#include #include #include #include #include #include "typeinfo.h" #include "dwarf_eh.h" namespace std { void unexpected(); } extern "C" std::type_info *__cxa_current_exception_type(); extern "C" char* __cxa_demangle(const char* mangled_name, char* buf, size_t* n, int* status); /** * Class of exceptions to distinguish between this and other exception types. * * The first four characters are the vendor ID. Currently, we use GNUC, * because we aim for ABI-compatibility with the GNU implementation, and * various checks may test for equality of the class, which is incorrect. */ static const uint64_t exception_class = *(int64_t*)"GNUCC++\0"; /** * The low four bytes of the exception class, indicating that we conform to the * Itanium C++ ABI. */ static const uint32_t abi_exception_class = *(int32_t*)"C++\0"; namespace std { // Forward declaration of standard library terminate() function used to // abort execution. void terminate(void); } using namespace ABI_NAMESPACE; /** * Function type to call when an unexpected exception is encountered. */ typedef void (*unexpected_handler)(); /** * Function type to call when an unrecoverable condition is encountered. */ typedef void (*terminate_handler)(); /** * Structure used as a header on thrown exceptions. This is the same layout as * defined by the Itanium ABI spec, so should be interoperable with any other * implementation of this spec, such as GNU libsupc++. * * Note: Several fields of this structure have not-very-informative names. * These are taken from the ABI spec and have not been changed to make it * easier for people referring to to the spec while reading this code. */ struct __cxa_exception { /** Type info for the thrown object. */ std::type_info *exceptionType; /** Destructor for the object, if one exists. */ void (*exceptionDestructor) (void *); /** Handler called when an exception specification is violated. */ unexpected_handler unexpectedHandler; /** Hander called to terminate. */ terminate_handler terminateHandler; /** Next exception in the list. If an exception is thrown inside a catch * block and caught in a nested catch, this points to the exception that * will be handled after the inner catch block completes. */ __cxa_exception *nextException; /** The number of handlers that currently have references to this * exception. The top (non-sign) bit of this is used as a flag to indicate * that the exception is being rethrown, so should not be deleted when its * handler count reaches 0 (which it doesn't with the top bit set).*/ int handlerCount; /** The selector value to be returned when installing the catch handler. * Used at the call site to determine which catch() block should execute. * This is found in phase 1 of unwinding then installed in phase 2.*/ int handlerSwitchValue; const char *actionRecord; /** Pointer to the language-specific data area (LSDA) for the handler * frame. This is unused in this implementation, but set for ABI * compatibility in case we want to mix code in very weird ways. */ const char *languageSpecificData; /** The cached landing pad for the catch handler.*/ void *catchTemp; /** The pointer that will be returned as the pointer to the object. When * throwing a class and catching a virtual superclass (for example), we * need to adjust the thrown pointer to make it all work correctly. */ void *adjustedPtr; /** The language-agnostic part of the exception header. */ _Unwind_Exception unwindHeader; }; /** * ABI-specified globals structure. Returned by the __cxa_get_globals() * function and its fast variant. */ struct __cxa_eh_globals { __cxa_exception *caughtExceptions; unsigned int uncaughtExceptions; }; /** * Per-thread info required by the runtime. We store a single structure * pointer in thread-local storage, because this tends to be a scarce resource * and it's impolite to steal all of it and not leave any for the rest of the * program. * * Instances of this structure are allocated lazily - at most one per thread - * and are destroyed on thread termination. */ struct __cxa_thread_info { /** The termination handler for this thread. */ terminate_handler terminateHandler; /** The unexpected exception handler for this thread. */ unexpected_handler unexpectedHandler; /** The number of emergency buffers held by this thread. This is 0 in * normal operation - the emergency buffers are only used when malloc() * fails to return memory for allocating an exception. Threads are not * permitted to hold more than 4 emergency buffers (as per recommendation * in ABI spec).*/ int emergencyBuffersHeld; /** * The public part of this structure, accessible from outside of this * module. */ __cxa_eh_globals globals; }; /** The global termination handler. */ static terminate_handler terminateHandler = abort; /** The global unexpected exception handler. */ static unexpected_handler unexpectedHandler = abort; /** Key used for thread-local data. */ static pthread_key_t eh_key; typedef enum { handler_none, handler_cleanup, handler_catch } handler_type; // FIXME: Put all of the ABI functions in a header. extern "C" void __cxa_free_exception(void *thrown_exception); /** * Cleanup function, allowing foreign exception handlers to correctly destroy * this exception if they catch it. */ static void exception_cleanup(_Unwind_Reason_Code reason, struct _Unwind_Exception *ex) { __cxa_free_exception((void*)ex); } /** * Recursively walk a list of exceptions and delete them all in post-order. */ static void free_exception_list(__cxa_exception *ex) { if (0 != ex->nextException) { free_exception_list(ex->nextException); } // __cxa_free_exception() expects to be passed the thrown object, which // immediately follows the exception, not the exception itself __cxa_free_exception(ex+1); } /** * Cleanup function called when a thread exists to make certain that all of the * per-thread data is deleted. */ static void thread_cleanup(void* thread_info) { __cxa_thread_info *info = (__cxa_thread_info*)thread_info; if (info->globals.caughtExceptions) { free_exception_list(info->globals.caughtExceptions); } free(thread_info); } /** * Once control used to protect the key creation. */ static pthread_once_t once_control = PTHREAD_ONCE_INIT; /** * Initialise eh_key. */ static void init_key(void) { pthread_key_create(&eh_key, thread_cleanup); } /** * Returns the thread info structure, creating it if it is not already created. */ static __cxa_thread_info *thread_info() { pthread_once(&once_control, init_key); __cxa_thread_info *info = (__cxa_thread_info*)pthread_getspecific(eh_key); if (0 == info) { info = (__cxa_thread_info*)calloc(1, sizeof(__cxa_thread_info)); pthread_setspecific(eh_key, info); } return info; } /** * Fast version of thread_info(). May fail if thread_info() is not called on * this thread at least once already. */ static __cxa_thread_info *thread_info_fast() { return (__cxa_thread_info*)pthread_getspecific(eh_key); } /** * ABI function returning the __cxa_eh_globals structure. */ extern "C" __cxa_eh_globals *__cxa_get_globals(void) { return &(thread_info()->globals); } /** * Version of __cxa_get_globals() assuming that __cxa_get_globals() has already * been called at least once by this thread. */ extern "C" __cxa_eh_globals *__cxa_get_globals_fast(void) { return &(thread_info_fast()->globals); } /** * An emergency allocation reserved for when malloc fails. This is treated as * 16 buffers of 1KB each. */ static char emergency_buffer[16384]; /** * Flag indicating whether each buffer is allocated. */ static bool buffer_allocated[16]; /** * Lock used to protect emergency allocation. */ static pthread_mutex_t emergency_malloc_lock = PTHREAD_MUTEX_INITIALIZER; /** * Condition variable used to wait when two threads are both trying to use the * emergency malloc() buffer at once. */ static pthread_cond_t emergency_malloc_wait = PTHREAD_COND_INITIALIZER; /** * Allocates size bytes from the emergency allocation mechanism, if possible. * This function will fail if size is over 1KB or if this thread already has 4 * emergency buffers. If all emergency buffers are allocated, it will sleep * until one becomes available. */ static char *emergency_malloc(size_t size) { if (size > 1024) { return 0; } __cxa_thread_info *info = thread_info(); // Only 4 emergency buffers allowed per thread! if (info->emergencyBuffersHeld > 3) { return 0; } pthread_mutex_lock(&emergency_malloc_lock); int buffer = -1; while (buffer < 0) { // While we were sleeping on the lock, another thread might have free'd // enough memory for us to use, so try the allocation again - no point // using the emergency buffer if there is some real memory that we can // use... void *m = calloc(1, size); if (0 != m) { pthread_mutex_unlock(&emergency_malloc_lock); return (char*)m; } for (int i=0 ; i<16 ; i++) { if (!buffer_allocated[i]) { buffer = i; buffer_allocated[i] = true; break; } } if (buffer < 0) { pthread_cond_wait(&emergency_malloc_wait, &emergency_malloc_lock); } } pthread_mutex_unlock(&emergency_malloc_lock); info->emergencyBuffersHeld++; return emergency_buffer + (1024 * buffer); } /** * Frees a buffer returned by emergency_malloc(). * * Note: Neither this nor emergency_malloc() is particularly efficient. This * should not matter, because neither will be called in normal operation - they * are only used when the program runs out of memory, which should not happen * often. */ static void emergency_malloc_free(char *ptr) { int buffer = -1; // Find the buffer corresponding to this pointer. for (int i=0 ; i<16 ; i++) { if (ptr == (void*)(emergency_buffer + (1024 * i))) { buffer = i; break; } } assert(buffer > 0 && "Trying to free something that is not an emergency buffer!"); // emergency_malloc() is expected to return 0-initialized data. We don't // zero the buffer when allocating it, because the static buffers will // begin life containing 0 values. memset((void*)ptr, 0, 1024); // Signal the condition variable to wake up any threads that are blocking // waiting for some space in the emergency buffer pthread_mutex_lock(&emergency_malloc_lock); buffer_allocated[buffer] = true; pthread_cond_signal(&emergency_malloc_wait); pthread_mutex_unlock(&emergency_malloc_lock); } /** * Allocates an exception structure. Returns a pointer to the space that can * be used to store an object of thrown_size bytes. */ extern "C" void *__cxa_allocate_exception(size_t thrown_size) { size_t size = thrown_size + sizeof(__cxa_exception); char *buffer = (char*)calloc(1, size); // If calloc() doesn't want to give us any memory, try using an emergency // buffer. if (0 == buffer) { buffer = emergency_malloc(size); if (0 == buffer) { fprintf(stderr, "Out of memory attempting to allocate exception\n"); std::terminate(); } } return buffer+sizeof(__cxa_exception); } /** * __cxa_free_exception() is called when an exception was thrown in between * calling __cxa_allocate_exception() and actually throwing the exception. * This happens when the object's copy constructor throws an exception. * * In this implementation, it is also called by __cxa_end_catch() and during * thread cleanup. */ extern "C" void __cxa_free_exception(void *thrown_exception) { __cxa_exception *ex = ((__cxa_exception*)thrown_exception) - 1; // Free the if (0 != ex->exceptionDestructor) { try { ex->exceptionDestructor(thrown_exception); } catch(...) { // FIXME: Check that this is really what the spec says to do. std::terminate(); } } char *e = (char*)ex; // If this allocation is within the address range of the emergency buffer, // don't call free() because it was not allocated with malloc() if ((e > emergency_buffer) && (e < (emergency_buffer + sizeof(emergency_buffer)))) { emergency_malloc_free(e); } else { free(e); } } /** * Callback function used with _Unwind_Backtrace(). * * Prints a stack trace. Used only for debugging help. * * Note: As of FreeBSD 8.1, dladd() still doesn't work properly, so this only * correctly prints function names from public, relocatable, symbols. */ static _Unwind_Reason_Code trace(struct _Unwind_Context *context, void *c) { Dl_info myinfo; int mylookup = dladdr((void*)(uintptr_t)__cxa_current_exception_type, &myinfo); void *ip = (void*)_Unwind_GetIP(context); Dl_info info; if (dladdr(ip, &info) != 0) { if (mylookup == 0 || strcmp(info.dli_fname, myinfo.dli_fname) != 0) { printf("%p:%s() in %s\n", ip, info.dli_sname, info.dli_fname); } } return _URC_CONTINUE_UNWIND; } /** * Report a failure that occurred when attempting to throw an exception. * * If the failure happened by falling off the end of the stack without finding * a handler, prints a back trace before aborting. */ static void report_failure(_Unwind_Reason_Code err, void *thrown_exception) { switch (err) { default: break; case _URC_FATAL_PHASE1_ERROR: fprintf(stderr, "Fatal error during phase 1 unwinding\n"); break; case _URC_FATAL_PHASE2_ERROR: fprintf(stderr, "Fatal error during phase 2 unwinding\n"); break; case _URC_END_OF_STACK: fprintf(stderr, "Terminating due to uncaught exception %p", thrown_exception); size_t bufferSize = 128; char *demangled = (char*)malloc(bufferSize); const char *mangled = __cxa_current_exception_type()->name(); int status; __cxa_demangle(mangled, demangled, &bufferSize, &status); fprintf(stderr, " of type %s\n", status == 0 ? (const char*)demangled : mangled); if (status == 0) { free(demangled); } // Print a back trace if no handler is found. // TODO: Make this optional _Unwind_Backtrace(trace, 0); break; } std::terminate(); } /** * ABI function for throwing an exception. Takes the object to be thrown (the * pointer returned by __cxa_allocate_exception()), the type info for the * pointee, and the destructor (if there is one) as arguments. */ extern "C" void __cxa_throw(void *thrown_exception, std::type_info *tinfo, void(*dest)(void*)) { __cxa_exception *ex = ((__cxa_exception*)thrown_exception) - 1; __cxa_thread_info *info = thread_info(); ex->unexpectedHandler = info->unexpectedHandler; ex->terminateHandler = info->terminateHandler; ex->exceptionType = tinfo; ex->exceptionDestructor = dest; ex->unwindHeader.exception_class = exception_class; ex->unwindHeader.exception_cleanup = exception_cleanup; info->globals.uncaughtExceptions++; _Unwind_Reason_Code err = _Unwind_RaiseException(&ex->unwindHeader); report_failure(err, thrown_exception); } /** * ABI function. Rethrows the current exception. Does not remove the * exception from the stack or decrement its handler count - the compiler is * expected to set the landing pad for this function to the end of the catch * block, and then call _Unwind_Resume() to continue unwinding once * __cxa_end_catch() has been called and any cleanup code has been run. */ extern "C" void __cxa_rethrow() { __cxa_eh_globals *globals = __cxa_get_globals_fast(); // Note: We don't remove this from the caught list here, because // __cxa_end_catch will be called when we unwind out of the try block. We // could probably make this faster by providing an alternative rethrow // function and ensuring that all cleanup code is run before calling it, so // we can skip the top stack frame when unwinding. __cxa_exception *ex = globals->caughtExceptions; if (0 == ex) { fprintf(stderr, "Attempting to rethrow an exception that doesn't exist!\n"); std::terminate(); } assert(ex->handlerCount > 0 && "Rethrowing uncaught exception!"); // ex->handlerCount will be decremented in __cxa_end_catch in enclosing // catch block // Make handler count negative. This will tell __cxa_end_catch that // exception was rethrown and exception object should not be destroyed // when handler count become zero ex->handlerCount = -ex->handlerCount; // Continue unwinding the stack with this exception. This should unwind to // the place in the caller where __cxa_end_catch() is called. The caller // will then run cleanup code and bounce the exception back with // _Unwind_Resume(). _Unwind_Reason_Code err = _Unwind_Resume_or_Rethrow(&ex->unwindHeader); report_failure(err, ex + 1); } /** * Returns the type_info object corresponding to the filter. */ static std::type_info *get_type_info_entry(_Unwind_Context *context, dwarf_eh_lsda *lsda, int filter) { // Get the address of the record in the table. dw_eh_ptr_t record = lsda->type_table - dwarf_size_of_fixed_size_field(lsda->type_table_encoding)*filter; dw_eh_ptr_t start = record; // Read the value, but it's probably an indirect reference... int64_t offset = read_value(lsda->type_table_encoding, &record); // If the entry is 0, don't try to dereference it. That would be bad. if (offset == 0) { return 0; } // ...so we need to resolve it return (std::type_info*)resolve_indirect_value(context, lsda->type_table_encoding, offset, start); } /** * Checks the type signature found in a handler against the type of the thrown * object. If ex is 0 then it is assumed to be a foreign exception and only * matches cleanups. */ static bool check_type_signature(__cxa_exception *ex, const std::type_info *type) { void *exception_ptr = (void*)(ex+1); const std::type_info *ex_type = ex->exceptionType; const __pointer_type_info *ptr_type = dynamic_cast(ex_type); if (0 != ptr_type) { exception_ptr = *(void**)exception_ptr; } // Always match a catchall, even with a foreign exception // // Note: A 0 here is a catchall, not a cleanup, so we return true to // indicate that we found a catch. // // TODO: Provide a class for matching against foreign exceptions. if (0 == type) { if (ex) { ex->adjustedPtr = exception_ptr; } return true; } if (0 == ex) { return false; } const __pointer_type_info *target_ptr_type = dynamic_cast(type); if (0 != ptr_type && 0 != target_ptr_type) { if (ptr_type->__flags & ~target_ptr_type->__flags) { // handler pointer is less qualified return false; } // special case for void* handler if(*target_ptr_type->__pointee == typeid(void)) { ex->adjustedPtr = exception_ptr; return true; } ex_type = ptr_type->__pointee; type = target_ptr_type->__pointee; } // If the types are the same, no casting is needed. if (*type == *ex_type) { ex->adjustedPtr = exception_ptr; return true; } const __class_type_info *cls_type = dynamic_cast(ex_type); const __class_type_info *target_cls_type = dynamic_cast(type); if (0 != cls_type && 0 != target_cls_type && cls_type->can_cast_to(target_cls_type)) { ex->adjustedPtr = cls_type->cast_to(exception_ptr, target_cls_type); return true; } return false; } /** * Checks whether the exception matches the type specifiers in this action * record. If the exception only matches cleanups, then this returns false. * If it matches a catch (including a catchall) then it returns true. * * The selector argument is used to return the selector that is passed in the * second exception register when installing the context. */ static handler_type check_action_record(_Unwind_Context *context, dwarf_eh_lsda *lsda, dw_eh_ptr_t action_record, __cxa_exception *ex, unsigned long *selector) { if (!action_record) { return handler_cleanup; } handler_type found = handler_none; while (action_record) { int filter = read_sleb128(&action_record); dw_eh_ptr_t action_record_offset_base = action_record; int displacement = read_sleb128(&action_record); action_record = displacement ? action_record_offset_base + displacement : 0; // We only check handler types for C++ exceptions - foreign exceptions // are only allowed for cleanup. if (filter > 0 && 0 != ex) { std::type_info *handler_type = get_type_info_entry(context, lsda, filter); if (check_type_signature(ex, handler_type)) { *selector = filter; return handler_catch; } } else if (filter < 0 && 0 != ex) { unsigned char *type_index = ((unsigned char*)lsda->type_table - filter - 1); bool matched = false; *selector = filter; while (*type_index) { std::type_info *handler_type = get_type_info_entry(context, lsda, *(type_index++)); // If the exception spec matches a permitted throw type for // this function, don't report a handler - we are allowed to // propagate this exception out. if (check_type_signature(ex, handler_type)) { matched = true; break; } } if (matched) { continue; } // If we don't find an allowed exception spec, we need to install // the context for this action. The landing pad will then call the // unexpected exception function. Treat this as a catch return handler_catch; } else if (filter == 0) { *selector = filter; found = handler_cleanup; } } return found; } /** * The exception personality function. This is referenced in the unwinding * DWARF metadata and is called by the unwind library for each C++ stack frame * containing catch or cleanup code. */ extern "C" _Unwind_Reason_Code __gxx_personality_v0(int version, _Unwind_Action actions, uint64_t exceptionClass, struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) { // This personality function is for version 1 of the ABI. If you use it // with a future version of the ABI, it won't know what to do, so it // reports a fatal error and give up before it breaks anything. if (1 != version) { return _URC_FATAL_PHASE1_ERROR; } __cxa_exception *ex = 0; // If this exception is throw by something else then we can't make any // assumptions about its layout beyond the fields declared in // _Unwind_Exception. bool foreignException = exceptionClass != exception_class; if (!foreignException) { ex = (__cxa_exception*) ((char*)exceptionObject - offsetof(struct __cxa_exception, unwindHeader)); } unsigned char *lsda_addr = (unsigned char*)_Unwind_GetLanguageSpecificData(context); // No LSDA implies no landing pads - try the next frame if (0 == lsda_addr) { return _URC_CONTINUE_UNWIND; } // These two variables define how the exception will be handled. dwarf_eh_action action = {0}; unsigned long selector = 0; // During the search phase, we do a complete lookup. If we return // _URC_HANDLER_FOUND, then the phase 2 unwind will call this function with // a _UA_HANDLER_FRAME action, telling us to install the handler frame. If // we return _URC_CONTINUE_UNWIND, we may be called again later with a // _UA_CLEANUP_PHASE action for this frame. // // The point of the two-stage unwind allows us to entirely avoid any stack // unwinding if there is no handler. If there are just cleanups found, // then we can just panic call an abort function. // // Matching a handler is much more expensive than matching a cleanup, // because we don't need to bother doing type comparisons (or looking at // the type table at all) for a cleanup. This means that there is no need // to cache the result of finding a cleanup, because it's (quite) quick to // look it up again from the action table. if (actions & _UA_SEARCH_PHASE) { struct dwarf_eh_lsda lsda = parse_lsda(context, lsda_addr); if (!dwarf_eh_find_callsite(context, &lsda, &action)) { // EH range not found. This happens if exception is thrown // and not catched inside cleanup (destructor). // We should call terminate() in this case // catchTemp (landing pad) field of exception object will // contain null when personality function will be called // with _UA_HANDLER_FRAME action return _URC_HANDLER_FOUND; } handler_type found_handler = check_action_record(context, &lsda, action.action_record, ex, &selector); // If there's no action record, we've only found a cleanup, so keep // searching for something real if (found_handler == handler_catch) { // Cache the results for the phase 2 unwind, if we found a handler // and this is not a foreign exception. if (ex) { ex->handlerSwitchValue = selector; ex->actionRecord = (const char*)action.action_record; ex->languageSpecificData = (const char*)lsda_addr; ex->catchTemp = action.landing_pad; // ex->adjustedPtr is set when finding the action record. } return _URC_HANDLER_FOUND; } return _URC_CONTINUE_UNWIND; } // If this is a foreign exception, we didn't have anywhere to cache the // lookup stuff, so we need to do it again. If this is either a forced // unwind, a foreign exception, or a cleanup, then we just install the // context for a cleanup. if (!(actions & _UA_HANDLER_FRAME)) { // cleanup struct dwarf_eh_lsda lsda = parse_lsda(context, lsda_addr); dwarf_eh_find_callsite(context, &lsda, &action); if (0 == action.landing_pad) { return _URC_CONTINUE_UNWIND; } handler_type found_handler = check_action_record(context, &lsda, action.action_record, ex, &selector); // Ignore handlers this time. if (found_handler != handler_cleanup) { return _URC_CONTINUE_UNWIND; } } else if (ex->catchTemp == 0) { // uncaught exception in claenup, calling terminate std::terminate(); } else if (foreignException) { struct dwarf_eh_lsda lsda = parse_lsda(context, lsda_addr); dwarf_eh_find_callsite(context, &lsda, &action); check_action_record(context, &lsda, action.action_record, ex, &selector); } else { // Restore the saved info if we saved some last time. action.landing_pad = (dw_eh_ptr_t)ex->catchTemp; ex->catchTemp = 0; selector = (unsigned long)ex->handlerSwitchValue; ex->handlerSwitchValue = 0; } _Unwind_SetIP(context, (unsigned long)action.landing_pad); _Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (unsigned long)exceptionObject); _Unwind_SetGR(context, __builtin_eh_return_data_regno(1), selector); return _URC_INSTALL_CONTEXT; exit(0); } /** * ABI function called when entering a catch statement. The argument is the * pointer passed out of the personality function. This is always the start of * the _Unwind_Exception object. The return value for this function is the * pointer to the caught exception, which is either the adjusted pointer (for * C++ exceptions) of the unadjusted pointer (for foreign exceptions). */ #if __GNUC__ > 3 && __GNUC_MINOR__ > 2 extern "C" void *__cxa_begin_catch(void *e) throw() #else extern "C" void *__cxa_begin_catch(void *e) #endif { // Decrement the uncaught exceptions count __cxa_eh_globals *globals = __cxa_get_globals(); globals->uncaughtExceptions--; _Unwind_Exception *exceptionObject = (_Unwind_Exception*)e; if (exceptionObject->exception_class == exception_class) { __cxa_exception *ex = (__cxa_exception*) ((char*)exceptionObject - offsetof(struct __cxa_exception, unwindHeader)); // Add this to the front of the list of exceptions being handled and // increment its handler count so that it won't be deleted prematurely. ex->nextException = globals->caughtExceptions; globals->caughtExceptions = ex; if (ex->handlerCount < 0) { // Rethrown exception is catched before end of catch block. // Clear the rethrow flag (make value positive) - we are allowed // to delete this exception at the end of the catch block, as long // as it isn't thrown again later. // Code pattern: // // try { // throw x; // } // catch() { // try { // throw; // } // catch() { // __cxa_begin_catch() <- we are here // } // } ex->handlerCount = -ex->handlerCount + 1; } else { ex->handlerCount++; } return ex->adjustedPtr; } // exceptionObject is the pointer to the _Unwind_Exception within the // __cxa_exception. The throw object is after this return ((char*)exceptionObject + sizeof(_Unwind_Exception)); } /** * ABI function called when exiting a catch block. This will free the current * exception if it is no longer referenced in other catch blocks. */ extern "C" void __cxa_end_catch() { // We can call the fast version here because the slow version is called in // __cxa_throw(), which must have been called before we end a catch block __cxa_eh_globals *globals = __cxa_get_globals_fast(); __cxa_exception *ex = globals->caughtExceptions; assert(0 != ex && "Ending catch when no exception is on the stack!"); bool deleteException = true; if (ex->handlerCount < 0) { // exception was rethrown. Exception should not be deleted even if // handlerCount become zero. // Code pattern: // try { // throw x; // } // catch() { // { // throw; // } // cleanup { // __cxa_end_catch(); <- we are here // } // } // ex->handlerCount++; deleteException = false; } else { ex->handlerCount--; } if (ex->handlerCount == 0) { globals->caughtExceptions = ex->nextException; if (deleteException) { // __cxa_free_exception() expects to be passed the thrown object, which // immediately follows the exception, not the exception itself __cxa_free_exception(ex+1); } } } /** * ABI function. Returns the type of the current exception. */ extern "C" std::type_info *__cxa_current_exception_type() { __cxa_eh_globals *globals = __cxa_get_globals(); __cxa_exception *ex = globals->caughtExceptions; return ex ? ex->exceptionType : 0; } /** * ABI function, called when an exception specification is violated. * * This function does not return. */ extern "C" void __cxa_call_unexpected(void*exception) { _Unwind_Exception *exceptionObject = (_Unwind_Exception*)exception; if (exceptionObject->exception_class == exception_class) { __cxa_exception *ex = (__cxa_exception*) ((char*)exceptionObject - offsetof(struct __cxa_exception, unwindHeader)); if (ex->unexpectedHandler) { ex->unexpectedHandler(); // Should not be reached. abort(); } } std::unexpected(); // Should not be reached. abort(); } /** * ABI function, returns the adjusted pointer to the exception object. */ extern "C" void *__cxa_get_exception_ptr(void *exceptionObject) { return ((__cxa_exception*)((char*)exceptionObject - offsetof(struct __cxa_exception, unwindHeader)))->adjustedPtr; } static bool thread_local_handlers = false; namespace pathscale { void set_use_thread_local_handlers(bool flag) { thread_local_handlers = flag; } unexpected_handler set_unexpected(unexpected_handler f) throw() { static __cxa_thread_info *info = thread_info(); unexpected_handler old = info->unexpectedHandler; info->unexpectedHandler = f; return old; } terminate_handler set_terminate(terminate_handler f) throw() { static __cxa_thread_info *info = thread_info(); terminate_handler old = info->terminateHandler; info->terminateHandler = f; return old; } } namespace std { unexpected_handler set_unexpected(unexpected_handler f) throw() { if (thread_local_handlers) { return pathscale::set_unexpected(f); } return __sync_lock_test_and_set(&unexpectedHandler, f); } terminate_handler set_terminate(terminate_handler f) throw() { if (thread_local_handlers) { return pathscale::set_terminate(f); } return __sync_lock_test_and_set(&terminateHandler, f); } void terminate() { static __cxa_thread_info *info = thread_info_fast(); if (0 != info && 0 != info->terminateHandler) { info->terminateHandler(); // Should not be reached - a terminate handler is not expected to // return. abort(); } terminateHandler(); } void unexpected() { static __cxa_thread_info *info = thread_info_fast(); if (0 != info && 0 != info->unexpectedHandler) { info->unexpectedHandler(); // Should not be reached - a terminate handler is not expected to // return. abort(); } unexpectedHandler(); } bool uncaught_exception() throw() { __cxa_thread_info *info = thread_info(); return info->globals.uncaughtExceptions != 0; } }