summaryrefslogtreecommitdiff
path: root/include/llvm/ADT/SmallVector.h
diff options
context:
space:
mode:
authorJim Grosbach <grosbach@apple.com>2010-06-02 17:45:54 +0000
committerJim Grosbach <grosbach@apple.com>2010-06-02 17:45:54 +0000
commit63ef367954c0981ec221f183fc0808ba21cb678d (patch)
tree200c16bb51a5bb127fc047ac0a337cd65a3fc4c0 /include/llvm/ADT/SmallVector.h
parentb9abe9f2ad213a1510c23525721d317ec44ee97f (diff)
downloadllvm-63ef367954c0981ec221f183fc0808ba21cb678d.tar.gz
llvm-63ef367954c0981ec221f183fc0808ba21cb678d.tar.bz2
llvm-63ef367954c0981ec221f183fc0808ba21cb678d.tar.xz
remove trailing whitespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105333 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include/llvm/ADT/SmallVector.h')
-rw-r--r--include/llvm/ADT/SmallVector.h150
1 files changed, 75 insertions, 75 deletions
diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h
index 18c8619bf9..0f0aedb608 100644
--- a/include/llvm/ADT/SmallVector.h
+++ b/include/llvm/ADT/SmallVector.h
@@ -70,35 +70,35 @@ protected:
#endif
} FirstEl;
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
-
+
protected:
SmallVectorBase(size_t Size)
: BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
-
+
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const {
return BeginX == static_cast<const void*>(&FirstEl);
}
-
+
/// size_in_bytes - This returns size()*sizeof(T).
size_t size_in_bytes() const {
return size_t((char*)EndX - (char*)BeginX);
}
-
+
/// capacity_in_bytes - This returns capacity()*sizeof(T).
size_t capacity_in_bytes() const {
return size_t((char*)CapacityX - (char*)BeginX);
}
-
+
/// grow_pod - This is an implementation of the grow() method which only works
/// on POD-like datatypes and is out of line to reduce code duplication.
void grow_pod(size_t MinSizeInBytes, size_t TSize);
-
+
public:
bool empty() const { return BeginX == EndX; }
};
-
+
template <typename T>
class SmallVectorTemplateCommon : public SmallVectorBase {
@@ -106,21 +106,21 @@ protected:
void setEnd(T *P) { this->EndX = P; }
public:
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
-
+
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T *iterator;
typedef const T *const_iterator;
-
+
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
-
+
typedef T &reference;
typedef const T &const_reference;
typedef T *pointer;
typedef const T *const_pointer;
-
+
// forward iterator creation methods.
iterator begin() { return (iterator)this->BeginX; }
const_iterator begin() const { return (const_iterator)this->BeginX; }
@@ -130,7 +130,7 @@ protected:
iterator capacity_ptr() { return (iterator)this->CapacityX; }
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public:
-
+
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
@@ -139,16 +139,16 @@ public:
size_type size() const { return end()-begin(); }
size_type max_size() const { return size_type(-1) / sizeof(T); }
-
+
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return capacity_ptr() - begin(); }
-
+
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() { return pointer(begin()); }
/// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const { return const_pointer(begin()); }
-
+
reference operator[](unsigned idx) {
assert(begin() + idx < end());
return begin()[idx];
@@ -172,7 +172,7 @@ public:
return end()[-1];
}
};
-
+
/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
/// implementations that are designed to work with non-POD-like T's.
template <typename T, bool isPodLike>
@@ -186,14 +186,14 @@ public:
E->~T();
}
}
-
+
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
std::uninitialized_copy(I, E, Dest);
}
-
+
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(size_t MinSize = 0);
@@ -208,33 +208,33 @@ void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
if (NewCapacity < MinSize)
NewCapacity = MinSize;
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
-
+
// Copy the elements over.
this->uninitialized_copy(this->begin(), this->end(), NewElts);
-
+
// Destroy the original elements.
destroy_range(this->begin(), this->end());
-
+
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(this->begin());
-
+
this->setEnd(NewElts+CurSize);
this->BeginX = NewElts;
this->CapacityX = this->begin()+NewCapacity;
}
-
-
+
+
/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
/// implementations that are designed to work with POD-like T's.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
-
+
// No need to do a destroy loop for POD's.
static void destroy_range(T *, T *) {}
-
+
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
@@ -259,8 +259,8 @@ public:
this->grow_pod(MinSize*sizeof(T), sizeof(T));
}
};
-
-
+
+
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
@@ -270,22 +270,22 @@ class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
public:
typedef typename SuperClass::iterator iterator;
typedef typename SuperClass::size_type size_type;
-
+
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
-
+
~SmallVectorImpl() {
// Destroy the constructed elements in the vector.
this->destroy_range(this->begin(), this->end());
-
+
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(this->begin());
}
-
-
+
+
void clear() {
this->destroy_range(this->begin(), this->end());
this->EndX = this->BeginX;
@@ -319,7 +319,7 @@ public:
if (this->capacity() < N)
this->grow(N);
}
-
+
void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
@@ -330,21 +330,21 @@ public:
this->grow();
goto Retry;
}
-
+
void pop_back() {
this->setEnd(this->end()-1);
this->end()->~T();
}
-
+
T pop_back_val() {
T Result = this->back();
pop_back();
return Result;
}
-
-
+
+
void swap(SmallVectorImpl &RHS);
-
+
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
@@ -353,26 +353,26 @@ public:
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
-
+
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, this->end());
this->setEnd(this->end() + NumInputs);
}
-
+
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(this->size()+NumInputs);
-
+
// Copy the new elements over.
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
this->setEnd(this->end() + NumInputs);
}
-
+
void assign(unsigned NumElts, const T &Elt) {
clear();
if (this->capacity() < NumElts)
@@ -380,7 +380,7 @@ public:
this->setEnd(this->begin()+NumElts);
construct_range(this->begin(), this->end(), Elt);
}
-
+
iterator erase(iterator I) {
iterator N = I;
// Shift all elts down one.
@@ -389,7 +389,7 @@ public:
pop_back();
return(N);
}
-
+
iterator erase(iterator S, iterator E) {
iterator N = S;
// Shift all elts down.
@@ -399,13 +399,13 @@ public:
this->setEnd(I);
return(N);
}
-
+
iterator insert(iterator I, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
push_back(Elt);
return this->end()-1;
}
-
+
if (this->EndX < this->CapacityX) {
Retry:
new (this->end()) T(this->back());
@@ -420,22 +420,22 @@ public:
I = this->begin()+EltNo;
goto Retry;
}
-
+
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt);
return this->end()-1;
}
-
+
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
-
+
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
-
+
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
-
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
@@ -443,48 +443,48 @@ public:
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
-
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::fill_n(I, NumToInsert, Elt);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-
+
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
-
+
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
-
+
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
if (I == this->end()) { // Important special case for empty vector.
append(From, To);
return this->end()-1;
}
-
+
size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
-
+
// Ensure there is enough space.
reserve(static_cast<unsigned>(this->size() + NumToInsert));
-
+
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
-
+
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
@@ -492,37 +492,37 @@ public:
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
-
+
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
-
+
std::copy(From, To, I);
return I;
}
-
+
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
-
+
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
-
+
// Replace the overwritten part.
for (; NumOverwritten > 0; --NumOverwritten) {
*I = *From;
++I; ++From;
}
-
+
// Insert the non-overwritten middle part.
this->uninitialized_copy(From, To, OldEnd);
return I;
}
-
+
const SmallVectorImpl
&operator=(const SmallVectorImpl &RHS);
-
+
bool operator==(const SmallVectorImpl &RHS) const {
if (this->size() != RHS.size()) return false;
return std::equal(this->begin(), this->end(), RHS.begin());
@@ -530,12 +530,12 @@ public:
bool operator!=(const SmallVectorImpl &RHS) const {
return !(*this == RHS);
}
-
+
bool operator<(const SmallVectorImpl &RHS) const {
return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end());
}
-
+
/// set_size - Set the array size to \arg N, which the current array must have
/// enough capacity for.
///
@@ -549,14 +549,14 @@ public:
assert(N <= this->capacity());
this->setEnd(this->begin() + N);
}
-
+
private:
static void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
};
-
+
template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {