalue. [Note: this includes the case
    // where both operands are throw-expressions. ]
    ASSERT_RVALUE(cond ? (void)1 : (void)0);
    ASSERT_RVALUE(cond ? throw 1 : throw 0);
    
    // expr.cond/4: If the second and third operands are lvalues and
    // have the same type, the result is of that type and is an
    // lvalue.
    ASSERT_LVALUE(cond ? classLvalue : classLvalue);
    int intLvalue = 0;
    ASSERT_LVALUE(cond ? intLvalue : intLvalue);
    
    // expr.cond/5:Otherwise, the result is an rvalue.
    typedef Class MakeRValue;
    ASSERT_RVALUE(cond ? MakeRValue() : classLvalue);
    ASSERT_RVALUE(cond ? classLvalue : MakeRValue());
    ASSERT_RVALUE(cond ? MakeRValue() : MakeRValue());
    ASSERT_RVALUE(cond ? classLvalue : intLvalue);
    ASSERT_RVALUE(cond ? intLvalue : int());
}

void expr_ass_1(int x)
{
    // expr.ass/1: There are several assignment operators, all of
    // which group right-to-left. All require a modifiable lvalue as
    // their left operand, and the type of an assignment expression is
    // that of its left operand. The result of the assignment
    // operation is the value stored in the left operand after the
    // assignment has taken place; the result is an lvalue.
    ASSERT_LVALUE(x = 1);
    ASSERT_LVALUE(x += 1);
    ASSERT_LVALUE(x -= 1);
    ASSERT_LVALUE(x *= 1);
    ASSERT_LVALUE(x /= 1);
    ASSERT_LVALUE(x %= 1);
    ASSERT_LVALUE(x ^= 1);
    ASSERT_LVALUE(x &= 1);
    ASSERT_LVALUE(x |= 1);
}

void expr_comma(int x)
{
    // expr.comma: A pair of expressions separated by a comma is
    // evaluated left-to-right and the value of the left expression is
    // discarded... result is an lvalue if its right operand is.

    // Can't use the ASSERT_XXXX macros without adding parens around
    // the comma expression.
    static_assert(__is_lvalue_expr(x,x), "expected an lvalue");
    static_assert(__is_rvalue_expr(x,1), "expected an rvalue");
    static_assert(__is_lvalue_expr(1,x), "expected an lvalue");
    static_assert(__is_rvalue_expr(1,1), "expected an rvalue");
}

#if 0
template<typename T> void f();

// FIXME These currently fail
void expr_fun_lvalue()
{
  ASSERT_LVALUE(&f<int>);
}

void expr_fun_rvalue()
{
  ASSERT_RVALUE(f<int>);
}
#endif

template <int NonTypeNonReferenceParameter, int& NonTypeReferenceParameter>
void check_temp_param_6()
{
    ASSERT_RVALUE(NonTypeNonReferenceParameter);
    ASSERT_LVALUE(NonTypeReferenceParameter);
}

int AnInt = 0;

void temp_param_6()
{
    check_temp_param_6<3,AnInt>();
}