summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86InstrInfo.h
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2011-07-25 18:43:53 +0000
committerEvan Cheng <evan.cheng@apple.com>2011-07-25 18:43:53 +0000
commit8c3fee59038d8fd98db2a01b6a309a8941a16a3f (patch)
tree03e4f1aff53b9251333b8f11cee43786f41554f1 /lib/Target/X86/X86InstrInfo.h
parentc57e7dbfaff2e5cfe668da9f68868826368407a1 (diff)
downloadllvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.tar.gz
llvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.tar.bz2
llvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.tar.xz
Refactor X86 target to separate MC code from Target code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135930 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/X86/X86InstrInfo.h')
-rw-r--r--lib/Target/X86/X86InstrInfo.h503
1 files changed, 2 insertions, 501 deletions
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index 5f2eba34ac..931d6cad1d 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -27,24 +27,6 @@ namespace llvm {
class X86TargetMachine;
namespace X86 {
- // Enums for memory operand decoding. Each memory operand is represented with
- // a 5 operand sequence in the form:
- // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
- // These enums help decode this.
- enum {
- AddrBaseReg = 0,
- AddrScaleAmt = 1,
- AddrIndexReg = 2,
- AddrDisp = 3,
-
- /// AddrSegmentReg - The operand # of the segment in the memory operand.
- AddrSegmentReg = 4,
-
- /// AddrNumOperands - Total number of operands in a memory reference.
- AddrNumOperands = 5
- };
-
-
// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
@@ -82,133 +64,8 @@ namespace X86 {
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
/// e.g. turning COND_E to COND_NE.
CondCode GetOppositeBranchCondition(X86::CondCode CC);
+} // end namespace X86;
-}
-
-/// X86II - This namespace holds all of the target specific flags that
-/// instruction info tracks.
-///
-namespace X86II {
- /// Target Operand Flag enum.
- enum TOF {
- //===------------------------------------------------------------------===//
- // X86 Specific MachineOperand flags.
-
- MO_NO_FLAG,
-
- /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
- /// relocation of:
- /// SYMBOL_LABEL + [. - PICBASELABEL]
- MO_GOT_ABSOLUTE_ADDRESS,
-
- /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
- /// immediate should get the value of the symbol minus the PIC base label:
- /// SYMBOL_LABEL - PICBASELABEL
- MO_PIC_BASE_OFFSET,
-
- /// MO_GOT - On a symbol operand this indicates that the immediate is the
- /// offset to the GOT entry for the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOT
- MO_GOT,
-
- /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
- /// the offset to the location of the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTOFF
- MO_GOTOFF,
-
- /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
- /// offset to the GOT entry for the symbol name from the current code
- /// location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTPCREL
- MO_GOTPCREL,
-
- /// MO_PLT - On a symbol operand this indicates that the immediate is
- /// offset to the PLT entry of symbol name from the current code location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @PLT
- MO_PLT,
-
- /// MO_TLSGD - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSGD
- MO_TLSGD,
-
- /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTTPOFF
- MO_GOTTPOFF,
-
- /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @INDNTPOFF
- MO_INDNTPOFF,
-
- /// MO_TPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TPOFF
- MO_TPOFF,
-
- /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @NTPOFF
- MO_NTPOFF,
-
- /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "__imp_FOO" symbol. This is used for
- /// dllimport linkage on windows.
- MO_DLLIMPORT,
-
- /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$stub" symbol. This is used for calls
- /// and jumps to external functions on Tiger and earlier.
- MO_DARWIN_STUB,
-
- /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
- /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY,
-
- /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
- /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
- /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY_PIC_BASE,
-
- /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
- /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
- /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
- /// stub.
- MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
-
- /// MO_TLVP - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// This is the TLS offset for the Darwin TLS mechanism.
- MO_TLVP,
-
- /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
- /// is some TLS offset from the picbase.
- ///
- /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
- MO_TLVP_PIC_BASE
- };
-}
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
/// a reference to a stub for a global, not the global itself.
@@ -243,353 +100,6 @@ inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
}
}
-/// X86II - This namespace holds all of the target specific flags that
-/// instruction info tracks.
-///
-namespace X86II {
- enum {
- //===------------------------------------------------------------------===//
- // Instruction encodings. These are the standard/most common forms for X86
- // instructions.
- //
-
- // PseudoFrm - This represents an instruction that is a pseudo instruction
- // or one that has not been implemented yet. It is illegal to code generate
- // it, but tolerated for intermediate implementation stages.
- Pseudo = 0,
-
- /// Raw - This form is for instructions that don't have any operands, so
- /// they are just a fixed opcode value, like 'leave'.
- RawFrm = 1,
-
- /// AddRegFrm - This form is used for instructions like 'push r32' that have
- /// their one register operand added to their opcode.
- AddRegFrm = 2,
-
- /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is a register.
- ///
- MRMDestReg = 3,
-
- /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is memory.
- ///
- MRMDestMem = 4,
-
- /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is a register.
- ///
- MRMSrcReg = 5,
-
- /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is memory.
- ///
- MRMSrcMem = 6,
-
- /// MRM[0-7][rm] - These forms are used to represent instructions that use
- /// a Mod/RM byte, and use the middle field to hold extended opcode
- /// information. In the intel manual these are represented as /0, /1, ...
- ///
-
- // First, instructions that operate on a register r/m operand...
- MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
- MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
-
- // Next, instructions that operate on a memory r/m operand...
- MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
- MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
-
- // MRMInitReg - This form is used for instructions whose source and
- // destinations are the same register.
- MRMInitReg = 32,
-
- //// MRM_C1 - A mod/rm byte of exactly 0xC1.
- MRM_C1 = 33,
- MRM_C2 = 34,
- MRM_C3 = 35,
- MRM_C4 = 36,
- MRM_C8 = 37,
- MRM_C9 = 38,
- MRM_E8 = 39,
- MRM_F0 = 40,
- MRM_F8 = 41,
- MRM_F9 = 42,
- MRM_D0 = 45,
- MRM_D1 = 46,
-
- /// RawFrmImm8 - This is used for the ENTER instruction, which has two
- /// immediates, the first of which is a 16-bit immediate (specified by
- /// the imm encoding) and the second is a 8-bit fixed value.
- RawFrmImm8 = 43,
-
- /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
- /// immediates, the first of which is a 16 or 32-bit immediate (specified by
- /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
- /// manual, this operand is described as pntr16:32 and pntr16:16
- RawFrmImm16 = 44,
-
- FormMask = 63,
-
- //===------------------------------------------------------------------===//
- // Actual flags...
-
- // OpSize - Set if this instruction requires an operand size prefix (0x66),
- // which most often indicates that the instruction operates on 16 bit data
- // instead of 32 bit data.
- OpSize = 1 << 6,
-
- // AsSize - Set if this instruction requires an operand size prefix (0x67),
- // which most often indicates that the instruction address 16 bit address
- // instead of 32 bit address (or 32 bit address in 64 bit mode).
- AdSize = 1 << 7,
-
- //===------------------------------------------------------------------===//
- // Op0Mask - There are several prefix bytes that are used to form two byte
- // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
- // used to obtain the setting of this field. If no bits in this field is
- // set, there is no prefix byte for obtaining a multibyte opcode.
- //
- Op0Shift = 8,
- Op0Mask = 0x1F << Op0Shift,
-
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
- TB = 1 << Op0Shift,
-
- // REP - The 0xF3 prefix byte indicating repetition of the following
- // instruction.
- REP = 2 << Op0Shift,
-
- // D8-DF - These escape opcodes are used by the floating point unit. These
- // values must remain sequential.
- D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
- DA = 5 << Op0Shift, DB = 6 << Op0Shift,
- DC = 7 << Op0Shift, DD = 8 << Op0Shift,
- DE = 9 << Op0Shift, DF = 10 << Op0Shift,
-
- // XS, XD - These prefix codes are for single and double precision scalar
- // floating point operations performed in the SSE registers.
- XD = 11 << Op0Shift, XS = 12 << Op0Shift,
-
- // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
- T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
- A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
-
- // TF - Prefix before and after 0x0F
- TF = 17 << Op0Shift,
-
- //===------------------------------------------------------------------===//
- // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
- // They are used to specify GPRs and SSE registers, 64-bit operand size,
- // etc. We only cares about REX.W and REX.R bits and only the former is
- // statically determined.
- //
- REXShift = Op0Shift + 5,
- REX_W = 1 << REXShift,
-
- //===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
- // unused so that we can tell if we forgot to set a value.
- ImmShift = REXShift + 1,
- ImmMask = 7 << ImmShift,
- Imm8 = 1 << ImmShift,
- Imm8PCRel = 2 << ImmShift,
- Imm16 = 3 << ImmShift,
- Imm16PCRel = 4 << ImmShift,
- Imm32 = 5 << ImmShift,
- Imm32PCRel = 6 << ImmShift,
- Imm64 = 7 << ImmShift,
-
- //===------------------------------------------------------------------===//
- // FP Instruction Classification... Zero is non-fp instruction.
-
- // FPTypeMask - Mask for all of the FP types...
- FPTypeShift = ImmShift + 3,
- FPTypeMask = 7 << FPTypeShift,
-
- // NotFP - The default, set for instructions that do not use FP registers.
- NotFP = 0 << FPTypeShift,
-
- // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
- ZeroArgFP = 1 << FPTypeShift,
-
- // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
- OneArgFP = 2 << FPTypeShift,
-
- // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
- // result back to ST(0). For example, fcos, fsqrt, etc.
- //
- OneArgFPRW = 3 << FPTypeShift,
-
- // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
- // explicit argument, storing the result to either ST(0) or the implicit
- // argument. For example: fadd, fsub, fmul, etc...
- TwoArgFP = 4 << FPTypeShift,
-
- // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
- // explicit argument, but have no destination. Example: fucom, fucomi, ...
- CompareFP = 5 << FPTypeShift,
-
- // CondMovFP - "2 operand" floating point conditional move instructions.
- CondMovFP = 6 << FPTypeShift,
-
- // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
- SpecialFP = 7 << FPTypeShift,
-
- // Lock prefix
- LOCKShift = FPTypeShift + 3,
- LOCK = 1 << LOCKShift,
-
- // Segment override prefixes. Currently we just need ability to address
- // stuff in gs and fs segments.
- SegOvrShift = LOCKShift + 1,
- SegOvrMask = 3 << SegOvrShift,
- FS = 1 << SegOvrShift,
- GS = 2 << SegOvrShift,
-
- // Execution domain for SSE instructions in bits 23, 24.
- // 0 in bits 23-24 means normal, non-SSE instruction.
- SSEDomainShift = SegOvrShift + 2,
-
- OpcodeShift = SSEDomainShift + 2,
-
- //===------------------------------------------------------------------===//
- /// VEX - The opcode prefix used by AVX instructions
- VEXShift = OpcodeShift + 8,
- VEX = 1U << 0,
-
- /// VEX_W - Has a opcode specific functionality, but is used in the same
- /// way as REX_W is for regular SSE instructions.
- VEX_W = 1U << 1,
-
- /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
- /// address instructions in SSE are represented as 3 address ones in AVX
- /// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4V = 1U << 2,
-
- /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
- /// must be encoded in the i8 immediate field. This usually happens in
- /// instructions with 4 operands.
- VEX_I8IMM = 1U << 3,
-
- /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
- /// instruction uses 256-bit wide registers. This is usually auto detected
- /// if a VR256 register is used, but some AVX instructions also have this
- /// field marked when using a f256 memory references.
- VEX_L = 1U << 4,
-
- /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
- /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
- /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
- /// storing a classifier in the imm8 field. To simplify our implementation,
- /// we handle this by storeing the classifier in the opcode field and using
- /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- Has3DNow0F0FOpcode = 1U << 5
- };
-
- // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
- // specified machine instruction.
- //
- static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
- return TSFlags >> X86II::OpcodeShift;
- }
-
- static inline bool hasImm(uint64_t TSFlags) {
- return (TSFlags & X86II::ImmMask) != 0;
- }
-
- /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
- /// of the specified instruction.
- static inline unsigned getSizeOfImm(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: assert(0 && "Unknown immediate size");
- case X86II::Imm8:
- case X86II::Imm8PCRel: return 1;
- case X86II::Imm16:
- case X86II::Imm16PCRel: return 2;
- case X86II::Imm32:
- case X86II::Imm32PCRel: return 4;
- case X86II::Imm64: return 8;
- }
- }
-
- /// isImmPCRel - Return true if the immediate of the specified instruction's
- /// TSFlags indicates that it is pc relative.
- static inline unsigned isImmPCRel(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: assert(0 && "Unknown immediate size");
- case X86II::Imm8PCRel:
- case X86II::Imm16PCRel:
- case X86II::Imm32PCRel:
- return true;
- case X86II::Imm8:
- case X86II::Imm16:
- case X86II::Imm32:
- case X86II::Imm64:
- return false;
- }
- }
-
- /// getMemoryOperandNo - The function returns the MCInst operand # for the
- /// first field of the memory operand. If the instruction doesn't have a
- /// memory operand, this returns -1.
- ///
- /// Note that this ignores tied operands. If there is a tied register which
- /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
- /// counted as one operand.
- ///
- static inline int getMemoryOperandNo(uint64_t TSFlags) {
- switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
- default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
- case X86II::Pseudo:
- case X86II::RawFrm:
- case X86II::AddRegFrm:
- case X86II::MRMDestReg:
- case X86II::MRMSrcReg:
- case X86II::RawFrmImm8:
- case X86II::RawFrmImm16:
- return -1;
- case X86II::MRMDestMem:
- return 0;
- case X86II::MRMSrcMem: {
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- unsigned FirstMemOp = 1;
- if (HasVEX_4V)
- ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
-
- // FIXME: Maybe lea should have its own form? This is a horrible hack.
- //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
- // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
- return FirstMemOp;
- }
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- return -1;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- return 0;
- case X86II::MRM_C1:
- case X86II::MRM_C2:
- case X86II::MRM_C3:
- case X86II::MRM_C4:
- case X86II::MRM_C8:
- case X86II::MRM_C9:
- case X86II::MRM_E8:
- case X86II::MRM_F0:
- case X86II::MRM_F8:
- case X86II::MRM_F9:
- case X86II::MRM_D0:
- case X86II::MRM_D1:
- return -1;
- }
- }
-}
-
inline static bool isScale(const MachineOperand &MO) {
return MO.isImm() &&
(MO.getImm() == 1 || MO.getImm() == 2 ||
@@ -829,20 +339,11 @@ public:
/// instruction that defines the specified register class.
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
- static bool isX86_64NonExtLowByteReg(unsigned reg) {
- return (reg == X86::SPL || reg == X86::BPL ||
- reg == X86::SIL || reg == X86::DIL);
- }
-
static bool isX86_64ExtendedReg(const MachineOperand &MO) {
if (!MO.isReg()) return false;
- return isX86_64ExtendedReg(MO.getReg());
+ return X86II::isX86_64ExtendedReg(MO.getReg());
}
- /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
- /// higher) register? e.g. r8, xmm8, xmm13, etc.
- static bool isX86_64ExtendedReg(unsigned RegNo);
-
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.