summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARM.td
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2010-12-05 22:04:16 +0000
committerEvan Cheng <evan.cheng@apple.com>2010-12-05 22:04:16 +0000
commit48575f6ea7d5cd21ab29ca370f58fcf9ca31400b (patch)
treefd7f84a4921afa7c4baac36c5772ae688f4f31da /lib/Target/ARM/ARM.td
parent0a3fdd6e11cd351737b4451c05ec5d794e6855cf (diff)
downloadllvm-48575f6ea7d5cd21ab29ca370f58fcf9ca31400b.tar.gz
llvm-48575f6ea7d5cd21ab29ca370f58fcf9ca31400b.tar.bz2
llvm-48575f6ea7d5cd21ab29ca370f58fcf9ca31400b.tar.xz
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/ARM/ARM.td')
-rw-r--r--lib/Target/ARM/ARM.td26
1 files changed, 13 insertions, 13 deletions
diff --git a/lib/Target/ARM/ARM.td b/lib/Target/ARM/ARM.td
index a99dbfbd64..35d3d1ed66 100644
--- a/lib/Target/ARM/ARM.td
+++ b/lib/Target/ARM/ARM.td
@@ -46,14 +46,11 @@ def FeatureSlowFPBrcc : SubtargetFeature<"slow-fp-brcc", "SlowFPBrcc", "true",
def FeatureVFPOnlySP : SubtargetFeature<"fp-only-sp", "FPOnlySP", "true",
"Floating point unit supports single precision only">;
-// Some processors have multiply-accumulate instructions that don't
-// play nicely with other VFP instructions, and it's generally better
+// Some processors have FP multiply-accumulate instructions that don't
+// play nicely with other VFP / NEON instructions, and it's generally better
// to just not use them.
-// FIXME: Currently, this is only flagged for Cortex-A8. It may be true for
-// others as well. We should do more benchmarking and confirm one way or
-// the other.
-def FeatureHasSlowVMLx : SubtargetFeature<"vmlx", "SlowVMLx", "true",
- "Disable VFP MAC instructions">;
+def FeatureHasSlowFPVMLx : SubtargetFeature<"slowfpvmlx", "SlowFPVMLx", "true",
+ "Disable VFP / NEON MAC instructions">;
// Some processors benefit from using NEON instructions for scalar
// single-precision FP operations.
def FeatureNEONForFP : SubtargetFeature<"neonfp", "UseNEONForSinglePrecisionFP",
@@ -150,26 +147,29 @@ def : ProcNoItin<"iwmmxt", [ArchV5TE]>;
// V6 Processors.
def : Processor<"arm1136j-s", ARMV6Itineraries, [ArchV6]>;
def : Processor<"arm1136jf-s", ARMV6Itineraries, [ArchV6, FeatureVFP2,
- FeatureHasSlowVMLx]>;
+ FeatureHasSlowFPVMLx]>;
def : Processor<"arm1176jz-s", ARMV6Itineraries, [ArchV6]>;
-def : Processor<"arm1176jzf-s", ARMV6Itineraries, [ArchV6, FeatureVFP2]>;
+def : Processor<"arm1176jzf-s", ARMV6Itineraries, [ArchV6, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
def : Processor<"mpcorenovfp", ARMV6Itineraries, [ArchV6]>;
-def : Processor<"mpcore", ARMV6Itineraries, [ArchV6, FeatureVFP2]>;
+def : Processor<"mpcore", ARMV6Itineraries, [ArchV6, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
// V6M Processors.
def : Processor<"cortex-m0", ARMV6Itineraries, [ArchV6M]>;
// V6T2 Processors.
def : Processor<"arm1156t2-s", ARMV6Itineraries, [ArchV6T2]>;
-def : Processor<"arm1156t2f-s", ARMV6Itineraries, [ArchV6T2, FeatureVFP2]>;
+def : Processor<"arm1156t2f-s", ARMV6Itineraries, [ArchV6T2, FeatureVFP2,
+ FeatureHasSlowFPVMLx]>;
// V7 Processors.
def : Processor<"cortex-a8", CortexA8Itineraries,
[ArchV7A, ProcA8,
- FeatureHasSlowVMLx, FeatureT2XtPk]>;
+ FeatureHasSlowFPVMLx, FeatureT2XtPk]>;
def : Processor<"cortex-a9", CortexA9Itineraries,
[ArchV7A, ProcA9,
- FeatureHasSlowVMLx, FeatureT2XtPk]>;
+ FeatureHasSlowFPVMLx, FeatureT2XtPk]>;
// V7M Processors.
def : ProcNoItin<"cortex-m3", [ArchV7M]>;