summaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
authorSebastian Pop <spop@codeaurora.org>2013-11-12 22:47:20 +0000
committerSebastian Pop <spop@codeaurora.org>2013-11-12 22:47:20 +0000
commit5230ad61fd35d3006e7764c3152d28e2e68c288f (patch)
treed94a4ccc022bb23ad6d24274319f99a85d3ae404 /lib/Analysis/ScalarEvolution.cpp
parentb8fc659c8eb36796531d55fa78cbb1957895aa9b (diff)
downloadllvm-5230ad61fd35d3006e7764c3152d28e2e68c288f.tar.gz
llvm-5230ad61fd35d3006e7764c3152d28e2e68c288f.tar.bz2
llvm-5230ad61fd35d3006e7764c3152d28e2e68c288f.tar.xz
delinearization of arrays
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194527 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp471
1 files changed, 471 insertions, 0 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 37be5db7e6..9b2182f456 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -6677,7 +6677,478 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
return SE.getCouldNotCompute();
}
+static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
+ APInt A = C1->getValue()->getValue().abs();
+ APInt B = C2->getValue()->getValue().abs();
+ uint32_t ABW = A.getBitWidth();
+ uint32_t BBW = B.getBitWidth();
+ if (ABW > BBW)
+ B.zext(ABW);
+ else if (ABW < BBW)
+ A.zext(BBW);
+
+ return APIntOps::GreatestCommonDivisor(A, B);
+}
+
+static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
+ APInt A = C1->getValue()->getValue();
+ APInt B = C2->getValue()->getValue();
+ uint32_t ABW = A.getBitWidth();
+ uint32_t BBW = B.getBitWidth();
+
+ if (ABW > BBW)
+ B.sext(ABW);
+ else if (ABW < BBW)
+ A.sext(BBW);
+
+ return APIntOps::srem(A, B);
+}
+
+static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
+ APInt A = C1->getValue()->getValue();
+ APInt B = C2->getValue()->getValue();
+ uint32_t ABW = A.getBitWidth();
+ uint32_t BBW = B.getBitWidth();
+
+ if (ABW > BBW)
+ B.sext(ABW);
+ else if (ABW < BBW)
+ A.sext(BBW);
+
+ return APIntOps::sdiv(A, B);
+}
+
+namespace {
+struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
+public:
+ // Pattern match Step into Start. When Step is a multiply expression, find
+ // the largest subexpression of Step that appears in Start. When Start is an
+ // add expression, try to match Step in the subexpressions of Start, non
+ // matching subexpressions are returned under Remainder.
+ static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
+ const SCEV *Step, const SCEV **Remainder) {
+ assert(Remainder && "Remainder should not be NULL");
+ SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
+ const SCEV *Res = R.visit(Start);
+ *Remainder = R.Remainder;
+ return Res;
+ }
+
+ SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
+ : SE(S), GCD(G), Remainder(R) {
+ Zero = SE.getConstant(GCD->getType(), 0);
+ One = SE.getConstant(GCD->getType(), 1);
+ }
+
+ const SCEV *visitConstant(const SCEVConstant *Constant) {
+ if (GCD == Constant || Constant == Zero)
+ return GCD;
+
+ if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
+ const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
+ if (Res != One)
+ return Res;
+
+ Remainder = SE.getConstant(srem(Constant, CGCD));
+ Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
+ Res = SE.getConstant(gcd(Constant, CGCD));
+ return Res;
+ }
+
+ // When GCD is not a constant, it could be that the GCD is an Add, Mul,
+ // AddRec, etc., in which case we want to find out how many times the
+ // Constant divides the GCD: we then return that as the new GCD.
+ const SCEV *Rem = Zero;
+ const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
+
+ if (Res == One || Rem != Zero) {
+ Remainder = Constant;
+ return One;
+ }
+
+ assert(isa<SCEVConstant>(Res) && "Res should be a constant");
+ Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
+ return Res;
+ }
+
+ const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
+ if (GCD == Expr)
+ return GCD;
+
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+ const SCEV *Rem = Zero;
+ const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
+
+ // FIXME: There may be ambiguous situations: for instance,
+ // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
+ // The order in which the AddExpr is traversed computes a different GCD
+ // and Remainder.
+ if (Res != One)
+ GCD = Res;
+ if (Rem != Zero)
+ Remainder = SE.getAddExpr(Remainder, Rem);
+ }
+
+ return GCD;
+ }
+
+ const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
+ if (GCD == Expr)
+ return GCD;
+
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+ if (Expr->getOperand(i) == GCD)
+ return GCD;
+ }
+
+ // If we have not returned yet, it means that GCD is not part of Expr.
+ const SCEV *PartialGCD = One;
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+ const SCEV *Rem = Zero;
+ const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
+ if (Rem != Zero)
+ // GCD does not divide Expr->getOperand(i).
+ continue;
+
+ if (Res == GCD)
+ return GCD;
+ PartialGCD = SE.getMulExpr(PartialGCD, Res);
+ if (PartialGCD == GCD)
+ return GCD;
+ }
+
+ if (PartialGCD != One)
+ return PartialGCD;
+
+ Remainder = Expr;
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
+ if (!Mul)
+ return PartialGCD;
+
+ // When the GCD is a multiply expression, try to decompose it:
+ // this occurs when Step does not divide the Start expression
+ // as in: {(-4 + (3 * %m)),+,(2 * %m)}
+ for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
+ const SCEV *Rem = Zero;
+ const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
+ if (Rem == Zero) {
+ Remainder = Rem;
+ return Res;
+ }
+ }
+
+ return PartialGCD;
+ }
+
+ const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ if (GCD == Expr)
+ return GCD;
+
+ if (!Expr->isAffine()) {
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *Rem = Zero;
+ const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
+ if (Rem != Zero)
+ Remainder = SE.getAddExpr(Remainder, Rem);
+
+ Rem = Zero;
+ Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
+ if (Rem != Zero) {
+ Remainder = Expr;
+ return GCD;
+ }
+
+ return Res;
+ }
+
+ const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ if (GCD != Expr)
+ Remainder = Expr;
+ return GCD;
+ }
+
+ const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
+ return One;
+ }
+
+private:
+ ScalarEvolution &SE;
+ const SCEV *GCD, *Remainder, *Zero, *One;
+};
+
+struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
+public:
+ // Remove from Start all multiples of Step.
+ static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
+ const SCEV *Step) {
+ SCEVDivision D(SE, Step);
+ const SCEV *Rem = D.Zero;
+ (void)Rem;
+ // The division is guaranteed to succeed: Step should divide Start with no
+ // remainder.
+ assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
+ "Step should divide Start with no remainder.");
+ return D.visit(Start);
+ }
+
+ SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
+ Zero = SE.getConstant(GCD->getType(), 0);
+ One = SE.getConstant(GCD->getType(), 1);
+ }
+
+ const SCEV *visitConstant(const SCEVConstant *Constant) {
+ if (GCD == Constant)
+ return One;
+
+ if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
+ return SE.getConstant(sdiv(Constant, CGCD));
+ return Constant;
+ }
+
+ const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+
+ SmallVector<const SCEV *, 2> Operands;
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
+ Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
+
+ if (Operands.size() == 1)
+ return Operands[0];
+ return SE.getAddExpr(Operands);
+ }
+
+ const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+
+ bool FoundGCDTerm = false;
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
+ if (Expr->getOperand(i) == GCD)
+ FoundGCDTerm = true;
+
+ SmallVector<const SCEV *, 2> Operands;
+ if (FoundGCDTerm) {
+ FoundGCDTerm = false;
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+ if (FoundGCDTerm)
+ Operands.push_back(Expr->getOperand(i));
+ else if (Expr->getOperand(i) == GCD)
+ FoundGCDTerm = true;
+ else
+ Operands.push_back(Expr->getOperand(i));
+ }
+ } else {
+ FoundGCDTerm = false;
+ const SCEV *PartialGCD = One;
+ for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
+ if (PartialGCD == GCD) {
+ Operands.push_back(Expr->getOperand(i));
+ continue;
+ }
+
+ const SCEV *Rem = Zero;
+ const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
+ if (Rem == Zero) {
+ PartialGCD = SE.getMulExpr(PartialGCD, Res);
+ Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
+ } else {
+ Operands.push_back(Expr->getOperand(i));
+ }
+ }
+ }
+
+ if (Operands.size() == 1)
+ return Operands[0];
+ return SE.getMulExpr(Operands);
+ }
+
+ const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+
+ assert(Expr->isAffine() && "Expr should be affine");
+
+ const SCEV *Start = divide(SE, Expr->getStart(), GCD);
+ const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
+
+ return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
+ Expr->getNoWrapFlags());
+ }
+
+ const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitUnknown(const SCEVUnknown *Expr) {
+ if (GCD == Expr)
+ return One;
+ return Expr;
+ }
+
+ const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
+ return Expr;
+ }
+
+private:
+ ScalarEvolution &SE;
+ const SCEV *GCD, *Zero, *One;
+};
+}
+
+/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
+/// sizes of an array access. Returns the remainder of the delinearization that
+/// is the offset start of the array. For example
+/// delinearize ({(((-4 + (3 * %m)))),+,(%m)}<%for.i>) {
+/// IV: {0,+,1}<%for.i>
+/// Start: -4 + (3 * %m)
+/// Step: %m
+/// SCEVUDiv (Start, Step) = 3 remainder -4
+/// rem = delinearize (3) = 3
+/// Subscripts.push_back(IV + rem)
+/// Sizes.push_back(Step)
+/// return remainder -4
+/// }
+/// When delinearize fails, it returns the SCEV unchanged.
+const SCEV *
+SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
+ SmallVectorImpl<const SCEV *> &Subscripts,
+ SmallVectorImpl<const SCEV *> &Sizes) const {
+ if (!this->isAffine())
+ return this;
+
+ const SCEV *Start = this->getStart();
+ const SCEV *Step = this->getStepRecurrence(SE);
+ const SCEV *Zero = SE.getConstant(this->getType(), 0);
+ const SCEV *One = SE.getConstant(this->getType(), 1);
+ const SCEV *IV =
+ SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
+
+ DEBUG(dbgs() << "(delinearize: " << *this << "\n");
+
+ if (Step == One) {
+ DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
+ return this;
+ }
+
+ const SCEV *Remainder = NULL;
+ const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
+
+ DEBUG(dbgs() << "GCD: " << *GCD << "\n");
+ DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
+
+ if (GCD == One) {
+ DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
+ return this;
+ }
+
+ const SCEV *Quotient =
+ SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
+ DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
+
+ const SCEV *Rem;
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
+ Rem = AR->delinearize(SE, Subscripts, Sizes);
+ else
+ Rem = Quotient;
+
+ if (Step != GCD) {
+ Step = SCEVDivision::divide(SE, Step, GCD);
+ IV = SE.getMulExpr(IV, Step);
+ }
+ const SCEV *Index = SE.getAddExpr(IV, Rem);
+
+ Subscripts.push_back(Index);
+ Sizes.push_back(GCD);
+
+#ifndef NDEBUG
+ int Size = Sizes.size();
+ DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
+ DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
+ for (int i = 0; i < Size - 1; i++)
+ DEBUG(dbgs() << "[" << *Sizes[i] << "]");
+ DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
+
+ DEBUG(dbgs() << "ArrayRef");
+ for (int i = 0; i < Size; i++)
+ DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
+ DEBUG(dbgs() << "\n)\n");
+#endif
+
+ return Remainder;
+}
//===----------------------------------------------------------------------===//
// SCEVCallbackVH Class Implementation