summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-08-11 00:11:25 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-08-11 00:11:25 +0000
commit0145881cb985b2165bbd1aded733e0183c50e63a (patch)
treeadbd9ed86103208915a91520b1d2dcf5ce64947a /lib/Target/PowerPC
parentc0f6420b96d88e67253a20a866236575dccbfd25 (diff)
downloadllvm-0145881cb985b2165bbd1aded733e0183c50e63a.tar.gz
llvm-0145881cb985b2165bbd1aded733e0183c50e63a.tar.bz2
llvm-0145881cb985b2165bbd1aded733e0183c50e63a.tar.xz
Breaking up the PowerPC target into 32- and 64-bit subparts, Part III: the rest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15636 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC')
-rw-r--r--lib/Target/PowerPC/PPC.h8
-rw-r--r--lib/Target/PowerPC/PPCJITInfo.h6
-rw-r--r--lib/Target/PowerPC/PPCTargetMachine.cpp95
-rw-r--r--lib/Target/PowerPC/PowerPCAsmPrinter.cpp735
-rw-r--r--lib/Target/PowerPC/PowerPCCodeEmitter.cpp100
-rw-r--r--lib/Target/PowerPC/PowerPCISelSimple.cpp3399
-rw-r--r--lib/Target/PowerPC/PowerPCInstrInfo.h4
-rw-r--r--lib/Target/PowerPC/PowerPCTargetMachine.h27
8 files changed, 26 insertions, 4348 deletions
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
index de4318dde2..cd0f1d7c34 100644
--- a/lib/Target/PowerPC/PPC.h
+++ b/lib/Target/PowerPC/PPC.h
@@ -15,19 +15,13 @@
#ifndef TARGET_POWERPC_H
#define TARGET_POWERPC_H
-#include <iosfwd>
-
namespace llvm {
class FunctionPass;
-class TargetMachine;
-// Here is where you would define factory methods for powerpc-specific
-// passes. For example:
-FunctionPass *createPPCSimpleInstructionSelector(TargetMachine &TM);
-FunctionPass *createPPCAsmPrinterPass(std::ostream &OS, TargetMachine &TM);
FunctionPass *createPowerPCPEI();
FunctionPass *createPPCBranchSelectionPass();
+
} // end namespace llvm;
// Defines symbolic names for PowerPC registers. This defines a mapping from
diff --git a/lib/Target/PowerPC/PPCJITInfo.h b/lib/Target/PowerPC/PPCJITInfo.h
index bd80851599..5c9bbb437c 100644
--- a/lib/Target/PowerPC/PPCJITInfo.h
+++ b/lib/Target/PowerPC/PPCJITInfo.h
@@ -11,16 +11,16 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPCJITINFO_H
-#define POWERPCJITINFO_H
+#ifndef POWERPC_JITINFO_H
+#define POWERPC_JITINFO_H
#include "llvm/Target/TargetJITInfo.h"
namespace llvm {
class TargetMachine;
- class IntrinsicLowering;
class PowerPCJITInfo : public TargetJITInfo {
+ protected:
TargetMachine &TM;
public:
PowerPCJITInfo(TargetMachine &tm) : TM(tm) {}
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
index 438fd07624..60ddcde57a 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -23,10 +23,12 @@
#include <iostream>
using namespace llvm;
-namespace {
- // Register the target.
- RegisterTarget<PowerPCTargetMachine> X("powerpc", " PowerPC (experimental)");
-}
+PowerPCTargetMachine::PowerPCTargetMachine(const std::string &name,
+ IntrinsicLowering *IL,
+ const TargetData &TD,
+ const TargetFrameInfo &TFI,
+ const PowerPCJITInfo &TJI)
+ : TargetMachine(name, IL, TD), FrameInfo(TFI), JITInfo(TJI) {}
unsigned PowerPCTargetMachine::getJITMatchQuality() {
#if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)
@@ -35,86 +37,17 @@ unsigned PowerPCTargetMachine::getJITMatchQuality() {
return 0;
#endif
}
-
-unsigned PowerPCTargetMachine::getModuleMatchQuality(const Module &M) {
- if (M.getEndianness() == Module::BigEndian &&
- M.getPointerSize() == Module::Pointer32)
- return 10; // Direct match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
- return getJITMatchQuality()/2;
+void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
+ assert(0 && "Cannot execute PowerPCJITInfo::addPassesToJITCompile()");
}
-
-/// PowerPCTargetMachine ctor - Create an ILP32 architecture model
-///
-PowerPCTargetMachine::PowerPCTargetMachine(const Module &M,
- IntrinsicLowering *IL)
- : TargetMachine("PowerPC", IL, false, 4, 4, 4, 4, 4, 4, 2, 1, 4),
- FrameInfo(TargetFrameInfo::StackGrowsDown, 16, -4), JITInfo(*this) {
+void PowerPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
+ assert(0 && "Cannot execute PowerPCJITInfo::replaceMachineCodeForFunction()");
}
-/// addPassesToEmitAssembly - Add passes to the specified pass manager
-/// to implement a static compiler for this target.
-///
-bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
- std::ostream &Out) {
- // FIXME: Implement efficient support for garbage collection intrinsics.
- PM.add(createLowerGCPass());
-
- // FIXME: Implement the invoke/unwind instructions!
- PM.add(createLowerInvokePass());
-
- // FIXME: Implement the switch instruction in the instruction selector!
- PM.add(createLowerSwitchPass());
-
- PM.add(createLowerConstantExpressionsPass());
-
- // Make sure that no unreachable blocks are instruction selected.
- PM.add(createUnreachableBlockEliminationPass());
-
- PM.add(createPPCSimpleInstructionSelector(*this));
-
- if (PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(&std::cerr));
-
- PM.add(createRegisterAllocator());
-
- if (PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(&std::cerr));
-
- // I want a PowerPC specific prolog/epilog code inserter so I can put the
- // fills/spills in the right spots.
- PM.add(createPowerPCPEI());
-
- // Must run branch selection immediately preceding the printer
- PM.add(createPPCBranchSelectionPass());
- PM.add(createPPCAsmPrinterPass(Out, *this));
- PM.add(createMachineCodeDeleter());
- return false;
-}
-
-/// addPassesToJITCompile - Add passes to the specified pass manager to
-/// implement a fast dynamic compiler for this target.
-///
-void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
- // FIXME: Implement efficient support for garbage collection intrinsics.
- PM.add(createLowerGCPass());
-
- // FIXME: Implement the invoke/unwind instructions!
- PM.add(createLowerInvokePass());
-
- // FIXME: Implement the switch instruction in the instruction selector!
- PM.add(createLowerSwitchPass());
-
- PM.add(createLowerConstantExpressionsPass());
-
- // Make sure that no unreachable blocks are instruction selected.
- PM.add(createUnreachableBlockEliminationPass());
-
- PM.add(createPPCSimpleInstructionSelector(TM));
- PM.add(createRegisterAllocator());
- PM.add(createPrologEpilogCodeInserter());
+void *PowerPCJITInfo::getJITStubForFunction(Function *F,
+ MachineCodeEmitter &MCE) {
+ assert(0 && "Cannot execute PowerPCJITInfo::getJITStubForFunction()");
+ return 0;
}
diff --git a/lib/Target/PowerPC/PowerPCAsmPrinter.cpp b/lib/Target/PowerPC/PowerPCAsmPrinter.cpp
deleted file mode 100644
index b52f055c8c..0000000000
--- a/lib/Target/PowerPC/PowerPCAsmPrinter.cpp
+++ /dev/null
@@ -1,735 +0,0 @@
-//===-- PowerPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a printer that converts from our internal representation
-// of machine-dependent LLVM code to PowerPC assembly language. This printer is
-// the output mechanism used by `llc'.
-//
-// Documentation at http://developer.apple.com/documentation/DeveloperTools/
-// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "asmprinter"
-#include "PowerPC.h"
-#include "PowerPCInstrInfo.h"
-#include "PowerPCTargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Mangler.h"
-#include "Support/CommandLine.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
-#include "Support/StringExtras.h"
-#include <set>
-
-namespace llvm {
-
-namespace {
- Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
-
- struct Printer : public MachineFunctionPass {
- /// Output stream on which we're printing assembly code.
- ///
- std::ostream &O;
-
- /// Target machine description which we query for reg. names, data
- /// layout, etc.
- ///
- PowerPCTargetMachine &TM;
-
- /// Name-mangler for global names.
- ///
- Mangler *Mang;
- std::set<std::string> FnStubs, GVStubs, LinkOnceStubs;
- std::set<std::string> Strings;
-
- Printer(std::ostream &o, TargetMachine &tm) : O(o),
- TM(reinterpret_cast<PowerPCTargetMachine&>(tm)), LabelNumber(0) {}
-
- /// Cache of mangled name for current function. This is
- /// recalculated at the beginning of each call to
- /// runOnMachineFunction().
- ///
- std::string CurrentFnName;
-
- /// Unique incrementer for label values for referencing Global values.
- ///
- unsigned LabelNumber;
-
- virtual const char *getPassName() const {
- return "PowerPC Assembly Printer";
- }
-
- void printMachineInstruction(const MachineInstr *MI);
- void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
- void printImmOp(const MachineOperand &MO, unsigned ArgType);
- void printConstantPool(MachineConstantPool *MCP);
- bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- bool doFinalization(Module &M);
- void emitGlobalConstant(const Constant* CV);
- void emitConstantValueOnly(const Constant *CV);
- };
-} // end of anonymous namespace
-
-/// createPPCAsmPrinterPass - Returns a pass that prints the PPC
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form or not.
-///
-FunctionPass *createPPCAsmPrinterPass(std::ostream &o,TargetMachine &tm) {
- return new Printer(o, tm);
-}
-
-/// isStringCompatible - Can we treat the specified array as a string?
-/// Only if it is an array of ubytes or non-negative sbytes.
-///
-static bool isStringCompatible(const ConstantArray *CVA) {
- const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
- if (ETy == Type::UByteTy) return true;
- if (ETy != Type::SByteTy) return false;
-
- for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
- if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
- return false;
-
- return true;
-}
-
-/// toOctal - Convert the low order bits of X into an octal digit.
-///
-static inline char toOctal(int X) {
- return (X&7)+'0';
-}
-
-/// getAsCString - Return the specified array as a C compatible
-/// string, only if the predicate isStringCompatible is true.
-///
-static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
- assert(isStringCompatible(CVA) && "Array is not string compatible!");
-
- O << "\"";
- for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
- unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
-
- if (C == '"') {
- O << "\\\"";
- } else if (C == '\\') {
- O << "\\\\";
- } else if (isprint(C)) {
- O << C;
- } else {
- switch (C) {
- case '\b': O << "\\b"; break;
- case '\f': O << "\\f"; break;
- case '\n': O << "\\n"; break;
- case '\r': O << "\\r"; break;
- case '\t': O << "\\t"; break;
- default:
- O << '\\';
- O << toOctal(C >> 6);
- O << toOctal(C >> 3);
- O << toOctal(C >> 0);
- break;
- }
- }
- }
- O << "\"";
-}
-
-// Print out the specified constant, without a storage class. Only the
-// constants valid in constant expressions can occur here.
-void Printer::emitConstantValueOnly(const Constant *CV) {
- if (CV->isNullValue())
- O << "0";
- else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
- assert(CB == ConstantBool::True);
- O << "1";
- } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
- O << CI->getValue();
- else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
- O << CI->getValue();
- else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- // This is a constant address for a global variable or function. Use the
- // name of the variable or function as the address value.
- O << Mang->getValueName(GV);
- else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- const TargetData &TD = TM.getTargetData();
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr: {
- // generate a symbolic expression for the byte address
- const Constant *ptrVal = CE->getOperand(0);
- std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
- if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
- O << "(";
- emitConstantValueOnly(ptrVal);
- O << ") + " << Offset;
- } else {
- emitConstantValueOnly(ptrVal);
- }
- break;
- }
- case Instruction::Cast: {
- // Support only non-converting or widening casts for now, that is, ones
- // that do not involve a change in value. This assertion is really gross,
- // and may not even be a complete check.
- Constant *Op = CE->getOperand(0);
- const Type *OpTy = Op->getType(), *Ty = CE->getType();
-
- // Remember, kids, pointers on x86 can be losslessly converted back and
- // forth into 32-bit or wider integers, regardless of signedness. :-P
- assert(((isa<PointerType>(OpTy)
- && (Ty == Type::LongTy || Ty == Type::ULongTy
- || Ty == Type::IntTy || Ty == Type::UIntTy))
- || (isa<PointerType>(Ty)
- && (OpTy == Type::LongTy || OpTy == Type::ULongTy
- || OpTy == Type::IntTy || OpTy == Type::UIntTy))
- || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
- && OpTy->isLosslesslyConvertibleTo(Ty))))
- && "FIXME: Don't yet support this kind of constant cast expr");
- O << "(";
- emitConstantValueOnly(Op);
- O << ")";
- break;
- }
- case Instruction::Add:
- O << "(";
- emitConstantValueOnly(CE->getOperand(0));
- O << ") + (";
- emitConstantValueOnly(CE->getOperand(1));
- O << ")";
- break;
- default:
- assert(0 && "Unsupported operator!");
- }
- } else {
- assert(0 && "Unknown constant value!");
- }
-}
-
-// Print a constant value or values, with the appropriate storage class as a
-// prefix.
-void Printer::emitGlobalConstant(const Constant *CV) {
- const TargetData &TD = TM.getTargetData();
-
- if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
- if (isStringCompatible(CVA)) {
- O << "\t.ascii ";
- printAsCString(O, CVA);
- O << "\n";
- } else { // Not a string. Print the values in successive locations
- for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
- emitGlobalConstant(CVA->getOperand(i));
- }
- return;
- } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
- // Print the fields in successive locations. Pad to align if needed!
- const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
- unsigned sizeSoFar = 0;
- for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
- const Constant* field = CVS->getOperand(i);
-
- // Check if padding is needed and insert one or more 0s.
- unsigned fieldSize = TD.getTypeSize(field->getType());
- unsigned padSize = ((i == e-1? cvsLayout->StructSize
- : cvsLayout->MemberOffsets[i+1])
- - cvsLayout->MemberOffsets[i]) - fieldSize;
- sizeSoFar += fieldSize + padSize;
-
- // Now print the actual field value
- emitGlobalConstant(field);
-
- // Insert the field padding unless it's zero bytes...
- if (padSize)
- O << "\t.space\t " << padSize << "\n";
- }
- assert(sizeSoFar == cvsLayout->StructSize &&
- "Layout of constant struct may be incorrect!");
- return;
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- // FP Constants are printed as integer constants to avoid losing
- // precision...
- double Val = CFP->getValue();
- switch (CFP->getType()->getTypeID()) {
- default: assert(0 && "Unknown floating point type!");
- case Type::FloatTyID: {
- union FU { // Abide by C TBAA rules
- float FVal;
- unsigned UVal;
- } U;
- U.FVal = Val;
- O << ".long\t" << U.UVal << "\t; float " << Val << "\n";
- return;
- }
- case Type::DoubleTyID: {
- union DU { // Abide by C TBAA rules
- double FVal;
- uint64_t UVal;
- struct {
- uint32_t MSWord;
- uint32_t LSWord;
- } T;
- } U;
- U.FVal = Val;
-
- O << ".long\t" << U.T.MSWord << "\t; double most significant word "
- << Val << "\n";
- O << ".long\t" << U.T.LSWord << "\t; double least significant word "
- << Val << "\n";
- return;
- }
- }
- } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- union DU { // Abide by C TBAA rules
- int64_t UVal;
- struct {
- uint32_t MSWord;
- uint32_t LSWord;
- } T;
- } U;
- U.UVal = CI->getRawValue();
-
- O << ".long\t" << U.T.MSWord << "\t; Double-word most significant word "
- << U.UVal << "\n";
- O << ".long\t" << U.T.LSWord << "\t; Double-word least significant word "
- << U.UVal << "\n";
- return;
- }
- }
-
- const Type *type = CV->getType();
- O << "\t";
- switch (type->getTypeID()) {
- case Type::UByteTyID: case Type::SByteTyID:
- O << ".byte";
- break;
- case Type::UShortTyID: case Type::ShortTyID:
- O << ".short";
- break;
- case Type::BoolTyID:
- case Type::PointerTyID:
- case Type::UIntTyID: case Type::IntTyID:
- O << ".long";
- break;
- case Type::ULongTyID: case Type::LongTyID:
- assert (0 && "Should have already output double-word constant.");
- case Type::FloatTyID: case Type::DoubleTyID:
- assert (0 && "Should have already output floating point constant.");
- default:
- if (CV == Constant::getNullValue(type)) { // Zero initializer?
- O << ".space\t" << TD.getTypeSize(type) << "\n";
- return;
- }
- std::cerr << "Can't handle printing: " << *CV;
- abort();
- break;
- }
- O << "\t";
- emitConstantValueOnly(CV);
- O << "\n";
-}
-
-/// printConstantPool - Print to the current output stream assembly
-/// representations of the constants in the constant pool MCP. This is
-/// used to print out constants which have been "spilled to memory" by
-/// the code generator.
-///
-void Printer::printConstantPool(MachineConstantPool *MCP) {
- const std::vector<Constant*> &CP = MCP->getConstants();
- const TargetData &TD = TM.getTargetData();
-
- if (CP.empty()) return;
-
- for (unsigned i = 0, e = CP.size(); i != e; ++i) {
- O << "\t.const\n";
- O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
- << "\n";
- O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
- << *CP[i] << "\n";
- emitGlobalConstant(CP[i]);
- }
-}
-
-/// runOnMachineFunction - This uses the printMachineInstruction()
-/// method to print assembly for each instruction.
-///
-bool Printer::runOnMachineFunction(MachineFunction &MF) {
- O << "\n\n";
- // What's my mangled name?
- CurrentFnName = Mang->getValueName(MF.getFunction());
-
- // Print out constants referenced by the function
- printConstantPool(MF.getConstantPool());
-
- // Print out labels for the function.
- O << "\t.text\n";
- O << "\t.globl\t" << CurrentFnName << "\n";
- O << "\t.align 2\n";
- O << CurrentFnName << ":\n";
-
- // Print out code for the function.
- for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
- I != E; ++I) {
- // Print a label for the basic block.
- O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; "
- << I->getBasicBlock()->getName() << "\n";
- for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
- II != E; ++II) {
- // Print the assembly for the instruction.
- O << "\t";
- printMachineInstruction(II);
- }
- }
- ++LabelNumber;
-
- // We didn't modify anything.
- return false;
-}
-
-void Printer::printOp(const MachineOperand &MO,
- bool elideOffsetKeyword /* = false */) {
- const MRegisterInfo &RI = *TM.getRegisterInfo();
- int new_symbol;
-
- switch (MO.getType()) {
- case MachineOperand::MO_VirtualRegister:
- if (Value *V = MO.getVRegValueOrNull()) {
- O << "<" << V->getName() << ">";
- return;
- }
- // FALLTHROUGH
- case MachineOperand::MO_MachineRegister:
- case MachineOperand::MO_CCRegister:
- O << LowercaseString(RI.get(MO.getReg()).Name);
- return;
-
- case MachineOperand::MO_SignExtendedImmed:
- case MachineOperand::MO_UnextendedImmed:
- std::cerr << "printOp() does not handle immediate values\n";
- abort();
- return;
-
- case MachineOperand::MO_PCRelativeDisp:
- std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
- abort();
- return;
-
- case MachineOperand::MO_MachineBasicBlock: {
- MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
- O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
- << "_" << MBBOp->getNumber() << "\t; "
- << MBBOp->getBasicBlock()->getName();
- return;
- }
-
- case MachineOperand::MO_ConstantPoolIndex:
- O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
- return;
-
- case MachineOperand::MO_ExternalSymbol:
- O << MO.getSymbolName();
- return;
-
- case MachineOperand::MO_GlobalAddress:
- if (!elideOffsetKeyword) {
- GlobalValue *GV = MO.getGlobal();
- std::string Name = Mang->getValueName(GV);
-
- // Dynamically-resolved functions need a stub for the function
- Function *F = dyn_cast<Function>(GV);
- if (F && F->isExternal() &&
- TM.CalledFunctions.find(F) != TM.CalledFunctions.end()) {
- FnStubs.insert(Name);
- O << "L" << Name << "$stub";
- return;
- }
-
- // External global variables need a non-lazily-resolved stub
- if (!GV->hasInternalLinkage() &&
- TM.AddressTaken.find(GV) != TM.AddressTaken.end()) {
- GVStubs.insert(Name);
- O << "L" << Name << "$non_lazy_ptr";
- return;
- }
-
- O << Mang->getValueName(GV);
- }
- return;
-
- default:
- O << "<unknown operand type: " << MO.getType() << ">";
- return;
- }
-}
-
-void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
- int Imm = MO.getImmedValue();
- if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
- O << (short)Imm;
- } else if (ArgType == PPCII::Zimm16) {
- O << (unsigned short)Imm;
- } else {
- O << Imm;
- }
-}
-
-/// printMachineInstruction -- Print out a single PPC LLVM instruction
-/// MI in Darwin syntax to the current output stream.
-///
-void Printer::printMachineInstruction(const MachineInstr *MI) {
- unsigned Opcode = MI->getOpcode();
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const TargetInstrDescriptor &Desc = TII.get(Opcode);
- unsigned i;
-
- unsigned ArgCount = MI->getNumOperands();
- unsigned ArgType[] = {
- (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
- (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
- (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
- (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
- (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
- };
- assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
- "Instruction requires VMX support");
- assert(((Desc.TSFlags & PPCII::PPC64) == 0) &&
- "Instruction requires 64 bit support");
- ++EmittedInsts;
-
- // CALLpcrel and CALLindirect are handled specially here to print only the
- // appropriate number of args that the assembler expects. This is because
- // may have many arguments appended to record the uses of registers that are
- // holding arguments to the called function.
- if (Opcode == PPC::COND_BRANCH) {
- std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
- abort();
- } else if (Opcode == PPC::IMPLICIT_DEF) {
- O << "; IMPLICIT DEF ";
- printOp(MI->getOperand(0));
- O << "\n";
- return;
- } else if (Opcode == PPC::CALLpcrel) {
- O << TII.getName(Opcode) << " ";
- printOp(MI->getOperand(0));
- O << "\n";
- return;
- } else if (Opcode == PPC::CALLindirect) {
- O << TII.getName(Opcode) << " ";
- printImmOp(MI->getOperand(0), ArgType[0]);
- O << ", ";
- printImmOp(MI->getOperand(1), ArgType[0]);
- O << "\n";
- return;
- } else if (Opcode == PPC::MovePCtoLR) {
- // FIXME: should probably be converted to cout.width and cout.fill
- O << "bl \"L0000" << LabelNumber << "$pb\"\n";
- O << "\"L0000" << LabelNumber << "$pb\":\n";
- O << "\tmflr ";
- printOp(MI->getOperand(0));
- O << "\n";
- return;
- }
-
- O << TII.getName(Opcode) << " ";
- if (Opcode == PPC::LOADLoDirect || Opcode == PPC::LOADLoIndirect) {
- printOp(MI->getOperand(0));
- O << ", lo16(";
- printOp(MI->getOperand(2));
- O << "-\"L0000" << LabelNumber << "$pb\")";
- O << "(";
- if (MI->getOperand(1).getReg() == PPC::R0)
- O << "0";
- else
- printOp(MI->getOperand(1));
- O << ")\n";
- } else if (Opcode == PPC::LOADHiAddr) {
- printOp(MI->getOperand(0));
- O << ", ";
- if (MI->getOperand(1).getReg() == PPC::R0)
- O << "0";
- else
- printOp(MI->getOperand(1));
- O << ", ha16(" ;
- printOp(MI->getOperand(2));
- O << "-\"L0000" << LabelNumber << "$pb\")\n";
- } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
- printOp(MI->getOperand(0));
- O << ", ";
- printImmOp(MI->getOperand(1), ArgType[1]);
- O << "(";
- if (MI->getOperand(2).hasAllocatedReg() &&
- MI->getOperand(2).getReg() == PPC::R0)
- O << "0";
- else
- printOp(MI->getOperand(2));
- O << ")\n";
- } else {
- for (i = 0; i < ArgCount; ++i) {
- // addi and friends
- if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
- MI->getOperand(1).hasAllocatedReg() &&
- MI->getOperand(1).getReg() == PPC::R0) {
- O << "0";
- // for long branch support, bc $+8
- } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
- TII.isBranch(MI->getOpcode())) {
- O << "$+8";
- assert(8 == MI->getOperand(i).getImmedValue()
- && "branch off PC not to pc+8?");
- //printOp(MI->getOperand(i));
- } else if (MI->getOperand(i).isImmediate()) {
- printImmOp(MI->getOperand(i), ArgType[i]);
- } else {
- printOp(MI->getOperand(i));
- }
- if (ArgCount - 1 == i)
- O << "\n";
- else
- O << ", ";
- }
- }
-}
-
-bool Printer::doInitialization(Module &M) {
- Mang = new Mangler(M, true);
- return false; // success
-}
-
-// SwitchSection - Switch to the specified section of the executable if we are
-// not already in it!
-//
-static void SwitchSection(std::ostream &OS, std::string &CurSection,
- const char *NewSection) {
- if (CurSection != NewSection) {
- CurSection = NewSection;
- if (!CurSection.empty())
- OS << "\t" << NewSection << "\n";
- }
-}
-
-bool Printer::doFinalization(Module &M) {
- const TargetData &TD = TM.getTargetData();
- std::string CurSection;
-
- // Print out module-level global variables here.
- for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
- if (I->hasInitializer()) { // External global require no code
- O << "\n\n";
- std::string name = Mang->getValueName(I);
- Constant *C = I->getInitializer();
- unsigned Size = TD.getTypeSize(C->getType());
- unsigned Align = TD.getTypeAlignment(C->getType());
-
- if (C->isNullValue() && /* FIXME: Verify correct */
- (I->hasInternalLinkage() || I->hasWeakLinkage())) {
- SwitchSection(O, CurSection, ".data");
- if (I->hasInternalLinkage())
- O << ".lcomm " << name << "," << TD.getTypeSize(C->getType())
- << "," << (unsigned)TD.getTypeAlignment(C->getType());
- else
- O << ".comm " << name << "," << TD.getTypeSize(C->getType());
- O << "\t\t; ";
- WriteAsOperand(O, I, true, true, &M);
- O << "\n";
- } else {
- switch (I->getLinkage()) {
- case GlobalValue::LinkOnceLinkage:
- O << ".section __TEXT,__textcoal_nt,coalesced,no_toc\n"
- << ".weak_definition " << name << '\n'
- << ".private_extern " << name << '\n'
- << ".section __DATA,__datacoal_nt,coalesced,no_toc\n";
- LinkOnceStubs.insert(name);
- break;
- case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
- // Nonnull linkonce -> weak
- O << "\t.weak " << name << "\n";
- SwitchSection(O, CurSection, "");
- O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
- break;
- case GlobalValue::AppendingLinkage:
- // FIXME: appending linkage variables should go into a section of
- // their name or something. For now, just emit them as external.
- case GlobalValue::ExternalLinkage:
- // If external or appending, declare as a global symbol
- O << "\t.globl " << name << "\n";
- // FALL THROUGH
- case GlobalValue::InternalLinkage:
- SwitchSection(O, CurSection, ".data");
- break;
- }
-
- O << "\t.align " << Align << "\n";
- O << name << ":\t\t\t\t; ";
- WriteAsOperand(O, I, true, true, &M);
- O << " = ";
- WriteAsOperand(O, C, false, false, &M);
- O << "\n";
- emitGlobalConstant(C);
- }
- }
-
- // Output stubs for link-once variables
- if (LinkOnceStubs.begin() != LinkOnceStubs.end())
- O << ".data\n.align 2\n";
- for (std::set<std::string>::iterator i = LinkOnceStubs.begin(),
- e = LinkOnceStubs.end(); i != e; ++i) {
- O << *i << "$non_lazy_ptr:\n"
- << "\t.long\t" << *i << '\n';
- }
-
- // Output stubs for dynamically-linked functions
- for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
- i != e; ++i)
- {
- O << ".data\n";
- O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
- O << "\t.align 2\n";
- O << "L" << *i << "$stub:\n";
- O << "\t.indirect_symbol " << *i << "\n";
- O << "\tmflr r0\n";
- O << "\tbcl 20,31,L0$" << *i << "\n";
- O << "L0$" << *i << ":\n";
- O << "\tmflr r11\n";
- O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
- O << "\tmtlr r0\n";
- O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
- O << "\tmtctr r12\n";
- O << "\tbctr\n";
- O << ".data\n";
- O << ".lazy_symbol_pointer\n";
- O << "L" << *i << "$lazy_ptr:\n";
- O << "\t.indirect_symbol " << *i << "\n";
- O << "\t.long dyld_stub_binding_helper\n";
- }
-
- O << "\n";
-
- // Output stubs for external global variables
- if (GVStubs.begin() != GVStubs.end())
- O << ".data\n.non_lazy_symbol_pointer\n";
- for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end();
- i != e; ++i) {
- O << "L" << *i << "$non_lazy_ptr:\n";
- O << "\t.indirect_symbol " << *i << "\n";
- O << "\t.long\t0\n";
- }
-
- delete Mang;
- return false; // success
-}
-
-} // End llvm namespace
diff --git a/lib/Target/PowerPC/PowerPCCodeEmitter.cpp b/lib/Target/PowerPC/PowerPCCodeEmitter.cpp
deleted file mode 100644
index e7a36009cb..0000000000
--- a/lib/Target/PowerPC/PowerPCCodeEmitter.cpp
+++ /dev/null
@@ -1,100 +0,0 @@
-//===-- PowerPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----*- C++ -*-=//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-//
-//===----------------------------------------------------------------------===//
-
-#include "PowerPCTargetMachine.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/Passes.h"
-#include "Support/Debug.h"
-
-namespace llvm {
-
-namespace {
- class PowerPCCodeEmitter : public MachineFunctionPass {
- TargetMachine &TM;
- MachineCodeEmitter &MCE;
-
- public:
- PowerPCCodeEmitter(TargetMachine &T, MachineCodeEmitter &M)
- : TM(T), MCE(M) {}
-
- const char *getPassName() const { return "PowerPC Machine Code Emitter"; }
-
- /// runOnMachineFunction - emits the given MachineFunction to memory
- ///
- bool runOnMachineFunction(MachineFunction &MF);
-
- /// emitBasicBlock - emits the given MachineBasicBlock to memory
- ///
- void emitBasicBlock(MachineBasicBlock &MBB);
-
- /// emitWord - write a 32-bit word to memory at the current PC
- ///
- void emitWord(unsigned w) { MCE.emitWord(w); }
-
- unsigned getValueBit(int64_t Val, unsigned bit);
-
- /// getBinaryCodeForInstr - returns the assembled code for an instruction
- ///
- unsigned getBinaryCodeForInstr(MachineInstr &MI) { return 0; }
- };
-}
-
-/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
-/// machine code emitted. This uses a MachineCodeEmitter object to handle
-/// actually outputting the machine code and resolving things like the address
-/// of functions. This method should returns true if machine code emission is
-/// not supported.
-///
-bool PowerPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
- MachineCodeEmitter &MCE) {
- // Machine code emitter pass for PowerPC
- PM.add(new PowerPCCodeEmitter(*this, MCE));
- // Delete machine code for this function after emitting it:
- PM.add(createMachineCodeDeleter());
- // We don't yet support machine code emission
- return true;
-}
-
-bool PowerPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
- MCE.startFunction(MF);
- MCE.emitConstantPool(MF.getConstantPool());
- for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
- emitBasicBlock(*I);
- MCE.finishFunction(MF);
- return false;
-}
-
-void PowerPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
- for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
- emitWord(getBinaryCodeForInstr(*I));
-}
-
-unsigned PowerPCCodeEmitter::getValueBit(int64_t Val, unsigned bit) {
- Val >>= bit;
- return (Val & 1);
-}
-
-void *PowerPCJITInfo::getJITStubForFunction(Function *F,
- MachineCodeEmitter &MCE) {
- assert (0 && "PowerPCJITInfo::getJITStubForFunction not implemented");
- return 0;
-}
-
-void PowerPCJITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
- assert (0 && "PowerPCJITInfo::replaceMachineCodeForFunction not implemented");
-}
-
-//#include "PowerPCGenCodeEmitter.inc"
-
-} // end llvm namespace
-
diff --git a/lib/Target/PowerPC/PowerPCISelSimple.cpp b/lib/Target/PowerPC/PowerPCISelSimple.cpp
deleted file mode 100644
index 5d438e7ca2..0000000000
--- a/lib/Target/PowerPC/PowerPCISelSimple.cpp
+++ /dev/null
@@ -1,3399 +0,0 @@
-//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "isel"
-#include "PowerPC.h"
-#include "PowerPCInstrBuilder.h"
-#include "PowerPCInstrInfo.h"
-#include "PowerPCTargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
-#include <vector>
-using namespace llvm;
-
-namespace {
- Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
-
- /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
- /// PPC Representation.
- ///
- enum TypeClass {
- cByte, cShort, cInt, cFP32, cFP64, cLong
- };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID:
- case Type::PointerTyID: return cInt; // Ints and pointers are class #2
-
- case Type::FloatTyID: return cFP32; // Single float is #3
- case Type::DoubleTyID: return cFP64; // Double Point is #4
-
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs are class #5
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as ints.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cInt;
- return getClass(Ty);
-}
-
-namespace {
- struct ISel : public FunctionPass, InstVisitor<ISel> {
- PowerPCTargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
-
- std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
-
- // External functions used in the Module
- Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
- *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
- *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- // AllocaMap - Mapping from fixed sized alloca instructions to the
- // FrameIndex for the alloca.
- std::map<AllocaInst*, unsigned> AllocaMap;
-
- // A Reg to hold the base address used for global loads and stores, and a
- // flag to set whether or not we need to emit it for this function.
- unsigned GlobalBaseReg;
- bool GlobalBaseInitialized;
-
- ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
- F(0), BB(0) {}
-
- bool doInitialization(Module &M) {
- // Add external functions that we may call
- Type *i = Type::IntTy;
- Type *d = Type::DoubleTy;
- Type *f = Type::FloatTy;
- Type *l = Type::LongTy;
- Type *ul = Type::ULongTy;
- Type *voidPtr = PointerType::get(Type::SByteTy);
- // float fmodf(float, float);
- fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
- // double fmod(double, double);
- fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
- // int __cmpdi2(long, long);
- __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
- // long __moddi3(long, long);
- __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
- // long __divdi3(long, long);
- __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
- // unsigned long __umoddi3(unsigned long, unsigned long);
- __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
- // unsigned long __udivdi3(unsigned long, unsigned long);
- __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
- // long __fixsfdi(float)
- __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
- // long __fixdfdi(double)
- __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
- // unsigned long __fixunssfdi(float)
- __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
- // unsigned long __fixunsdfdi(double)
- __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
- // float __floatdisf(long)
- __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
- // double __floatdidf(long)
- __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
- // void* malloc(size_t)
- mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
- // void free(void*)
- freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
- return false;
- }
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Make sure we re-emit a set of the global base reg if necessary
- GlobalBaseInitialized = false;
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- RegMap.clear();
- MBBMap.clear();
- AllocaMap.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "PowerPC Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed PowerPC code for each instruction.
-
- // Control flow operators
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
-
- // This struct is for recording the necessary operations to emit the GEP
- struct CollapsedGepOp {
- bool isMul;
- Value *index;
- ConstantSInt *size;
- CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
- isMul(mul), index(i), size(s) {}
- };
-
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
- void visitSelectInst(SelectInst &SI);
-
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVANextInst(VANextInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg,
- bool CollapseRemainder, ConstantSInt **Remainder,
- unsigned *PendingAddReg);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
- /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
- /// and constant expression support.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- /// emitBinaryFPOperation - This method handles emission of floating point
- /// Add (0), Sub (1), Mul (2), and Div (3) operations.
- void emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned TargetReg);
-
- void doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1);
-
- /// doMultiplyConst - This method will multiply the value in Op0Reg by the
- /// value of the ContantInt *CI
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg);
-
- /// emitSelectOperation - Common code shared between visitSelectInst and the
- /// constant expression support.
- ///
- void emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg);
-
- /// copyGlobalBaseToRegister - Output the instructions required to put the
- /// base address to use for accessing globals into a register.
- ///
- void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned R);
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned LHS, unsigned RHS);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- /// Long values are handled somewhat specially. They are always allocated
- /// as pairs of 32 bit integer values. The register number returned is the
- /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have PPC reg info??");
- const PowerPCRegisterInfo *PPCRI =
- static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
- if (Ty == Type::LongTy || Ty == Type::ULongTy) {
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
- // Create the upper part
- F->getSSARegMap()->createVirtualRegister(RC);
- // Create the lower part.
- return F->getSSARegMap()->createVirtualRegister(RC)-1;
- }
-
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt);
-
- /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
- /// is okay to use as an immediate argument to a certain binary operation
- bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
-
- /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
- /// that is to be statically allocated with the initial stack frame
- /// adjustment.
- unsigned getFixedSizedAllocaFI(AllocaInst *AI);
- };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it. Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- BasicBlock *BB = AI->getParent();
- if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
- return AI;
- }
- return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- copyConstantToRegister(MBB, IPt, C, Reg);
- return Reg;
- } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
- return Reg;
- }
-
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- return Reg;
-}
-
-/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-/// is okay to use as an immediate argument to a certain binary operator.
-///
-/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
-bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
- ConstantSInt *Op1Cs;
- ConstantUInt *Op1Cu;
-
- // ADDI, Compare, and non-indexed Load take SIMM
- bool cond1 = (Operator == 0)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32767)
- && (Op1Cs->getValue() >= -32768);
-
- // SUBI takes -SIMM since it is a mnemonic for ADDI
- bool cond2 = (Operator == 1)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32768)
- && (Op1Cs->getValue() >= -32767);
-
- // ANDIo, ORI, and XORI take unsigned values
- bool cond3 = (Operator >= 2)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() >= 0)
- && (Op1Cs->getValue() <= 32767);
-
- // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
- bool cond4 = (Operator < 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 32767);
-
- // ANDIo, ORI, and XORI take UIMMs, so they can be larger
- bool cond5 = (Operator >= 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 65535);
-
- if (cond1 || cond2 || cond3 || cond4 || cond5)
- return true;
-
- return false;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
- // Already computed this?
- std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
- if (I != AllocaMap.end() && I->first == AI) return I->second;
-
- const Type *Ty = AI->getAllocatedType();
- ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
- return FrameIdx;
-}
-
-
-/// copyGlobalBaseToRegister - Output the instructions required to put the
-/// base address to use for accessing globals into a register.
-///
-void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned R) {
- if (!GlobalBaseInitialized) {
- // Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = F->front();
- MachineBasicBlock::iterator MBBI = FirstMBB.begin();
- GlobalBaseReg = makeAnotherReg(Type::IntTy);
- BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
- BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
- GlobalBaseInitialized = true;
- }
- // Emit our copy of GlobalBaseReg to the destination register in the
- // current MBB
- BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
- .addReg(GlobalBaseReg);
-}
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- uint64_t uval = CUI->getValue();
- unsigned hiUVal = uval >> 32;
- unsigned loUVal = uval;
- ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
- ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
- copyConstantToRegister(MBB, IP, CUHi, R);
- copyConstantToRegister(MBB, IP, CULo, R+1);
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int64_t sval = CSI->getValue();
- int hiSVal = sval >> 32;
- int loSVal = sval;
- ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
- ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
- copyConstantToRegister(MBB, IP, CSHi, R);
- copyConstantToRegister(MBB, IP, CSLo, R+1);
- return;
- } else {
- std::cerr << "Unhandled long constant type!\n";
- abort();
- }
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- // Handle bool
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
- return;
- }
-
- // Handle int
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- unsigned uval = CUI->getValue();
- if (uval < 32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
- }
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int sval = CSI->getValue();
- if (sval < 32768 && sval >= -32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
- }
- return;
- }
-
- std::cerr << "Unhandled integer constant!\n";
- abort();
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- // We need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
-
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
- // Load addr of constant to reg; constant is located at base + distance
- unsigned GlobalBase = makeAnotherReg(Type::IntTy);
- unsigned Reg1 = makeAnotherReg(Type::IntTy);
- unsigned Reg2 = makeAnotherReg(Type::IntTy);
- // Move value at base + distance into return reg
- copyGlobalBaseToRegister(MBB, IP, GlobalBase);
- BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
- .addConstantPoolIndex(CPI);
- BuildMI(*MBB, IP, PPC::LOADLoDirect, 2, Reg2).addReg(Reg1)
- .addConstantPoolIndex(CPI);
-
- unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
- BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- // GV is located at base + distance
- unsigned GlobalBase = makeAnotherReg(Type::IntTy);
- unsigned TmpReg = makeAnotherReg(GV->getType());
- unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
- PPC::LOADLoIndirect : PPC::LOADLoDirect;
-
- // Move value at base + distance into return reg
- copyGlobalBaseToRegister(MBB, IP, GlobalBase);
- BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
- .addGlobalAddress(GV);
- BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
-
- // Add the GV to the list of things whose addresses have been taken.
- TM.AddressTaken.insert(GV);
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- unsigned ArgOffset = 24;
- unsigned GPR_remaining = 8;
- unsigned FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
- };
-
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
- bool ArgLive = !I->use_empty();
- unsigned Reg = ArgLive ? getReg(*I) : 0;
- int FI; // Frame object index
-
- switch (getClassB(I->getType())) {
- case cByte:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
- }
- }
- break;
- case cShort:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
- }
- }
- break;
- case cInt:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- }
- }
- break;
- case cLong:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
- .addReg(GPR[GPR_idx+1]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
- }
- }
- // longs require 4 additional bytes and use 2 GPRs
- ArgOffset += 4;
- if (GPR_remaining > 1) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- case cFP32:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
- }
- }
- break;
- case cFP64:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
- }
- }
-
- // doubles require 4 additional bytes and use 2 GPRs of param space
- ArgOffset += 4;
- if (GPR_remaining > 0) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- if (GPR_remaining > 0) {
- GPR_remaining--; // uses up 2 GPRs
- GPR_idx++;
- }
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg);
-
- MachineInstr *LongPhiMI = 0;
- if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
- LongPhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg+1);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = 0;
- for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
- PE = MBB.pred_end (); PI != PE; ++PI)
- if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
- PredMBB = *PI;
- break;
- }
- assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
-
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
- isa<GlobalValue>(Val)) {
- // Simple constants get emitted at the end of the basic block,
- // before any terminator instructions. We "know" that the code to
- // move a constant into a register will never clobber any flags.
- ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
- } else {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
- ++PI;
-
- ValReg = getReg(Val, PredMBB, PI);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- if (LongPhiMI) {
- LongPhiMI->addRegOperand(ValReg+1);
- LongPhiMI->addMachineBasicBlockOperand(PredMBB);
- }
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction. This is the case if the conditional branch is the
-// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse()) {
- Instruction *User = cast<Instruction>(SCI->use_back());
- if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
- SCI->getParent() == User->getParent())
- return SCI;
- }
- return 0;
-}
-
-
-// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
-// the load or store instruction that is the only user of the GEP.
-//
-static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
- if (GEPI->hasOneUse()) {
- Instruction *User = cast<Instruction>(GEPI->use_back());
- if (isa<StoreInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) != GEPI &&
- User->getOperand(1) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- if (isa<LoadInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- }
- return 0;
-}
-
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return PPC::BEQ;
- case Instruction::SetNE: return PPC::BNE;
- case Instruction::SetLT: return PPC::BLT;
- case Instruction::SetGE: return PPC::BGE;
- case Instruction::SetGT: return PPC::BGT;
- case Instruction::SetLE: return PPC::BLE;
- }
-}
-
-/// emitUCOM - emits an unordered FP compare.
-void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- unsigned LHS, unsigned RHS) {
- BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
-}
-
-/// EmitComparison - emits a comparison of the two operands, returning the
-/// extended setcc code to use. The result is in CR0.
-///
-unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // Before we do a comparison, we have to make sure that we're truncating our
- // registers appropriately.
- if (Class == cByte) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(24).addImm(31);
- Op0r = TmpReg;
- } else if (Class == cShort) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(16).addImm(31);
- Op0r = TmpReg;
- }
-
- // Use crand for lt, gt and crandc for le, ge
- unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
- // ? cr1[lt] : cr1[gt]
- unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
- // ? cr0[lt] : cr0[gt]
- unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
- unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
- unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
-
- // Special case handling of: cmp R, i
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Class == cByte || Class == cShort || Class == cInt) {
- unsigned Op1v = CI->getRawValue() & 0xFFFF;
-
- // Treat compare like ADDI for the purposes of immediate suitability
- if (canUseAsImmediateForOpcode(CI, 0)) {
- BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
- } else {
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- }
- return OpNum;
- } else {
- assert(Class == cLong && "Unknown integer class!");
- unsigned LowCst = CI->getRawValue();
- unsigned HiCst = CI->getRawValue() >> 32;
- if (OpNum < 2) { // seteq, setne
- unsigned LoLow = makeAnotherReg(Type::IntTy);
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiLow = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
-
- BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
- .addImm(LowCst & 0xFFFF);
- BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
- .addImm(LowCst >> 16);
- BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
- .addImm(HiCst & 0xFFFF);
- BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
- .addImm(HiCst >> 16);
- BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- return OpNum;
- } else {
- unsigned ConstReg = makeAnotherReg(CompTy);
- copyConstantToRegister(MBB, IP, CI, ConstReg);
-
- // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
- .addReg(ConstReg);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
- .addReg(ConstReg+1);
- BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
- BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
- .addImm(2);
- return OpNum;
- }
- }
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- switch (Class) {
- default: assert(0 && "Unknown type class!");
- case cByte:
- case cShort:
- case cInt:
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- break;
-
- case cFP32:
- case cFP64:
- emitUCOM(MBB, IP, Op0r, Op1r);
- break;
-
- case cLong:
- if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- break; // Allow the sete or setne to be generated from flags set by OR
- } else {
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-
- // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
- BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
- .addImm(2);
- return OpNum;
- }
- }
- return OpNum;
-}
-
-/// visitSetCondInst - emit code to calculate the condition via
-/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
-///
-void ISel::visitSetCondInst(SetCondInst &I) {
- if (canFoldSetCCIntoBranchOrSelect(&I))
- return;
-
- unsigned DestReg = getReg(I);
- unsigned OpNum = I.getOpcode();
- const Type *Ty = I.getOperand (0)->getType();
-
- EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
-
- unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // cmpTY cr0, r1, r2
- // bCC copy1MBB
- // b copy0MBB
-
- // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
- // if we could insert other, non-terminator instructions after the
- // bCC. But MBB->getFirstTerminator() can't understand this.
- MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy1MBB);
- BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy0MBB);
- BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy1MBB:
- // %TrueValue = li 1
- // b sinkMBB
- BB = copy1MBB;
- unsigned TrueValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
- BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = li 0
- // fallthrough
- BB = copy0MBB;
- unsigned FalseValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
-}
-
-void ISel::visitSelectInst(SelectInst &SI) {
- unsigned DestReg = getReg(SI);
- MachineBasicBlock::iterator MII = BB->end();
- emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
- SI.getFalseValue(), DestReg);
-}
-
-/// emitSelect - Common code shared between visitSelectInst and the constant
-/// expression support.
-/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
-/// no select instruction. FSEL only works for comparisons against zero.
-void ISel::emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg) {
- unsigned SelectClass = getClassB(TrueVal->getType());
- unsigned Opcode;
-
- // See if we can fold the setcc into the select instruction, or if we have
- // to get the register of the Cond value
- if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
- // We successfully folded the setcc into the select instruction.
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
- Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
- } else {
- unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
- Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
- }
-
- // thisMBB:
- // ...
- // cmpTY cr0, r1, r2
- // bCC copy1MBB
- // b copy0MBB
-
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
- // if we could insert other, non-terminator instructions after the
- // bCC. But MBB->getFirstTerminator() can't understand this.
- MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy1MBB);
- BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy0MBB);
- BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy1MBB:
- // %TrueValue = ...
- // b sinkMBB
- BB = copy1MBB;
- unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
- BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = ...
- // fallthrough
- BB = copy0MBB;
- unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
- // For a register pair representing a long value, define the second reg
- if (getClass(TrueVal->getType()) == cLong)
- BuildMI(BB, PPC::LI, 1, DestReg+1).addImm(0);
- return;
-}
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
- bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
-
- Value *Val = VR.Val;
- const Type *Ty = VR.Ty;
- if (Val) {
- if (Constant *C = dyn_cast<Constant>(Val)) {
- Val = ConstantExpr::getCast(C, Type::IntTy);
- Ty = Type::IntTy;
- }
-
- // If this is a simple constant, just emit a load directly to avoid the copy
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- int TheVal = CI->getRawValue() & 0xFFFFFFFF;
-
- if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
- } else {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
- BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
- .addImm(TheVal & 0xFFFF);
- }
- return;
- }
- }
-
- // Make sure we have the register number for this value...
- unsigned Reg = Val ? getReg(Val) : VR.Reg;
- switch (getClassB(Ty)) {
- case cByte:
- // Extend value into target register (8->32)
- if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(24).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
- break;
- case cShort:
- // Extend value into target register (16->32)
- if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(16).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
- break;
- case cInt:
- // Move value into target register (32->32)
- BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
- break;
- default:
- assert(0 && "Unpromotable operand class in promote32");
- }
-}
-
-/// visitReturnInst - implemented with BLR
-///
-void ISel::visitReturnInst(ReturnInst &I) {
- // Only do the processing if this is a non-void return
- if (I.getNumOperands() > 0) {
- Value *RetVal = I.getOperand(0);
- switch (getClassB(RetVal->getType())) {
- case cByte: // integral return values: extend or move into r3 and return
- case cShort:
- case cInt:
- promote32(PPC::R3, ValueRecord(RetVal));
- break;
- case cFP32:
- case cFP64: { // Floats & Doubles: Return in f1
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
- break;
- }
- case cLong: {
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
- BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
- break;
- }
- default:
- visitInstruction(I);
- }
- }
- BuildMI(BB, PPC::BLR, 1).addImm(0);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
- Function::iterator I = BB; ++I; // Get iterator to next block
- return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here. Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void ISel::visitBranchInst(BranchInst &BI) {
- // Update machine-CFG edges
- BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
- if (BI.isConditional())
- BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
-
- BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
-
- if (!BI.isConditional()) { // Unconditional branch?
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- return;
- }
-
- // See if we can fold the setcc into the branch itself...
- SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
- if (SCI == 0) {
- // Nope, cannot fold setcc into this branch. Emit a branch on a condition
- // computed some other way...
- unsigned condReg = getReg(BI.getCondition());
- BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
- .addImm(0);
- if (BI.getSuccessor(1) == NextBB) {
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- return;
- }
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
- MachineBasicBlock::iterator MII = BB->end();
- OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-
- if (BI.getSuccessor(0) != NextBB) {
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- if (BI.getSuccessor(1) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- // Change to the inverse condition...
- if (BI.getSuccessor(1) != NextBB) {
- Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- }
-}
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate. For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-/// FIXME: See Documentation at the following URL for "correct" behavior
-/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
-void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg) {
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area.
- unsigned NumBytes = 24;
- unsigned ArgOffset = 24;
-
- if (!Args.empty()) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- switch (getClassB(Args[i].Ty)) {
- case cByte: case cShort: case cInt:
- NumBytes += 4; break;
- case cLong:
- NumBytes += 8; break;
- case cFP32:
- NumBytes += 4; break;
- case cFP64:
- NumBytes += 8; break;
- break;
- default: assert(0 && "Unknown class!");
- }
-
- // Just to be safe, we'll always reserve the full 32 bytes worth of
- // argument passing space in case any called code gets funky on us.
- if (NumBytes < 24 + 32) NumBytes = 24 + 32;
-
- // Adjust the stack pointer for the new arguments...
- // These functions are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
- // Arguments go on the stack in reverse order, as specified by the ABI.
- // Offset to the paramater area on the stack is 24.
- int GPR_remaining = 8, FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
- PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
- PPC::F13
- };
-
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- unsigned ArgReg;
- switch (getClassB(Args[i].Ty)) {
- case cByte:
- case cShort:
- // Promote arg to 32 bits wide into a temporary register...
- ArgReg = makeAnotherReg(Type::UIntTy);
- promote32(ArgReg, Args[i]);
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cInt:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cLong:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack? Note that PPC calling conventions state that long args
- // are passed rN = hi, rN+1 = lo, opposite of LLVM.
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
- .addReg(ArgReg+1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
- }
- if (GPR_remaining <= 1 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
- .addReg(PPC::R1);
- }
-
- ArgOffset += 4; // 8 byte entry, not 4.
- GPR_remaining -= 1; // uses up 2 GPRs
- GPR_idx += 1;
- break;
- case cFP32:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
-
- // If this is a vararg function, and there are GPRs left, also
- // pass the float in an int. Otherwise, put it on the stack.
- if (isVarArg) {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
- .addSImm(ArgOffset).addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cFP64:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
- // For vararg functions, must pass doubles via int regs as well
- if (isVarArg) {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
-
- // Doubles can be split across reg + stack for varargs
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
- .addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
- .addSImm(ArgOffset+4).addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- // Doubles use 8 bytes, and 2 GPRs worth of param space
- ArgOffset += 4;
- GPR_remaining--;
- GPR_idx++;
- break;
-
- default: assert(0 && "Unknown class!");
- }
- ArgOffset += 4;
- GPR_remaining--;
- GPR_idx++;
- }
- } else {
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
- }
-
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
- BB->push_back(CallMI);
-
- // These functions are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
- // If there is a return value, scavenge the result from the location the call
- // leaves it in...
- //
- if (Ret.Ty != Type::VoidTy) {
- unsigned DestClass = getClassB(Ret.Ty);
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt:
- // Integral results are in r3
- BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
- break;
- case cFP32: // Floating-point return values live in f1
- case cFP64:
- BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
- break;
- case cLong: // Long values are in r3:r4
- BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
- BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
- break;
- default: assert(0 && "Unknown class!");
- }
- }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void ISel::visitCallInst(CallInst &CI) {
- MachineInstr *TheCall;
- Function *F = CI.getCalledFunction();
- if (F) {
- // Is it an intrinsic function call?
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
- return;
- }
- // Emit a CALL instruction with PC-relative displacement.
- TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
- // Add it to the set of functions called to be used by the Printer
- TM.CalledFunctions.insert(F);
- } else { // Emit an indirect call through the CTR
- unsigned Reg = getReg(CI.getCalledValue());
- BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
- TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
- }
-
- std::vector<ValueRecord> Args;
- for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
- Args.push_back(ValueRecord(CI.getOperand(i)));
-
- unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
- bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
- doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
-}
-
-
-/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
-///
-static Value *dyncastIsNan(Value *V) {
- if (CallInst *CI = dyn_cast<CallInst>(V))
- if (Function *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::isunordered)
- return CI->getOperand(1);
- return 0;
-}
-
-/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
-/// or's whos operands are all calls to the isnan predicate.
-static bool isOnlyUsedByUnorderedComparisons(Value *V) {
- assert(dyncastIsNan(V) && "The value isn't an isnan call!");
-
- // Check all uses, which will be or's of isnans if this predicate is true.
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
- Instruction *I = cast<Instruction>(*UI);
- if (I->getOpcode() != Instruction::Or) return false;
- if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
- if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
- }
-
- return true;
-}
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- // FIXME: should lower these ourselves
- // case Intrinsic::isunordered:
- // case Intrinsic::memcpy: -> doCall(). system memcpy almost
- // guaranteed to be faster than anything we generate ourselves
- // We directly implement these intrinsics
- break;
- case Intrinsic::readio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile load.
- Instruction *Before = CI->getPrev();
- LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
- CI->replaceAllUsesWith(LI);
- BB->getInstList().erase(CI);
- break;
- }
- case Intrinsic::writeio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile store.
- Instruction *Before = CI->getPrev();
- StoreInst *SI = new StoreInst(CI->getOperand(1),
- CI->getOperand(2), true, CI);
- CI->replaceAllUsesWith(SI);
- BB->getInstList().erase(CI);
- break;
- }
- default:
- // All other intrinsic calls we must lower.
- Instruction *Before = CI->getPrev();
- TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- }
-}
-
-void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
- unsigned TmpReg1, TmpReg2, TmpReg3;
- switch (ID) {
- case Intrinsic::vastart:
- // Get the address of the first vararg value...
- TmpReg1 = getReg(CI);
- addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
- 0, false);
- return;
-
- case Intrinsic::vacopy:
- TmpReg1 = getReg(CI);
- TmpReg2 = getReg(CI.getOperand(1));
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
- return;
- case Intrinsic::vaend: return;
-
- case Intrinsic::returnaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- MachineFrameInfo *MFI = F->getFrameInfo();
- unsigned NumBytes = MFI->getStackSize();
-
- BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
- .addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
- case Intrinsic::frameaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
-#if 0
- // This may be useful for supporting isunordered
- case Intrinsic::isnan:
- // If this is only used by 'isunordered' style comparisons, don't emit it.
- if (isOnlyUsedByUnorderedComparisons(&CI)) return;
- TmpReg1 = getReg(CI.getOperand(1));
- emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
- TmpReg2 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::MFCR, TmpReg2);
- TmpReg3 = getReg(CI);
- BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
- return;
-#endif
-
- default: assert(0 && "Error: unknown intrinsics should have been lowered!");
- }
-}
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
- unsigned DestReg = getReg(B);
- MachineBasicBlock::iterator MI = BB->end();
- Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
- unsigned Class = getClassB(B.getType());
-
- emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
-}
-
-/// emitBinaryFPOperation - This method handles emission of floating point
-/// Add (0), Sub (1), Mul (2), and Div (3) operations.
-void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg) {
-
- // Special case: op Reg, <const fp>
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- // Create a constant pool entry for this constant.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(Op1C);
- const Type *Ty = Op1->getType();
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
- static const unsigned OpcodeTab[][4] = {
- { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
- { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
- };
-
- unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
- unsigned Op1Reg = getReg(Op1C, BB, IP);
- unsigned Op0r = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
- return;
- }
-
- // Special case: R1 = op <const fp>, R2
- if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
- if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
- // -0.0 - X === -X
- unsigned op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
- return;
- } else {
- // R1 = op CST, R2 --> R1 = opr R2, CST
-
- // Create a constant pool entry for this constant.
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(Op0C);
- const Type *Ty = Op0C->getType();
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
- static const unsigned OpcodeTab[][4] = {
- { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
- { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
- };
-
- unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
- unsigned Op0Reg = getReg(Op0C, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
- return;
- }
-
- // General case.
- static const unsigned OpcodeTab[] = {
- PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV
- };
-
- unsigned Opcode = OpcodeTab[OperatorClass];
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-/// and constant expression support.
-///
-void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg) {
- unsigned Class = getClassB(Op0->getType());
-
- // Arithmetic and Bitwise operators
- static const unsigned OpcodeTab[] = {
- PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
- };
- static const unsigned ImmOpcodeTab[] = {
- PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
- };
- static const unsigned RImmOpcodeTab[] = {
- PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
- };
-
- // Otherwise, code generate the full operation with a constant.
- static const unsigned BottomTab[] = {
- PPC::ADDC, PPC::SUBC, PPC::AND, PPC::OR, PPC::XOR
- };
- static const unsigned TopTab[] = {
- PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR
- };
-
- if (Class == cFP32 || Class == cFP64) {
- assert(OperatorClass < 2 && "No logical ops for FP!");
- emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
- return;
- }
-
- if (Op0->getType() == Type::BoolTy) {
- if (OperatorClass == 3)
- // If this is an or of two isnan's, emit an FP comparison directly instead
- // of or'ing two isnan's together.
- if (Value *LHS = dyncastIsNan(Op0))
- if (Value *RHS = dyncastIsNan(Op1)) {
- unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- emitUCOM(MBB, IP, Op0Reg, Op1Reg);
- BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
- .addImm(31).addImm(31);
- return;
- }
- }
-
- // Special case: op <const int>, Reg
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
- // sub 0, X -> subfic
- if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
- unsigned Op1r = getReg(Op1, MBB, IP);
- int imm = CI->getRawValue() & 0xFFFF;
-
- if (Class == cLong) {
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
- .addSImm(imm);
- BuildMI(*MBB, IP, PPC::SUBFZE, 1, DestReg).addReg(Op1r);
- } else {
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
- }
- return;
- }
-
- // If it is easy to do, swap the operands and emit an immediate op
- if (Class != cLong && OperatorClass != 1 &&
- canUseAsImmediateForOpcode(CI, OperatorClass)) {
- unsigned Op1r = getReg(Op1, MBB, IP);
- int imm = CI->getRawValue() & 0xFFFF;
-
- if (OperatorClass < 2)
- BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
- .addSImm(imm);
- else
- BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
- .addZImm(imm);
- return;
- }
- }
-
- // Special case: op Reg, <const int>
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // xor X, -1 -> not X
- if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
- BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- if (Class == cLong) // Invert the low part too
- BuildMI(*MBB, IP, PPC::NOR, 2, DestReg+1).addReg(Op0r+1)
- .addReg(Op0r+1);
- return;
- }
-
- if (Class != cLong) {
- if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
- int immediate = Op1C->getRawValue() & 0xFFFF;
-
- if (OperatorClass < 2)
- BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
- .addSImm(immediate);
- else
- BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
- .addZImm(immediate);
- } else {
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- }
- return;
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
- .addReg(Op1r+1);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- return;
- }
-
- // We couldn't generate an immediate variant of the op, load both halves into
- // registers and emit the appropriate opcode.
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- if (Class != cLong) {
- unsigned Opcode = OpcodeTab[OperatorClass];
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- } else {
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
- .addReg(Op1r+1);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- }
- return;
-}
-
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0 || (Val & (Val-1))) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- Val >>= 1;
- ++Count;
- }
- return Count;
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// Values Op0 and Op1, and put the result in DestReg.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1) {
- unsigned Class0 = getClass(Op0->getType());
- unsigned Class1 = getClass(Op1->getType());
-
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- // 64 x 64 -> 64
- if (Class0 == cLong && Class1 == cLong) {
- unsigned Tmp1 = makeAnotherReg(Type::IntTy);
- unsigned Tmp2 = makeAnotherReg(Type::IntTy);
- unsigned Tmp3 = makeAnotherReg(Type::IntTy);
- unsigned Tmp4 = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
- return;
- }
-
- // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
- if (Class0 == cLong && Class1 <= cInt) {
- unsigned Tmp0 = makeAnotherReg(Type::IntTy);
- unsigned Tmp1 = makeAnotherReg(Type::IntTy);
- unsigned Tmp2 = makeAnotherReg(Type::IntTy);
- unsigned Tmp3 = makeAnotherReg(Type::IntTy);
- unsigned Tmp4 = makeAnotherReg(Type::IntTy);
- if (Op1->getType()->isSigned())
- BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
- else
- BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
- BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
- BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
- return;
- }
-
- // 32 x 32 -> 32
- if (Class0 <= cInt && Class1 <= cInt) {
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- assert(0 && "doMultiply cannot operate on unknown type!");
-}
-
-/// doMultiplyConst - This method will multiply the value in Op0 by the
-/// value of the ContantInt *CI
-void ISel::doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI) {
- unsigned Class = getClass(Op0->getType());
-
- // Mul op0, 0 ==> 0
- if (CI->isNullValue()) {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- if (Class == cLong)
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
- return;
- }
-
- // Mul op0, 1 ==> op0
- if (CI->equalsInt(1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- if (Class == cLong)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
- return;
- }
-
- // If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(CI->getRawValue())) {
- ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
- emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
- return;
- }
-
- // If 32 bits or less and immediate is in right range, emit mul by immediate
- if (Class == cByte || Class == cShort || Class == cInt) {
- if (canUseAsImmediateForOpcode(CI, 0)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned imm = CI->getRawValue() & 0xFFFF;
- BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
- return;
- }
- }
-
- doMultiply(MBB, IP, DestReg, Op0, CI);
-}
-
-void ISel::visitMul(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
-
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitMultiply(BB, IP, Op0, Op1, ResultReg);
-}
-
-void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned DestReg) {
- TypeClass Class = getClass(Op0->getType());
-
- switch (Class) {
- case cByte:
- case cShort:
- case cInt:
- case cLong:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- doMultiplyConst(MBB, IP, DestReg, Op0, CI);
- } else {
- doMultiply(MBB, IP, DestReg, Op0, Op1);
- }
- return;
- case cFP32:
- case cFP64:
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
- return;
- break;
- }
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register. Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void ISel::visitDivRem(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
- ResultReg);
-}
-
-void ISel::emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned ResultReg) {
- const Type *Ty = Op0->getType();
- unsigned Class = getClass(Ty);
- switch (Class) {
- case cFP32:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmodf(float x, float y);
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
- Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
- doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
- TM.CalledFunctions.insert(fmodfFn);
- }
- return;
- case cFP64:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmod(double x, double y);
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
- Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
- doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
- TM.CalledFunctions.insert(fmodFn);
- }
- return;
- case cLong: {
- static Function* const Funcs[] =
- { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
- Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
- doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
- TM.CalledFunctions.insert(Funcs[NameIdx]);
- return;
- }
- case cByte: case cShort: case cInt:
- break; // Small integrals, handled below...
- default: assert(0 && "Unknown class!");
- }
-
- // Special case signed division by power of 2.
- if (isDiv)
- if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
- assert(Class != cLong && "This doesn't handle 64-bit divides!");
- int V = CI->getValue();
-
- if (V == 1) { // X /s 1 => X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
- return;
- }
-
- if (V == -1) { // X /s -1 => -X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
- return;
- }
-
- unsigned log2V = ExactLog2(V);
- if (log2V != 0 && Ty->isSigned()) {
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned TmpReg = makeAnotherReg(Op0->getType());
-
- BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
- BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
- return;
- }
- }
-
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
-
- if (isDiv) {
- BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
- } else { // Remainder
- unsigned TmpReg1 = makeAnotherReg(Op0->getType());
- unsigned TmpReg2 = makeAnotherReg(Op0->getType());
-
- BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
- BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
- BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
- }
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void ISel::visitShiftInst(ShiftInst &I) {
- MachineBasicBlock::iterator IP = BB->end();
- emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
- I.getOpcode() == Instruction::Shl, I.getType(),
- getReg(I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-///
-void ISel::emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg) {
- unsigned SrcReg = getReg (Op, MBB, IP);
- bool isSigned = ResultTy->isSigned ();
- unsigned Class = getClass (ResultTy);
-
- // Longs, as usual, are handled specially...
- if (Class == cLong) {
- // If we have a constant shift, we can generate much more efficient code
- // than otherwise...
- //
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- unsigned Amount = CUI->getValue();
- if (Amount < 32) {
- if (isLeftShift) {
- // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
- .addImm(Amount).addImm(32-Amount).addImm(31);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
- .addImm(32-Amount).addImm(0).addImm(Amount-1);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- }
- } else { // Shifting more than 32 bits
- Amount -= 32;
- if (isLeftShift) {
- if (Amount != 0) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
- .addReg(SrcReg+1);
- }
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
- } else {
- if (Amount != 0) {
- if (isSigned)
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
- .addImm(Amount);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- } else {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
- }
- }
- } else {
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addSImm(32);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
- .addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
- BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addSImm(-32);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
- .addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
- .addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
- .addReg(ShiftAmountReg);
- } else {
- if (isSigned) {
- // FIXME: Unimplemented
- // Page C-3 of the PowerPC 32bit Programming Environments Manual
- std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
- abort();
- } else {
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addSImm(32);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
- .addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
- .addReg(TmpReg3);
- BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addSImm(-32);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
- .addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
- .addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- }
- }
- }
- return;
- }
-
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- // The shift amount is constant, guaranteed to be a ubyte. Get its value.
- assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
- unsigned Amount = CUI->getValue();
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- if (isSigned) {
- BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- }
- }
- } else { // The shift amount is non-constant.
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- } else {
- BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
- .addReg(SrcReg).addReg(ShiftAmountReg);
- }
- }
-}
-
-
-/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
-/// mapping of LLVM classes to PPC load instructions, with the exception of
-/// signed byte loads, which need a sign extension following them.
-///
-void ISel::visitLoadInst(LoadInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::LBZ, PPC::LHZ, PPC::LWZ,
- PPC::LFS, PPC::LFD, PPC::LWZ
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::LBZX, PPC::LHZX, PPC::LWZX,
- PPC::LFSX, PPC::LFDX, PPC::LWZX
- };
-
- unsigned Class = getClassB(I.getType());
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned DestReg = getReg(I);
- Value *SourceAddr = I.getOperand(0);
-
- if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
- if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
-
- if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- if (Class == cLong) {
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
- } else if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
- }
- return;
- }
-
- // If this load is the only use of the GEP instruction that is its address,
- // then we can fold the GEP directly into the load instruction.
- // emitGEPOperation with a second to last arg of 'true' will place the
- // base register for the GEP into baseReg, and the constant offset from that
- // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
- // otherwise, we copy the offset into another reg, and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
- unsigned baseReg = getReg(GEPI);
- unsigned pendingAdd;
- ConstantSInt *offset;
-
- emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
- GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
- if (pendingAdd == 0 && Class != cLong &&
- canUseAsImmediateForOpcode(offset, 0)) {
- if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
- .addReg(baseReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
- .addReg(baseReg);
- }
- return;
- }
-
- unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
-
- if (Class == cLong) {
- unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
- BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
- } else if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
- }
- return;
- }
-
- // The fallback case, where the load was from a source that could not be
- // folded into the load instruction.
- unsigned SrcAddrReg = getReg(SourceAddr);
-
- if (Class == cLong) {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
- BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
- } else if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
- }
-}
-
-/// visitStoreInst - Implement LLVM store instructions
-///
-void ISel::visitStoreInst(StoreInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::STB, PPC::STH, PPC::STW,
- PPC::STFS, PPC::STFD, PPC::STW
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::STBX, PPC::STHX, PPC::STWX,
- PPC::STFSX, PPC::STFDX, PPC::STWX
- };
-
- Value *SourceAddr = I.getOperand(1);
- const Type *ValTy = I.getOperand(0)->getType();
- unsigned Class = getClassB(ValTy);
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned ValReg = getReg(I.getOperand(0));
-
- // If this store is the only use of the GEP instruction that is its address,
- // then we can fold the GEP directly into the store instruction.
- // emitGEPOperation with a second to last arg of 'true' will place the
- // base register for the GEP into baseReg, and the constant offset from that
- // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
- // otherwise, we copy the offset into another reg, and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
- unsigned baseReg = getReg(GEPI);
- unsigned pendingAdd;
- ConstantSInt *offset;
-
- emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
- GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
- if (0 == pendingAdd && Class != cLong &&
- canUseAsImmediateForOpcode(offset, 0)) {
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
- .addReg(baseReg);
- return;
- }
-
- unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
-
- if (Class == cLong) {
- unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
- .addReg(baseReg);
- return;
- }
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
- return;
- }
-
- // If the store address wasn't the only use of a GEP, we fall back to the
- // standard path: store the ValReg at the value in AddressReg.
- unsigned AddressReg = getReg(I.getOperand(1));
- if (Class == cLong) {
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
- return;
- }
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void ISel::visitCastInst(CastInst &CI) {
- Value *Op = CI.getOperand(0);
-
- unsigned SrcClass = getClassB(Op->getType());
- unsigned DestClass = getClassB(CI.getType());
-
- // If this is a cast from a 32-bit integer to a Long type, and the only uses
- // of the case are GEP instructions, then the cast does not need to be
- // generated explicitly, it will be folded into the GEP.
- if (DestClass == cLong && SrcClass == cInt) {
- bool AllUsesAreGEPs = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<GetElementPtrInst>(*I)) {
- AllUsesAreGEPs = false;
- break;
- }
-
- // No need to codegen this cast if all users are getelementptr instrs...
- if (AllUsesAreGEPs) return;
- }
-
- unsigned DestReg = getReg(CI);
- MachineBasicBlock::iterator MI = BB->end();
- emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void ISel::emitCastOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy,
- unsigned DestReg) {
- const Type *SrcTy = Src->getType();
- unsigned SrcClass = getClassB(SrcTy);
- unsigned DestClass = getClassB(DestTy);
- unsigned SrcReg = getReg(Src, MBB, IP);
-
- // Implement casts to bool by using compare on the operand followed by set if
- // not zero on the result.
- if (DestTy == Type::BoolTy) {
- switch (SrcClass) {
- case cByte:
- case cShort:
- case cInt: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
- break;
- }
- case cLong: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
- BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
- .addReg(SrcReg2);
- break;
- }
- case cFP32:
- case cFP64:
- // FSEL perhaps?
- std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
- abort();
- }
- return;
- }
-
- // Handle cast of Float -> Double
- if (SrcClass == cFP32 && DestClass == cFP64) {
- BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle cast of Double -> Float
- if (SrcClass == cFP64 && DestClass == cFP32) {
- BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle casts from integer to floating point now...
- if (DestClass == cFP32 || DestClass == cFP64) {
-
- // Emit a library call for long to float conversion
- if (SrcClass == cLong) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(SrcReg, SrcTy));
- Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
- TM.CalledFunctions.insert(floatFn);
- return;
- }
-
- // Make sure we're dealing with a full 32 bits
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
-
- SrcReg = TmpReg;
-
- // Spill the integer to memory and reload it from there.
- // Also spill room for a special conversion constant
- int ConstantFrameIndex =
- F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-
- unsigned constantHi = makeAnotherReg(Type::IntTy);
- unsigned constantLo = makeAnotherReg(Type::IntTy);
- unsigned ConstF = makeAnotherReg(Type::DoubleTy);
- unsigned TempF = makeAnotherReg(Type::DoubleTy);
-
- if (!SrcTy->isSigned()) {
- BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
- BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
- ConstantFrameIndex);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
- ConstantFrameIndex, 4);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
- ValueFrameIdx);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg),
- ValueFrameIdx, 4);
- addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
- ConstantFrameIndex);
- addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
- BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
- } else {
- unsigned TempLo = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
- BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
- ConstantFrameIndex);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
- ConstantFrameIndex, 4);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
- ValueFrameIdx);
- BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
- addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo),
- ValueFrameIdx, 4);
- addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
- ConstantFrameIndex);
- addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
- BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
- }
- return;
- }
-
- // Handle casts from floating point to integer now...
- if (SrcClass == cFP32 || SrcClass == cFP64) {
- static Function* const Funcs[] =
- { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
- // emit library call
- if (DestClass == cLong) {
- bool isDouble = SrcClass == cFP64;
- unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(SrcReg, SrcTy));
- Function *floatFn = Funcs[nameIndex];
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
- TM.CalledFunctions.insert(floatFn);
- return;
- }
-
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-
- if (DestTy->isSigned()) {
- unsigned TempReg = makeAnotherReg(Type::DoubleTy);
-
- // Convert to integer in the FP reg and store it to a stack slot
- BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
- .addReg(TempReg), ValueFrameIdx);
-
- // There is no load signed byte opcode, so we must emit a sign extend for
- // that particular size. Make sure to source the new integer from the
- // correct offset.
- if (DestClass == cByte) {
- unsigned TempReg2 = makeAnotherReg(DestTy);
- addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
- ValueFrameIdx, 7);
- BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
- } else {
- int offset = (DestClass == cShort) ? 6 : 4;
- unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
- addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
- ValueFrameIdx, offset);
- }
- } else {
- unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
- double maxInt = (1LL << 32) - 1;
- unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
- double border = 1LL << 31;
- unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
- unsigned UseZero = makeAnotherReg(Type::DoubleTy);
- unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
- unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
- unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
- unsigned IntTmp = makeAnotherReg(Type::IntTy);
- unsigned XorReg = makeAnotherReg(Type::IntTy);
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
- // Update machine-CFG edges
- MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *OldMBB = BB;
- ilist<MachineBasicBlock>::iterator It = BB; ++It;
- F->getBasicBlockList().insert(It, XorMBB);
- F->getBasicBlockList().insert(It, PhiMBB);
- BB->addSuccessor(XorMBB);
- BB->addSuccessor(PhiMBB);
-
- // Convert from floating point to unsigned 32-bit value
- // Use 0 if incoming value is < 0.0
- BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
- .addReg(Zero);
- // Use 2**32 - 1 if incoming value is >= 2**32
- BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
- BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
- .addReg(UseZero).addReg(MaxInt);
- // Subtract 2**31
- BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
- // Use difference if >= 2**31
- BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
- .addReg(Border);
- BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
- .addReg(UseChoice);
- // Convert to integer
- BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
- addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
- FrameIdx);
- if (DestClass == cByte) {
- addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
- FrameIdx, 7);
- } else if (DestClass == cShort) {
- addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
- FrameIdx, 6);
- } if (DestClass == cInt) {
- addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
- FrameIdx, 4);
- BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
- BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
-
- // XorMBB:
- // add 2**31 if input was >= 2**31
- BB = XorMBB;
- BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
- XorMBB->addSuccessor(PhiMBB);
-
- // PhiMBB:
- // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
- BB = PhiMBB;
- BuildMI(BB, PPC::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
- .addReg(XorReg).addMBB(XorMBB);
- }
- }
- return;
- }
-
- // Check our invariants
- assert((SrcClass <= cInt || SrcClass == cLong) &&
- "Unhandled source class for cast operation!");
- assert((DestClass <= cInt || DestClass == cLong) &&
- "Unhandled destination class for cast operation!");
-
- bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
- bool destUnsigned = DestTy->isUnsigned();
-
- // Unsigned -> Unsigned, clear if larger,
- if (sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- if (SrcClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
- .addReg(SrcReg+1);
- } else {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- return;
- }
-
- // handle u{ byte, short, int } x u{ byte, short, int }
- unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- case cShort:
- if (SrcClass == DestClass)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cInt)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Signed -> Signed
- if (!sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- if (SrcClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
- .addReg(SrcReg+1);
- } else {
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- return;
- }
-
- // handle { byte, short, int } x { byte, short, int }
- switch (SrcClass) {
- case cByte:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Unsigned -> Signed
- if (sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- if (SrcClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1).
- addReg(SrcReg+1);
- } else {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- return;
- }
-
- // handle u{ byte, short, int } -> { byte, short, int }
- switch (SrcClass) {
- case cByte:
- if (DestClass == cByte)
- // uByte 255 -> signed byte == -1
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else
- // uByte 255 -> signed short/int == 255
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(24).addImm(31);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(16).addImm(31);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Signed -> Unsigned
- if (!sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- if (SrcClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
- .addReg(SrcReg+1);
- } else {
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- return;
- }
-
- // handle { byte, short, int } -> u{ byte, short, int }
- unsigned clearBits = (DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- case cShort:
- if (DestClass == cByte || DestClass == cShort)
- // sbyte -1 -> ubyte 0x000000FF
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- else
- // sbyte -1 -> ubyte 0xFFFFFFFF
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cInt)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Anything we haven't handled already, we can't (yet) handle at all.
- std::cerr << "Unhandled cast from " << SrcTy->getDescription()
- << "to " << DestTy->getDescription() << '\n';
- abort();
-}
-
-/// visitVANextInst - Implement the va_next instruction...
-///
-void ISel::visitVANextInst(VANextInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- unsigned Size;
- switch (I.getArgType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- Size = 4;
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- case Type::DoubleTyID:
- Size = 8;
- break;
- }
-
- // Increment the VAList pointer...
- BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
-}
-
-void ISel::visitVAArgInst(VAArgInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- switch (I.getType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
- BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
- break;
- case Type::FloatTyID:
- BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::DoubleTyID:
- BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- }
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (canFoldGEPIntoLoadOrStore(&I))
- return;
-
- unsigned outputReg = getReg(I);
- emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
- outputReg, false, 0, 0);
-}
-
-/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
-/// constant expression GEP support.
-///
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg,
- bool GEPIsFolded, ConstantSInt **RemainderPtr,
- unsigned *PendingAddReg) {
- const TargetData &TD = TM.getTargetData();
- const Type *Ty = Src->getType();
- unsigned basePtrReg = getReg(Src, MBB, IP);
- int64_t constValue = 0;
-
- // Record the operations to emit the GEP in a vector so that we can emit them
- // after having analyzed the entire instruction.
- std::vector<CollapsedGepOp> ops;
-
- // GEPs have zero or more indices; we must perform a struct access
- // or array access for each one.
- for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
- ++oi) {
- Value *idx = *oi;
- if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
- // It's a struct access. idx is the index into the structure,
- // which names the field. Use the TargetData structure to
- // pick out what the layout of the structure is in memory.
- // Use the (constant) structure index's value to find the
- // right byte offset from the StructLayout class's list of
- // structure member offsets.
- unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
- unsigned memberOffset =
- TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
-
- // StructType member offsets are always constant values. Add it to the
- // running total.
- constValue += memberOffset;
-
- // The next type is the member of the structure selected by the
- // index.
- Ty = StTy->getElementType (fieldIndex);
- } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
- // Many GEP instructions use a [cast (int/uint) to LongTy] as their
- // operand. Handle this case directly now...
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- // It's an array or pointer access: [ArraySize x ElementType].
- // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- Ty = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(Ty);
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
- if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
- constValue += CS->getValue() * elementSize;
- else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
- constValue += CU->getValue() * elementSize;
- else
- assert(0 && "Invalid ConstantInt GEP index type!");
- } else {
- // Push current gep state to this point as an add
- ops.push_back(CollapsedGepOp(false, 0,
- ConstantSInt::get(Type::IntTy,constValue)));
-
- // Push multiply gep op and reset constant value
- ops.push_back(CollapsedGepOp(true, idx,
- ConstantSInt::get(Type::IntTy, elementSize)));
-
- constValue = 0;
- }
- }
- }
- // Emit instructions for all the collapsed ops
- bool pendingAdd = false;
- unsigned pendingAddReg = 0;
-
- for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
- cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
- CollapsedGepOp& cgo = *cgo_i;
- unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
-
- // If we didn't emit an add last time through the loop, we need to now so
- // that the base reg is updated appropriately.
- if (pendingAdd) {
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(pendingAddReg);
- basePtrReg = nextBasePtrReg;
- nextBasePtrReg = makeAnotherReg(Type::IntTy);
- pendingAddReg = 0;
- pendingAdd = false;
- }
-
- if (cgo.isMul) {
- // We know the elementSize is a constant, so we can emit a constant mul
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
- pendingAddReg = basePtrReg;
- pendingAdd = true;
- } else {
- // Try and generate an immediate addition if possible
- if (cgo.size->isNullValue()) {
- BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
- BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
- .addSImm(cgo.size->getValue());
- } else {
- unsigned Op1r = getReg(cgo.size, MBB, IP);
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(Op1r);
- }
- }
-
- basePtrReg = nextBasePtrReg;
- }
- // Add the current base register plus any accumulated constant value
- ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
-
- // If we are emitting this during a fold, copy the current base register to
- // the target, and save the current constant offset so the folding load or
- // store can try and use it as an immediate.
- if (GEPIsFolded) {
- // If this is a folded GEP and the last element was an index, then we need
- // to do some extra work to turn a shift/add/stw into a shift/stwx
- if (pendingAdd && 0 == remainder->getValue()) {
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- *PendingAddReg = pendingAddReg;
- } else {
- *PendingAddReg = 0;
- if (pendingAdd) {
- unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(pendingAddReg);
- basePtrReg = nextBasePtrReg;
- }
- }
- BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- *RemainderPtr = remainder;
- return;
- }
-
- // If we still have a pending add at this point, emit it now
- if (pendingAdd) {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
- .addReg(basePtrReg);
- basePtrReg = TmpReg;
- }
-
- // After we have processed all the indices, the result is left in
- // basePtrReg. Move it to the register where we were expected to
- // put the answer.
- if (remainder->isNullValue()) {
- BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- } else if (canUseAsImmediateForOpcode(remainder, 0)) {
- BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
- .addSImm(remainder->getValue());
- } else {
- unsigned Op1r = getReg(remainder, MBB, IP);
- BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
- }
-}
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void ISel::visitAllocaInst(AllocaInst &I) {
- // If this is a fixed size alloca in the entry block for the function, we
- // statically stack allocate the space, so we don't need to do anything here.
- //
- if (dyn_castFixedAlloca(&I)) return;
-
- // Find the data size of the alloca inst's getAllocatedType.
- const Type *Ty = I.getAllocatedType();
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
- // Create a register to hold the temporary result of multiplying the type size
- // constant by the variable amount.
- unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
-
- // TotalSizeReg = mul <numelements>, <TypeSize>
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
- doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
-
- // AddedSize = add <TotalSizeReg>, 15
- unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
-
- // AlignedSize = and <AddedSize>, ~15
- unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
- .addImm(0).addImm(27);
-
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
-
- // Put a pointer to the space into the result register, by copying
- // the stack pointer.
- BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void ISel::visitMallocInst(MallocInst &I) {
- unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
- unsigned Arg;
-
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
- Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
- } else {
- Arg = makeAnotherReg(Type::UIntTy);
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
- doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
- }
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Arg, Type::UIntTy));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
- doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
- TM.CalledFunctions.insert(mallocFn);
-}
-
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void ISel::visitFreeInst(FreeInst &I) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(I.getOperand(0)));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
- doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
- TM.CalledFunctions.insert(freeFn);
-}
-
-/// createPPCSimpleInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation is a very simple peep-hole fashion. The
-/// generated code sucks but the implementation is nice and simple.
-///
-FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
- return new ISel(TM);
-}
diff --git a/lib/Target/PowerPC/PowerPCInstrInfo.h b/lib/Target/PowerPC/PowerPCInstrInfo.h
index 797f3024eb..e975caf88b 100644
--- a/lib/Target/PowerPC/PowerPCInstrInfo.h
+++ b/lib/Target/PowerPC/PowerPCInstrInfo.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPCINSTRUCTIONINFO_H
-#define POWERPCINSTRUCTIONINFO_H
+#ifndef POWERPC_INSTRUCTIONINFO_H
+#define POWERPC_INSTRUCTIONINFO_H
#include "PowerPC.h"
#include "PowerPCRegisterInfo.h"
diff --git a/lib/Target/PowerPC/PowerPCTargetMachine.h b/lib/Target/PowerPC/PowerPCTargetMachine.h
index aa6698e2d0..cf78943a49 100644
--- a/lib/Target/PowerPC/PowerPCTargetMachine.h
+++ b/lib/Target/PowerPC/PowerPCTargetMachine.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef POWERPCTARGETMACHINE_H
-#define POWERPCTARGETMACHINE_H
+#ifndef POWERPC_TARGETMACHINE_H
+#define POWERPC_TARGETMACHINE_H
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameInfo.h"
@@ -31,9 +31,11 @@ class PowerPCTargetMachine : public TargetMachine {
TargetFrameInfo FrameInfo;
PowerPCJITInfo JITInfo;
+protected:
+ PowerPCTargetMachine(const std::string &name, IntrinsicLowering *IL,
+ const TargetData &TD, const TargetFrameInfo &TFI,
+ const PowerPCJITInfo &TJI);
public:
- PowerPCTargetMachine(const Module &M, IntrinsicLowering *IL);
-
virtual const PowerPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
virtual const MRegisterInfo *getRegisterInfo() const {
@@ -43,24 +45,7 @@ public:
return &JITInfo;
}
- /// addPassesToEmitMachineCode - Add passes to the specified pass manager to
- /// get machine code emitted. This uses a MachineCodeEmitter object to handle
- /// actually outputting the machine code and resolving things like the address
- /// of functions. This method should returns true if machine code emission is
- /// not supported.
- ///
- virtual bool addPassesToEmitMachineCode(FunctionPassManager &PM,
- MachineCodeEmitter &MCE);
-
- virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
-
- static unsigned getModuleMatchQuality(const Module &M);
static unsigned getJITMatchQuality();
-
- // Two shared sets between the instruction selector and the printer allow for
- // correct linkage on Darwin
- std::set<GlobalValue*> CalledFunctions;
- std::set<GlobalValue*> AddressTaken;
};
} // end namespace llvm