//===-- msan_allocator.cc --------------------------- ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of MemorySanitizer. // // MemorySanitizer allocator. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "msan.h" namespace __msan { struct Metadata { uptr requested_size; }; static const uptr kAllocatorSpace = 0x600000000000ULL; static const uptr kAllocatorSize = 0x80000000000; // 8T. static const uptr kMetadataSize = sizeof(Metadata); static const uptr kMaxAllowedMallocSize = 8UL << 30; typedef SizeClassAllocator64 PrimaryAllocator; typedef SizeClassAllocatorLocalCache AllocatorCache; typedef LargeMmapAllocator<> SecondaryAllocator; typedef CombinedAllocator Allocator; static THREADLOCAL AllocatorCache cache; static Allocator allocator; static int inited = 0; static inline void Init() { if (inited) return; __msan_init(); inited = true; // this must happen before any threads are created. allocator.Init(); } void MsanAllocatorThreadFinish() { allocator.SwallowCache(&cache); } static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment, bool zeroise) { Init(); if (size > kMaxAllowedMallocSize) { Report("WARNING: MemorySanitizer failed to allocate %p bytes\n", (void *)size); return AllocatorReturnNull(); } void *res = allocator.Allocate(&cache, size, alignment, false); Metadata *meta = reinterpret_cast(allocator.GetMetaData(res)); meta->requested_size = size; if (zeroise) { __msan_clear_and_unpoison(res, size); } else if (flags()->poison_in_malloc) { __msan_poison(res, size); if (__msan_get_track_origins()) { u32 stack_id = StackDepotPut(stack->trace, stack->size); CHECK(stack_id); CHECK_EQ((stack_id >> 31), 0); // Higher bit is occupied by stack origins. __msan_set_origin(res, size, stack_id); } } MSAN_MALLOC_HOOK(res, size); return res; } void MsanDeallocate(StackTrace *stack, void *p) { CHECK(p); Init(); MSAN_FREE_HOOK(p); Metadata *meta = reinterpret_cast(allocator.GetMetaData(p)); uptr size = meta->requested_size; meta->requested_size = 0; // This memory will not be reused by anyone else, so we are free to keep it // poisoned. if (flags()->poison_in_free) { __msan_poison(p, size); if (__msan_get_track_origins()) { u32 stack_id = StackDepotPut(stack->trace, stack->size); CHECK(stack_id); CHECK_EQ((stack_id >> 31), 0); // Higher bit is occupied by stack origins. __msan_set_origin(p, size, stack_id); } } allocator.Deallocate(&cache, p); } void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size, uptr alignment, bool zeroise) { if (!old_p) return MsanAllocate(stack, new_size, alignment, zeroise); if (!new_size) { MsanDeallocate(stack, old_p); return 0; } Metadata *meta = reinterpret_cast(allocator.GetMetaData(old_p)); uptr old_size = meta->requested_size; uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); if (new_size <= actually_allocated_size) { // We are not reallocating here. meta->requested_size = new_size; if (new_size > old_size) __msan_poison((char*)old_p + old_size, new_size - old_size); return old_p; } uptr memcpy_size = Min(new_size, old_size); void *new_p = MsanAllocate(stack, new_size, alignment, zeroise); // Printf("realloc: old_size %zd new_size %zd\n", old_size, new_size); if (new_p) { __msan_memcpy(new_p, old_p, memcpy_size); MsanDeallocate(stack, old_p); } return new_p; } static uptr AllocationSize(const void *p) { if (p == 0) return 0; const void *beg = allocator.GetBlockBegin(p); if (beg != p) return 0; Metadata *b = (Metadata*)allocator.GetMetaData(p); return b->requested_size; } } // namespace __msan using namespace __msan; uptr __msan_get_current_allocated_bytes() { u64 stats[AllocatorStatCount]; allocator.GetStats(stats); u64 m = stats[AllocatorStatMalloced]; u64 f = stats[AllocatorStatFreed]; return m >= f ? m - f : 1; } uptr __msan_get_heap_size() { u64 stats[AllocatorStatCount]; allocator.GetStats(stats); u64 m = stats[AllocatorStatMmapped]; u64 f = stats[AllocatorStatUnmapped]; return m >= f ? m - f : 1; } uptr __msan_get_free_bytes() { return 1; } uptr __msan_get_unmapped_bytes() { return 1; } uptr __msan_get_estimated_allocated_size(uptr size) { return size; } int __msan_get_ownership(const void *p) { return AllocationSize(p) != 0; } uptr __msan_get_allocated_size(const void *p) { return AllocationSize(p); }