summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegisterCoalescer.cpp
diff options
context:
space:
mode:
authorRafael Espindola <rafael.espindola@gmail.com>2012-10-16 19:34:06 +0000
committerRafael Espindola <rafael.espindola@gmail.com>2012-10-16 19:34:06 +0000
commit6f7cccd2e28bf544609ee8fdbfac4a24e9f37ff6 (patch)
tree4fe49b412b36f16066ba55cb9246183fd9417a16 /lib/CodeGen/RegisterCoalescer.cpp
parent761fbec9c2ace70c12cf41f5d0e97c42a303eeb9 (diff)
downloadllvm-6f7cccd2e28bf544609ee8fdbfac4a24e9f37ff6.tar.gz
llvm-6f7cccd2e28bf544609ee8fdbfac4a24e9f37ff6.tar.bz2
llvm-6f7cccd2e28bf544609ee8fdbfac4a24e9f37ff6.tar.xz
Switch back to the old coalescer for now to fix the 32 bit bit
llvm+clang+compiler-rt bootstrap. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166046 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/RegisterCoalescer.cpp')
-rw-r--r--lib/CodeGen/RegisterCoalescer.cpp345
1 files changed, 344 insertions, 1 deletions
diff --git a/lib/CodeGen/RegisterCoalescer.cpp b/lib/CodeGen/RegisterCoalescer.cpp
index ba6b4569a8..bbae204c1e 100644
--- a/lib/CodeGen/RegisterCoalescer.cpp
+++ b/lib/CodeGen/RegisterCoalescer.cpp
@@ -68,6 +68,11 @@ VerifyCoalescing("verify-coalescing",
cl::desc("Verify machine instrs before and after register coalescing"),
cl::Hidden);
+// Temporary option for testing new coalescer algo.
+static cl::opt<bool>
+NewCoalescer("new-coalescer", cl::Hidden, cl::init(false),
+ cl::desc("Use new coalescer algorithm"));
+
namespace {
class RegisterCoalescer : public MachineFunctionPass,
private LiveRangeEdit::Delegate {
@@ -1877,10 +1882,348 @@ bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
return true;
}
+/// ComputeUltimateVN - Assuming we are going to join two live intervals,
+/// compute what the resultant value numbers for each value in the input two
+/// ranges will be. This is complicated by copies between the two which can
+/// and will commonly cause multiple value numbers to be merged into one.
+///
+/// VN is the value number that we're trying to resolve. InstDefiningValue
+/// keeps track of the new InstDefiningValue assignment for the result
+/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
+/// whether a value in this or other is a copy from the opposite set.
+/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
+/// already been assigned.
+///
+/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
+/// contains the value number the copy is from.
+///
+static unsigned ComputeUltimateVN(VNInfo *VNI,
+ SmallVector<VNInfo*, 16> &NewVNInfo,
+ DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
+ DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
+ SmallVector<int, 16> &ThisValNoAssignments,
+ SmallVector<int, 16> &OtherValNoAssignments) {
+ unsigned VN = VNI->id;
+
+ // If the VN has already been computed, just return it.
+ if (ThisValNoAssignments[VN] >= 0)
+ return ThisValNoAssignments[VN];
+ assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
+
+ // If this val is not a copy from the other val, then it must be a new value
+ // number in the destination.
+ DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
+ if (I == ThisFromOther.end()) {
+ NewVNInfo.push_back(VNI);
+ return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
+ }
+ VNInfo *OtherValNo = I->second;
+
+ // Otherwise, this *is* a copy from the RHS. If the other side has already
+ // been computed, return it.
+ if (OtherValNoAssignments[OtherValNo->id] >= 0)
+ return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
+
+ // Mark this value number as currently being computed, then ask what the
+ // ultimate value # of the other value is.
+ ThisValNoAssignments[VN] = -2;
+ unsigned UltimateVN =
+ ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
+ OtherValNoAssignments, ThisValNoAssignments);
+ return ThisValNoAssignments[VN] = UltimateVN;
+}
+
+
+// Find out if we have something like
+// A = X
+// B = X
+// if so, we can pretend this is actually
+// A = X
+// B = A
+// which allows us to coalesce A and B.
+// VNI is the definition of B. LR is the life range of A that includes
+// the slot just before B. If we return true, we add "B = X" to DupCopies.
+// This implies that A dominates B.
+static bool RegistersDefinedFromSameValue(LiveIntervals &li,
+ const TargetRegisterInfo &tri,
+ CoalescerPair &CP,
+ VNInfo *VNI,
+ VNInfo *OtherVNI,
+ SmallVector<MachineInstr*, 8> &DupCopies) {
+ // FIXME: This is very conservative. For example, we don't handle
+ // physical registers.
+
+ MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
+
+ if (!MI || CP.isPartial() || CP.isPhys())
+ return false;
+
+ unsigned A = CP.getDstReg();
+ if (!TargetRegisterInfo::isVirtualRegister(A))
+ return false;
+
+ unsigned B = CP.getSrcReg();
+ if (!TargetRegisterInfo::isVirtualRegister(B))
+ return false;
+
+ MachineInstr *OtherMI = li.getInstructionFromIndex(OtherVNI->def);
+ if (!OtherMI)
+ return false;
+
+ if (MI->isImplicitDef()) {
+ DupCopies.push_back(MI);
+ return true;
+ } else {
+ if (!MI->isFullCopy())
+ return false;
+ unsigned Src = MI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Src))
+ return false;
+ if (!OtherMI->isFullCopy())
+ return false;
+ unsigned OtherSrc = OtherMI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(OtherSrc))
+ return false;
+
+ if (Src != OtherSrc)
+ return false;
+
+ // If the copies use two different value numbers of X, we cannot merge
+ // A and B.
+ LiveInterval &SrcInt = li.getInterval(Src);
+ // getVNInfoBefore returns NULL for undef copies. In this case, the
+ // optimization is still safe.
+ if (SrcInt.getVNInfoBefore(OtherVNI->def) !=
+ SrcInt.getVNInfoBefore(VNI->def))
+ return false;
+
+ DupCopies.push_back(MI);
+ return true;
+ }
+}
+
/// joinIntervals - Attempt to join these two intervals. On failure, this
/// returns false.
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
- return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
+ // Handle physreg joins separately.
+ if (CP.isPhys())
+ return joinReservedPhysReg(CP);
+
+ if (NewCoalescer)
+ return joinVirtRegs(CP);
+
+ LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+ DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
+ << '\n');
+
+ // Compute the final value assignment, assuming that the live ranges can be
+ // coalesced.
+ SmallVector<int, 16> LHSValNoAssignments;
+ SmallVector<int, 16> RHSValNoAssignments;
+ DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
+ DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
+ SmallVector<VNInfo*, 16> NewVNInfo;
+
+ SmallVector<MachineInstr*, 8> DupCopies;
+ SmallVector<MachineInstr*, 8> DeadCopies;
+
+ LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
+ DEBUG(dbgs() << "\t\tLHS = " << PrintReg(CP.getDstReg(), TRI) << ' ' << LHS
+ << '\n');
+
+ // Loop over the value numbers of the LHS, seeing if any are defined from
+ // the RHS.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->isPHIDef())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
+ assert(MI && "Missing def");
+ if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
+ continue;
+
+ // Figure out the value # from the RHS.
+ VNInfo *OtherVNI = RHS.getVNInfoBefore(VNI->def);
+ // The copy could be to an aliased physreg.
+ if (!OtherVNI)
+ continue;
+
+ // DstReg is known to be a register in the LHS interval. If the src is
+ // from the RHS interval, we can use its value #.
+ if (CP.isCoalescable(MI))
+ DeadCopies.push_back(MI);
+ else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
+ DupCopies))
+ continue;
+
+ LHSValsDefinedFromRHS[VNI] = OtherVNI;
+ }
+
+ // Loop over the value numbers of the RHS, seeing if any are defined from
+ // the LHS.
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->isPHIDef())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
+ assert(MI && "Missing def");
+ if (!MI->isCopyLike() && !MI->isImplicitDef()) // Src not defined by a copy?
+ continue;
+
+ // Figure out the value # from the LHS.
+ VNInfo *OtherVNI = LHS.getVNInfoBefore(VNI->def);
+ // The copy could be to an aliased physreg.
+ if (!OtherVNI)
+ continue;
+
+ // DstReg is known to be a register in the RHS interval. If the src is
+ // from the LHS interval, we can use its value #.
+ if (CP.isCoalescable(MI))
+ DeadCopies.push_back(MI);
+ else if (!RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, OtherVNI,
+ DupCopies))
+ continue;
+
+ RHSValsDefinedFromLHS[VNI] = OtherVNI;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
+
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ ComputeUltimateVN(VNI, NewVNInfo,
+ LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
+ LHSValNoAssignments, RHSValNoAssignments);
+ }
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ // If this value number isn't a copy from the LHS, it's a new number.
+ if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
+ NewVNInfo.push_back(VNI);
+ RHSValNoAssignments[VN] = NewVNInfo.size()-1;
+ continue;
+ }
+
+ ComputeUltimateVN(VNI, NewVNInfo,
+ RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
+ RHSValNoAssignments, LHSValNoAssignments);
+ }
+
+ // Armed with the mappings of LHS/RHS values to ultimate values, walk the
+ // interval lists to see if these intervals are coalescable.
+ LiveInterval::const_iterator I = LHS.begin();
+ LiveInterval::const_iterator IE = LHS.end();
+ LiveInterval::const_iterator J = RHS.begin();
+ LiveInterval::const_iterator JE = RHS.end();
+
+ // Collect interval end points that will no longer be kills.
+ SmallVector<MachineInstr*, 8> LHSOldKills;
+ SmallVector<MachineInstr*, 8> RHSOldKills;
+
+ // Skip ahead until the first place of potential sharing.
+ if (I != IE && J != JE) {
+ if (I->start < J->start) {
+ I = std::upper_bound(I, IE, J->start);
+ if (I != LHS.begin()) --I;
+ } else if (J->start < I->start) {
+ J = std::upper_bound(J, JE, I->start);
+ if (J != RHS.begin()) --J;
+ }
+ }
+
+ while (I != IE && J != JE) {
+ // Determine if these two live ranges overlap.
+ // If so, check value # info to determine if they are really different.
+ if (I->end > J->start && J->end > I->start) {
+ // If the live range overlap will map to the same value number in the
+ // result liverange, we can still coalesce them. If not, we can't.
+ if (LHSValNoAssignments[I->valno->id] !=
+ RHSValNoAssignments[J->valno->id])
+ return false;
+
+ // Extended live ranges should no longer be killed.
+ if (!I->end.isBlock() && I->end < J->end)
+ if (MachineInstr *MI = LIS->getInstructionFromIndex(I->end))
+ LHSOldKills.push_back(MI);
+ if (!J->end.isBlock() && J->end < I->end)
+ if (MachineInstr *MI = LIS->getInstructionFromIndex(J->end))
+ RHSOldKills.push_back(MI);
+ }
+
+ if (I->end < J->end)
+ ++I;
+ else
+ ++J;
+ }
+
+ // Clear kill flags where live ranges are extended.
+ while (!LHSOldKills.empty())
+ LHSOldKills.pop_back_val()->clearRegisterKills(LHS.reg, TRI);
+ while (!RHSOldKills.empty())
+ RHSOldKills.pop_back_val()->clearRegisterKills(RHS.reg, TRI);
+
+ if (LHSValNoAssignments.empty())
+ LHSValNoAssignments.push_back(-1);
+ if (RHSValNoAssignments.empty())
+ RHSValNoAssignments.push_back(-1);
+
+ // Now erase all the redundant copies.
+ for (unsigned i = 0, e = DeadCopies.size(); i != e; ++i) {
+ MachineInstr *MI = DeadCopies[i];
+ if (!ErasedInstrs.insert(MI))
+ continue;
+ DEBUG(dbgs() << "\t\terased:\t" << LIS->getInstructionIndex(MI)
+ << '\t' << *MI);
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ }
+
+ SmallVector<unsigned, 8> SourceRegisters;
+ for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
+ E = DupCopies.end(); I != E; ++I) {
+ MachineInstr *MI = *I;
+ if (!ErasedInstrs.insert(MI))
+ continue;
+
+ // If MI is a copy, then we have pretended that the assignment to B in
+ // A = X
+ // B = X
+ // was actually a copy from A. Now that we decided to coalesce A and B,
+ // transform the code into
+ // A = X
+ // In the case of the implicit_def, we just have to remove it.
+ if (!MI->isImplicitDef()) {
+ unsigned Src = MI->getOperand(1).getReg();
+ SourceRegisters.push_back(Src);
+ }
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ }
+
+ // If B = X was the last use of X in a liverange, we have to shrink it now
+ // that B = X is gone.
+ for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
+ E = SourceRegisters.end(); I != E; ++I) {
+ LIS->shrinkToUses(&LIS->getInterval(*I));
+ }
+
+ // If we get here, we know that we can coalesce the live ranges. Ask the
+ // intervals to coalesce themselves now.
+ LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
+ MRI);
+ return true;
}
namespace {