summaryrefslogtreecommitdiff
path: root/lib/Analysis/BranchProbabilityInfo.cpp
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2011-10-24 12:01:08 +0000
committerChandler Carruth <chandlerc@gmail.com>2011-10-24 12:01:08 +0000
commitde1c9bb45017e25b5fc2b77e15d3c377f6572075 (patch)
tree1b10995e8f3cd2b147e48b0533e942fa7278d2fd /lib/Analysis/BranchProbabilityInfo.cpp
parentaa337b7cd556a4e3929cf3944b809aae92f88e64 (diff)
downloadllvm-de1c9bb45017e25b5fc2b77e15d3c377f6572075.tar.gz
llvm-de1c9bb45017e25b5fc2b77e15d3c377f6572075.tar.bz2
llvm-de1c9bb45017e25b5fc2b77e15d3c377f6572075.tar.xz
Remove return heuristics from the static branch probabilities, and
introduce no-return or unreachable heuristics. The return heuristics from the Ball and Larus paper don't work well in practice as they pessimize early return paths. The only good hitrate return heuristics are those for: - NULL return - Constant return - negative integer return Only the last of these three can possibly require significant code for the returning block, and even the last is fairly rare and usually also a constant. As a consequence, even for the cold return paths, there is little code on that return path, and so little code density to be gained by sinking it. The places where sinking these blocks is valuable (inner loops) will already be weighted appropriately as the edge is a loop-exit branch. All of this aside, early returns are nearly as common as all three of these return categories, and should actually be predicted as taken! Rather than muddy the waters of the static predictions, just remain silent on returns and let the CFG itself dictate any layout or other issues. However, the return heuristic was flagging one very important case: unreachable. Unfortunately it still gave a 1/4 chance of the branch-to-unreachable occuring. It also didn't do a rigorous job of finding those blocks which post-dominate an unreachable block. This patch builds a more powerful analysis that should flag all branches to blocks known to then reach unreachable. It also has better worst-case runtime complexity by not looping through successors for each block. The previous code would perform an N^2 walk in the event of a single entry block branching to N successors with a switch where each successor falls through to the next and they finally fall through to a return. Test case added for noreturn heuristics. Also doxygen comments improved along the way. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142793 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/BranchProbabilityInfo.cpp')
-rw-r--r--lib/Analysis/BranchProbabilityInfo.cpp149
1 files changed, 76 insertions, 73 deletions
diff --git a/lib/Analysis/BranchProbabilityInfo.cpp b/lib/Analysis/BranchProbabilityInfo.cpp
index a03d9d85b8..0396f99f12 100644
--- a/lib/Analysis/BranchProbabilityInfo.cpp
+++ b/lib/Analysis/BranchProbabilityInfo.cpp
@@ -18,6 +18,7 @@
#include "llvm/Metadata.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
@@ -54,8 +55,18 @@ char BranchProbabilityInfo::ID = 0;
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
-static const uint32_t RH_TAKEN_WEIGHT = 24;
-static const uint32_t RH_NONTAKEN_WEIGHT = 8;
+/// \brief Unreachable-terminating branch taken weight.
+///
+/// This is the weight for a branch being taken to a block that terminates
+/// (eventually) in unreachable. These are predicted as unlikely as possible.
+static const uint32_t UR_TAKEN_WEIGHT = 1;
+
+/// \brief Unreachable-terminating branch not-taken weight.
+///
+/// This is the weight for a branch not being taken toward a block that
+/// terminates (eventually) in unreachable. Such a branch is essentially never
+/// taken.
+static const uint32_t UR_NONTAKEN_WEIGHT = 1023;
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
@@ -73,37 +84,61 @@ static const uint32_t NORMAL_WEIGHT = 16;
// Minimum weight of an edge. Please note, that weight is NEVER 0.
static const uint32_t MIN_WEIGHT = 1;
-// Return TRUE if BB leads directly to a Return Instruction.
-static bool isReturningBlock(BasicBlock *BB) {
- SmallPtrSet<BasicBlock *, 8> Visited;
-
- while (true) {
- TerminatorInst *TI = BB->getTerminator();
- if (isa<ReturnInst>(TI))
- return true;
+static uint32_t getMaxWeightFor(BasicBlock *BB) {
+ return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
+}
- if (TI->getNumSuccessors() > 1)
- break;
- // It is unreachable block which we can consider as a return instruction.
- if (TI->getNumSuccessors() == 0)
- return true;
+/// \brief Calculate edge weights for successors lead to unreachable.
+///
+/// Predict that a successor which leads necessarily to an
+/// unreachable-terminated block as extremely unlikely.
+bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
+ TerminatorInst *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 0) {
+ if (isa<UnreachableInst>(TI))
+ PostDominatedByUnreachable.insert(BB);
+ return false;
+ }
- Visited.insert(BB);
- BB = TI->getSuccessor(0);
+ SmallPtrSet<BasicBlock *, 4> UnreachableEdges;
+ SmallPtrSet<BasicBlock *, 4> ReachableEdges;
- // Stop if cycle is detected.
- if (Visited.count(BB))
- return false;
+ for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
+ if (PostDominatedByUnreachable.count(*I))
+ UnreachableEdges.insert(*I);
+ else
+ ReachableEdges.insert(*I);
}
- return false;
-}
+ // If all successors are in the set of blocks post-dominated by unreachable,
+ // this block is too.
+ if (UnreachableEdges.size() == TI->getNumSuccessors())
+ PostDominatedByUnreachable.insert(BB);
-static uint32_t getMaxWeightFor(BasicBlock *BB) {
- return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
-}
+ // Skip probabilities if this block has a single successor or if all were
+ // reachable.
+ if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
+ return false;
+ uint32_t UnreachableWeight =
+ std::max(UR_TAKEN_WEIGHT / UnreachableEdges.size(), MIN_WEIGHT);
+ for (SmallPtrSet<BasicBlock *, 4>::iterator I = UnreachableEdges.begin(),
+ E = UnreachableEdges.end();
+ I != E; ++I)
+ setEdgeWeight(BB, *I, UnreachableWeight);
+
+ if (ReachableEdges.empty())
+ return true;
+ uint32_t ReachableWeight =
+ std::max(UR_NONTAKEN_WEIGHT / ReachableEdges.size(), NORMAL_WEIGHT);
+ for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReachableEdges.begin(),
+ E = ReachableEdges.end();
+ I != E; ++I)
+ setEdgeWeight(BB, *I, ReachableWeight);
+
+ return true;
+}
// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing.
@@ -143,46 +178,6 @@ bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
return true;
}
-// Calculate Edge Weights using "Return Heuristics". Predict a successor which
-// leads directly to Return Instruction will not be taken.
-bool BranchProbabilityInfo::calcReturnHeuristics(BasicBlock *BB){
- if (BB->getTerminator()->getNumSuccessors() == 1)
- return false;
-
- SmallPtrSet<BasicBlock *, 4> ReturningEdges;
- SmallPtrSet<BasicBlock *, 4> StayEdges;
-
- for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
- BasicBlock *Succ = *I;
- if (isReturningBlock(Succ))
- ReturningEdges.insert(Succ);
- else
- StayEdges.insert(Succ);
- }
-
- if (uint32_t numStayEdges = StayEdges.size()) {
- uint32_t stayWeight = RH_TAKEN_WEIGHT / numStayEdges;
- if (stayWeight < NORMAL_WEIGHT)
- stayWeight = NORMAL_WEIGHT;
-
- for (SmallPtrSet<BasicBlock *, 4>::iterator I = StayEdges.begin(),
- E = StayEdges.end(); I != E; ++I)
- setEdgeWeight(BB, *I, stayWeight);
- }
-
- if (uint32_t numRetEdges = ReturningEdges.size()) {
- uint32_t retWeight = RH_NONTAKEN_WEIGHT / numRetEdges;
- if (retWeight < MIN_WEIGHT)
- retWeight = MIN_WEIGHT;
- for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReturningEdges.begin(),
- E = ReturningEdges.end(); I != E; ++I) {
- setEdgeWeight(BB, *I, retWeight);
- }
- }
-
- return ReturningEdges.size() > 0;
-}
-
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
@@ -390,20 +385,28 @@ void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
bool BranchProbabilityInfo::runOnFunction(Function &F) {
LastF = &F; // Store the last function we ran on for printing.
LI = &getAnalysis<LoopInfo>();
-
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- if (calcMetadataWeights(I))
+ assert(PostDominatedByUnreachable.empty());
+
+ // Walk the basic blocks in post-order so that we can build up state about
+ // the successors of a block iteratively.
+ for (po_iterator<BasicBlock *> I = po_begin(&F.getEntryBlock()),
+ E = po_end(&F.getEntryBlock());
+ I != E; ++I) {
+ DEBUG(dbgs() << "Computing probabilities for " << I->getName() << "\n");
+ if (calcUnreachableHeuristics(*I))
continue;
- if (calcLoopBranchHeuristics(I))
+ if (calcMetadataWeights(*I))
continue;
- if (calcReturnHeuristics(I))
+ if (calcLoopBranchHeuristics(*I))
continue;
- if (calcPointerHeuristics(I))
+ if (calcPointerHeuristics(*I))
continue;
- if (calcZeroHeuristics(I))
+ if (calcZeroHeuristics(*I))
continue;
- calcFloatingPointHeuristics(I);
+ calcFloatingPointHeuristics(*I);
}
+
+ PostDominatedByUnreachable.clear();
return false;
}