summaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2011-07-18 04:54:35 +0000
committerChris Lattner <sabre@nondot.org>2011-07-18 04:54:35 +0000
commitdb125cfaf57cc83e7dd7453de2d509bc8efd0e5e (patch)
treea163ac0f83da7be3f9675a122a6144b12418be09 /lib/Transforms
parent4b3d5469fb7c25504fa20dc65640f02d79675d48 (diff)
downloadllvm-db125cfaf57cc83e7dd7453de2d509bc8efd0e5e.tar.gz
llvm-db125cfaf57cc83e7dd7453de2d509bc8efd0e5e.tar.bz2
llvm-db125cfaf57cc83e7dd7453de2d509bc8efd0e5e.tar.xz
land David Blaikie's patch to de-constify Type, with a few tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135375 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp26
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp12
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp80
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp2
-rw-r--r--lib/Transforms/IPO/Inliner.cpp4
-rw-r--r--lib/Transforms/IPO/LowerSetJmp.cpp10
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp26
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h10
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp8
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp6
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp68
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp78
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp34
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp28
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombinePHI.cpp10
-rw-r--r--lib/Transforms/InstCombine/InstCombineSelect.cpp4
-rw-r--r--lib/Transforms/InstCombine/InstCombineShifts.cpp2
-rw-r--r--lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp12
-rw-r--r--lib/Transforms/InstCombine/InstCombineVectorOps.cpp8
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp34
-rw-r--r--lib/Transforms/Instrumentation/EdgeProfiling.cpp2
-rw-r--r--lib/Transforms/Instrumentation/GCOVProfiling.cpp20
-rw-r--r--lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp4
-rw-r--r--lib/Transforms/Instrumentation/PathProfiling.cpp14
-rw-r--r--lib/Transforms/Instrumentation/ProfilingUtils.cpp6
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp8
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp2
-rw-r--r--lib/Transforms/Scalar/GVN.cpp32
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp22
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp4
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp74
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp8
-rw-r--r--lib/Transforms/Scalar/ObjCARC.cpp42
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp20
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp182
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp66
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp4
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp10
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp6
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp6
-rw-r--r--lib/Transforms/Utils/LowerExpectIntrinsic.cpp4
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp6
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp2
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp2
45 files changed, 505 insertions, 505 deletions
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index fa007cfc65..d92c45ff6a 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -155,12 +155,12 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
Argument *PtrArg = PointerArgs[i].first;
- const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
+ Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
// If this is a byval argument, and if the aggregate type is small, just
// pass the elements, which is always safe.
if (isByVal) {
- if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
+ if (StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
DEBUG(dbgs() << "argpromotion disable promoting argument '"
<< PtrArg->getName() << "' because it would require adding more"
@@ -190,7 +190,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
// If the argument is a recursive type and we're in a recursive
// function, we could end up infinitely peeling the function argument.
if (isSelfRecursive) {
- if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
+ if (StructType *STy = dyn_cast<StructType>(AgTy)) {
bool RecursiveType = false;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
if (STy->getElementType(i) == PtrArg->getType()) {
@@ -492,7 +492,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
- const FunctionType *FTy = F->getFunctionType();
+ FunctionType *FTy = F->getFunctionType();
std::vector<Type*> Params;
typedef std::set<IndicesVector> ScalarizeTable;
@@ -527,8 +527,8 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
++I, ++ArgIndex) {
if (ByValArgsToTransform.count(I)) {
// Simple byval argument? Just add all the struct element types.
- const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- const StructType *STy = cast<StructType>(AgTy);
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ StructType *STy = cast<StructType>(AgTy);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Params.push_back(STy->getElementType(i));
++NumByValArgsPromoted;
@@ -593,7 +593,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
if (Attributes attrs = PAL.getFnAttributes())
AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
- const Type *RetTy = FTy->getReturnType();
+ Type *RetTy = FTy->getReturnType();
// Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
// have zero fixed arguments.
@@ -662,8 +662,8 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
} else if (ByValArgsToTransform.count(I)) {
// Emit a GEP and load for each element of the struct.
- const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- const StructType *STy = cast<StructType>(AgTy);
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
@@ -686,12 +686,12 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
LoadInst *OrigLoad = OriginalLoads[*SI];
if (!SI->empty()) {
Ops.reserve(SI->size());
- const Type *ElTy = V->getType();
+ Type *ElTy = V->getType();
for (IndicesVector::const_iterator II = SI->begin(),
IE = SI->end(); II != IE; ++II) {
// Use i32 to index structs, and i64 for others (pointers/arrays).
// This satisfies GEP constraints.
- const Type *IdxTy = (ElTy->isStructTy() ?
+ Type *IdxTy = (ElTy->isStructTy() ?
Type::getInt32Ty(F->getContext()) :
Type::getInt64Ty(F->getContext()));
Ops.push_back(ConstantInt::get(IdxTy, *II));
@@ -792,9 +792,9 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
Instruction *InsertPt = NF->begin()->begin();
// Just add all the struct element types.
- const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
- const StructType *STy = cast<StructType>(AgTy);
+ StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index 15177650f4..4bb6f7a90e 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -206,7 +206,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
- const FunctionType *FTy = Fn.getFunctionType();
+ FunctionType *FTy = Fn.getFunctionType();
std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
@@ -344,7 +344,7 @@ bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
static unsigned NumRetVals(const Function *F) {
if (F->getReturnType()->isVoidTy())
return 0;
- else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
+ else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
else
return 1;
@@ -491,7 +491,7 @@ void DAE::SurveyFunction(const Function &F) {
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
- const Type *STy = dyn_cast<StructType>(F.getReturnType());
+ Type *STy = dyn_cast<StructType>(F.getReturnType());
// Loop all uses of the function.
for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
I != E; ++I) {
@@ -646,7 +646,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
- const FunctionType *FTy = F->getFunctionType();
+ FunctionType *FTy = F->getFunctionType();
std::vector<Type*> Params;
// Set up to build a new list of parameter attributes.
@@ -660,7 +660,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Find out the new return value.
Type *RetTy = FTy->getReturnType();
- const Type *NRetTy = NULL;
+ Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
// -1 means unused, other numbers are the new index
@@ -669,7 +669,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (RetTy->isVoidTy()) {
NRetTy = RetTy;
} else {
- const StructType *STy = dyn_cast<StructType>(RetTy);
+ StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
// Look at each of the original return values individually.
for (unsigned i = 0; i != RetCount; ++i) {
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index 4ac721dd06..25eed51fd5 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -281,18 +281,18 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
} else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
} else if (isa<ConstantAggregateZero>(Agg)) {
- if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
+ if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
if (IdxV < STy->getNumElements())
return Constant::getNullValue(STy->getElementType(IdxV));
- } else if (const SequentialType *STy =
+ } else if (SequentialType *STy =
dyn_cast<SequentialType>(Agg->getType())) {
return Constant::getNullValue(STy->getElementType());
}
} else if (isa<UndefValue>(Agg)) {
- if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
+ if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
if (IdxV < STy->getNumElements())
return UndefValue::get(STy->getElementType(IdxV));
- } else if (const SequentialType *STy =
+ } else if (SequentialType *STy =
dyn_cast<SequentialType>(Agg->getType())) {
return UndefValue::get(STy->getElementType());
}
@@ -430,7 +430,7 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
++GEPI; // Skip over the pointer index.
// If this is a use of an array allocation, do a bit more checking for sanity.
- if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
uint64_t NumElements = AT->getNumElements();
ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
@@ -451,9 +451,9 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
GEPI != E;
++GEPI) {
uint64_t NumElements;
- if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
+ if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
NumElements = SubArrayTy->getNumElements();
- else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
+ else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
NumElements = SubVectorTy->getNumElements();
else {
assert((*GEPI)->isStructTy() &&
@@ -498,7 +498,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
assert(GV->hasLocalLinkage() && !GV->isConstant());
Constant *Init = GV->getInitializer();
- const Type *Ty = Init->getType();
+ Type *Ty = Init->getType();
std::vector<GlobalVariable*> NewGlobals;
Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
@@ -508,7 +508,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (StartAlignment == 0)
StartAlignment = TD.getABITypeAlignment(GV->getType());
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
NewGlobals.reserve(STy->getNumElements());
const StructLayout &Layout = *TD.getStructLayout(STy);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
@@ -531,9 +531,9 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
NGV->setAlignment(NewAlign);
}
- } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
+ } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
unsigned NumElements = 0;
- if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
+ if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
NumElements = ATy->getNumElements();
else
NumElements = cast<VectorType>(STy)->getNumElements();
@@ -846,12 +846,12 @@ static void ConstantPropUsersOf(Value *V) {
/// malloc into a global, and any loads of GV as uses of the new global.
static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
CallInst *CI,
- const Type *AllocTy,
+ Type *AllocTy,
ConstantInt *NElements,
TargetData* TD) {
DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
- const Type *GlobalType;
+ Type *GlobalType;
if (NElements->getZExtValue() == 1)
GlobalType = AllocTy;
else
@@ -1192,7 +1192,7 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
// PN's type is pointer to struct. Make a new PHI of pointer to struct
// field.
- const StructType *ST =
+ StructType *ST =
cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
PHINode *NewPN =
@@ -1298,8 +1298,8 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
Value* NElems, TargetData *TD) {
DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
- const Type* MAT = getMallocAllocatedType(CI);
- const StructType *STy = cast<StructType>(MAT);
+ Type* MAT = getMallocAllocatedType(CI);
+ StructType *STy = cast<StructType>(MAT);
// There is guaranteed to be at least one use of the malloc (storing
// it into GV). If there are other uses, change them to be uses of
@@ -1313,8 +1313,8 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
std::vector<Value*> FieldMallocs;
for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
- const Type *FieldTy = STy->getElementType(FieldNo);
- const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
+ Type *FieldTy = STy->getElementType(FieldNo);
+ PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
GlobalVariable *NGV =
new GlobalVariable(*GV->getParent(),
@@ -1325,9 +1325,9 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
FieldGlobals.push_back(NGV);
unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
- if (const StructType *ST = dyn_cast<StructType>(FieldTy))
+ if (StructType *ST = dyn_cast<StructType>(FieldTy))
TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
- const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
ConstantInt::get(IntPtrTy, TypeSize),
NElems, 0,
@@ -1428,7 +1428,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
// Insert a store of null into each global.
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
- const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
+ PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
Constant *Null = Constant::getNullValue(PT->getElementType());
new StoreInst(Null, FieldGlobals[i], SI);
}
@@ -1485,7 +1485,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
/// cast of malloc.
static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
CallInst *CI,
- const Type *AllocTy,
+ Type *AllocTy,
Module::global_iterator &GVI,
TargetData *TD) {
if (!TD)
@@ -1538,10 +1538,10 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// If this is an allocation of a fixed size array of structs, analyze as a
// variable size array. malloc [100 x struct],1 -> malloc struct, 100
if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
- if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
+ if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
AllocTy = AT->getElementType();
- const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
+ StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
if (!AllocSTy)
return false;
@@ -1552,8 +1552,8 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// If this is a fixed size array, transform the Malloc to be an alloc of
// structs. malloc [100 x struct],1 -> malloc struct, 100
- if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
- const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
+ if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
+ Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
@@ -1596,7 +1596,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
return true;
} else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
- const Type* MallocType = getMallocAllocatedType(CI);
+ Type* MallocType = getMallocAllocatedType(CI);
if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
GVI, TD))
return true;
@@ -1611,7 +1611,7 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
/// can shrink the global into a boolean and select between the two values
/// whenever it is used. This exposes the values to other scalar optimizations.
static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
- const Type *GVElType = GV->getType()->getElementType();
+ Type *GVElType = GV->getType()->getElementType();
// If GVElType is already i1, it is already shrunk. If the type of the GV is
// an FP value, pointer or vector, don't do this optimization because a select
@@ -1761,7 +1761,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
->getEntryBlock().begin());
- const Type* ElemTy = GV->getType()->getElementType();
+ Type* ElemTy = GV->getType()->getElementType();
// FIXME: Pass Global's alignment when globals have alignment
AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
if (!isa<UndefValue>(GV->getInitializer()))
@@ -2003,7 +2003,7 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
CSVals[1] = 0;
- const StructType *StructTy =
+ StructType *StructTy =
cast <StructType>(
cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
@@ -2013,9 +2013,9 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
if (Ctors[i]) {
CSVals[1] = Ctors[i];
} else {
- const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
+ Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
false);
- const PointerType *PFTy = PointerType::getUnqual(FTy);
+ PointerType *PFTy = PointerType::getUnqual(FTy);
CSVals[1] = Constant::getNullValue(PFTy);
CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
0x7fffffff);
@@ -2196,7 +2196,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
}
std::vector<Constant*> Elts;
- if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
+ if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
// Break up the constant into its elements.
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
@@ -2224,10 +2224,10 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
}
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
- const SequentialType *InitTy = cast<SequentialType>(Init->getType());
+ SequentialType *InitTy = cast<SequentialType>(Init->getType());
uint64_t NumElts;
- if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
+ if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
NumElts = ATy->getNumElements();
else
NumElts = cast<VectorType>(InitTy)->getNumElements();
@@ -2358,7 +2358,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
// stored value.
Ptr = CE->getOperand(0);
- const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
+ Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
// In order to push the bitcast onto the stored value, a bitcast
// from NewTy to Val's type must be legal. If it's not, we can try
@@ -2367,10 +2367,10 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
// If NewTy is a struct, we can convert the pointer to the struct
// into a pointer to its first member.
// FIXME: This could be extended to support arrays as well.
- if (const StructType *STy = dyn_cast<StructType>(NewTy)) {
+ if (StructType *STy = dyn_cast<StructType>(NewTy)) {
NewTy = STy->getTypeAtIndex(0U);
- const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
+ IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
Constant * const IdxList[] = {IdxZero, IdxZero};
@@ -2421,7 +2421,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
if (InstResult == 0) return false; // Could not evaluate load.
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
- const Type *Ty = AI->getType()->getElementType();
+ Type *Ty = AI->getType()->getElementType();
AllocaTmps.push_back(new GlobalVariable(Ty, false,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
@@ -2711,7 +2711,7 @@ static Function *FindCXAAtExit(Module &M) {
if (!Fn)
return 0;
- const FunctionType *FTy = Fn->getFunctionType();
+ FunctionType *FTy = Fn->getFunctionType();
// Checking that the function has the right return type, the right number of
// parameters and that they all have pointer types should be enough.
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
index 25c0134664..d757e1fdb1 100644
--- a/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -167,7 +167,7 @@ bool IPCP::PropagateConstantReturn(Function &F) {
// Check to see if this function returns a constant.
SmallVector<Value *,4> RetVals;
- const StructType *STy = dyn_cast<StructType>(F.getReturnType());
+ StructType *STy = dyn_cast<StructType>(F.getReturnType());
if (STy)
for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
RetVals.push_back(UndefValue::get(STy->getElementType(i)));
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index 57f3e772b5..f00935b088 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -62,7 +62,7 @@ void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
}
-typedef DenseMap<const ArrayType*, std::vector<AllocaInst*> >
+typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
InlinedArrayAllocasTy;
/// InlineCallIfPossible - If it is possible to inline the specified call site,
@@ -139,7 +139,7 @@ static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
// Don't bother trying to merge array allocations (they will usually be
// canonicalized to be an allocation *of* an array), or allocations whose
// type is not itself an array (because we're afraid of pessimizing SRoA).
- const ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
+ ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
if (ATy == 0 || AI->isArrayAllocation())
continue;
diff --git a/lib/Transforms/IPO/LowerSetJmp.cpp b/lib/Transforms/IPO/LowerSetJmp.cpp
index 659476b139..494cee20f2 100644
--- a/lib/Transforms/IPO/LowerSetJmp.cpp
+++ b/lib/Transforms/IPO/LowerSetJmp.cpp
@@ -199,8 +199,8 @@ bool LowerSetJmp::runOnModule(Module& M) {
// This function is always successful, unless it isn't.
bool LowerSetJmp::doInitialization(Module& M)
{
- const Type *SBPTy = Type::getInt8PtrTy(M.getContext());
- const Type *SBPPTy = PointerType::getUnqual(SBPTy);
+ Type *SBPTy = Type::getInt8PtrTy(M.getContext());
+ Type *SBPPTy = PointerType::getUnqual(SBPTy);
// N.B. See llvm/runtime/GCCLibraries/libexception/SJLJ-Exception.h for
// a description of the following library functions.
@@ -258,7 +258,7 @@ bool LowerSetJmp::IsTransformableFunction(StringRef Name) {
// throwing the exception for us.
void LowerSetJmp::TransformLongJmpCall(CallInst* Inst)
{
- const Type* SBPTy = Type::getInt8PtrTy(Inst->getContext());
+ Type* SBPTy = Type::getInt8PtrTy(Inst->getContext());
// Create the call to "__llvm_sjljeh_throw_longjmp". This takes the
// same parameters as "longjmp", except that the buffer is cast to a
@@ -308,7 +308,7 @@ AllocaInst* LowerSetJmp::GetSetJmpMap(Function* Func)
assert(Inst && "Couldn't find even ONE instruction in entry block!");
// Fill in the alloca and call to initialize the SJ map.
- const Type *SBPTy =
+ Type *SBPTy =
Type::getInt8PtrTy(Func->getContext());
AllocaInst* Map = new AllocaInst(SBPTy, 0, "SJMap", Inst);
CallInst::Create(InitSJMap, Map, "", Inst);
@@ -378,7 +378,7 @@ void LowerSetJmp::TransformSetJmpCall(CallInst* Inst)
Function* Func = ABlock->getParent();
// Add this setjmp to the setjmp map.
- const Type* SBPTy =
+ Type* SBPTy =
Type::getInt8PtrTy(Inst->getContext());
CastInst* BufPtr =
new BitCastInst(Inst->getArgOperand(0), SBPTy, "SBJmpBuf", Inst);
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 7796d05b7b..bba3067dc4 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -76,7 +76,7 @@ STATISTIC(NumDoubleWeak, "Number of new functions created");
/// functions that will compare equal, without looking at the instructions
/// inside the function.
static unsigned profileFunction(const Function *F) {
- const FunctionType *FTy = F->getFunctionType();
+ FunctionType *FTy = F->getFunctionType();
FoldingSetNodeID ID;
ID.AddInteger(F->size());
@@ -185,7 +185,7 @@ private:
}
/// Compare two Types, treating all pointer types as equal.
- bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
+ bool isEquivalentType(Type *Ty1, Type *Ty2) const;
// The two functions undergoing comparison.
const Function *F1, *F2;
@@ -200,8 +200,8 @@ private:
// Any two pointers in the same address space are equivalent, intptr_t and
// pointers are equivalent. Otherwise, standard type equivalence rules apply.
-bool FunctionComparator::isEquivalentType(const Type *Ty1,
- const Type *Ty2) const {
+bool FunctionComparator::isEquivalentType(Type *Ty1,
+ Type *Ty2) const {
if (Ty1 == Ty2)
return true;
if (Ty1->getTypeID() != Ty2->getTypeID()) {
@@ -233,14 +233,14 @@ bool FunctionComparator::isEquivalentType(const Type *Ty1,
return true;
case Type::PointerTyID: {
- const PointerType *PTy1 = cast<PointerType>(Ty1);
- const PointerType *PTy2 = cast<PointerType>(Ty2);
+ PointerType *PTy1 = cast<PointerType>(Ty1);
+ PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
}
case Type::StructTyID: {
- const StructType *STy1 = cast<StructType>(Ty1);
- const StructType *STy2 = cast<StructType>(Ty2);
+ StructType *STy1 = cast<StructType>(Ty1);
+ StructType *STy2 = cast<StructType>(Ty2);
if (STy1->getNumElements() != STy2->getNumElements())
return false;
@@ -255,8 +255,8 @@ bool FunctionComparator::isEquivalentType(const Type *Ty1,
}
case Type::FunctionTyID: {
- const FunctionType *FTy1 = cast<FunctionType>(Ty1);
- const FunctionType *FTy2 = cast<FunctionType>(Ty2);
+ FunctionType *FTy1 = cast<FunctionType>(Ty1);
+ FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy1->getNumParams() != FTy2->getNumParams() ||
FTy1->isVarArg() != FTy2->isVarArg())
return false;
@@ -272,8 +272,8 @@ bool FunctionComparator::isEquivalentType(const Type *Ty1,
}
case Type::ArrayTyID: {
- const ArrayType *ATy1 = cast<ArrayType>(Ty1);
- const ArrayType *ATy2 = cast<ArrayType>(Ty2);
+ ArrayType *ATy1 = cast<ArrayType>(Ty1);
+ ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy1->getNumElements() == ATy2->getNumElements() &&
isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
}
@@ -725,7 +725,7 @@ void MergeFunctions::writeThunk(Function *F, Function *G) {
SmallVector<Value *, 16> Args;
unsigned i = 0;
- const FunctionType *FFTy = F->getFunctionType();
+ FunctionType *FFTy = F->getFunctionType();
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
AI != AE; ++AI) {
Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 8257d6b89d..c6bdb08998 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -103,7 +103,7 @@ public:
//
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitFAdd(BinaryOperator &I);
- Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
+ Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
@@ -197,10 +197,10 @@ public:
Instruction *visitInstruction(Instruction &I) { return 0; }
private:
- bool ShouldChangeType(const Type *From, const Type *To) const;
+ bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *dyn_castFNegVal(Value *V) const;
- const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
+ Type *FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
@@ -209,7 +209,7 @@ private:
/// the cast can be eliminated by some other simple transformation, we prefer
/// to do the simplification first.
bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
- const Type *Ty);
+ Type *Ty);
Instruction *visitCallSite(CallSite CS);
Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
@@ -357,7 +357,7 @@ private:
Instruction *SimplifyMemSet(MemSetInst *MI);
- Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
+ Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
};
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index c36a9552e7..d10046c10b 100644
--- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -188,7 +188,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return BinaryOperator::CreateMul(LHS, AddOne(C2));
// A+B --> A|B iff A and B have no bits set in common.
- if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+ if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
APInt LHSKnownOne(IT->getBitWidth(), 0);
APInt LHSKnownZero(IT->getBitWidth(), 0);
@@ -401,7 +401,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
Value *InstCombiner::EmitGEPOffset(User *GEP) {
TargetData &TD = *getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
- const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
Value *Result = Constant::getNullValue(IntPtrTy);
// If the GEP is inbounds, we know that none of the addressing operations will
@@ -420,7 +420,7 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
if (OpC->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
if (Size)
@@ -460,7 +460,7 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
///
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
- const Type *Ty) {
+ Type *Ty) {
assert(TD && "Must have target data info for this");
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 64ea36fb1e..32920fabc3 100644
--- a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -1224,7 +1224,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// fold (and (cast A), (cast B)) -> (cast (and A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
- const Type *SrcTy = Op0C->getOperand(0)->getType();
+ Type *SrcTy = Op0C->getOperand(0)->getType();
if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
SrcTy == Op1C->getOperand(0)->getType() &&
SrcTy->isIntOrIntVectorTy()) {
@@ -2008,7 +2008,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
CastInst *Op1C = dyn_cast<CastInst>(Op1);
if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
- const Type *SrcTy = Op0C->getOperand(0)->getType();
+ Type *SrcTy = Op0C->getOperand(0)->getType();
if (SrcTy == Op1C->getOperand(0)->getType() &&
SrcTy->isIntOrIntVectorTy()) {
Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
@@ -2288,7 +2288,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
- const Type *SrcTy = Op0C->getOperand(0)->getType();
+ Type *SrcTy = Op0C->getOperand(0)->getType();
if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
// Only do this if the casts both really cause code to be generated.
ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 537f2b318a..12096476ff 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -22,8 +22,8 @@ using namespace llvm;
/// getPromotedType - Return the specified type promoted as it would be to pass
/// though a va_arg area.
-static const Type *getPromotedType(const Type *Ty) {
- if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+static Type *getPromotedType(Type *Ty) {
+ if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
return Type::getInt32Ty(Ty->getContext());
}
@@ -64,7 +64,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned DstAddrSp =
cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
- const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
+ IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
@@ -76,18 +76,18 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// integer datatype.
Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
if (StrippedDest != MI->getArgOperand(0)) {
- const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
+ Type *SrcETy = cast<PointerType>(StrippedDest->getType())
->getElementType();
if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
while (!SrcETy->isSingleValueType()) {
- if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
+ if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
if (STy->getNumElements() == 1)
SrcETy = STy->getElementType(0);
else
break;
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
if (ATy->getNumElements() == 1)
SrcETy = ATy->getElementType();
else
@@ -142,7 +142,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
+ Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
@@ -250,7 +250,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// We need target data for just about everything so depend on it.
if (!TD) break;
- const Type *ReturnTy = CI.getType();
+ Type *ReturnTy = CI.getType();
uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
// Get to the real allocated thing and offset as fast as possible.
@@ -300,7 +300,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
} else if (CallInst *MI = extractMallocCall(Op1)) {
// Get allocation size.
- const Type* MallocType = getMallocAllocatedType(MI);
+ Type* MallocType = getMallocAllocatedType(MI);
if (MallocType && MallocType->isSized())
if (Value *NElems = getMallocArraySize(MI, TD, true))
if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
@@ -355,7 +355,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::cttz: {
// If all bits below the first known one are known zero,
// this value is constant.
- const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
+ IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
// FIXME: Try to simplify vectors of integers.
if (!IT) break;
uint32_t BitWidth = IT->getBitWidth();
@@ -374,7 +374,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ctlz: {
// If all bits above the first known one are known zero,
// this value is constant.
- const IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
+ IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
// FIXME: Try to simplify vectors of integers.
if (!IT) break;
uint32_t BitWidth = IT->getBitWidth();
@@ -392,7 +392,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
case Intrinsic::uadd_with_overflow: {
Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
- const IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
+ IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
uint32_t BitWidth = IT->getBitWidth();
APInt Mask = APInt::getSignBit(BitWidth);
APInt LHSKnownZero(BitWidth, 0);
@@ -416,7 +416,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
UndefValue::get(LHS->getType()),
ConstantInt::getTrue(II->getContext())
};
- const StructType *ST = cast<StructType>(II->getType());
+ StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Add, 0);
}
@@ -430,7 +430,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
UndefValue::get(LHS->getType()),
ConstantInt::getFalse(II->getContext())
};
- const StructType *ST = cast<StructType>(II->getType());
+ StructType *ST = cast<StructType>(II->getType());
Constant *Struct = ConstantStruct::get(ST, V);
return InsertValueInst::Create(Struct, Add, 0);
}
@@ -559,7 +559,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
- const Type *OpPtrTy =
+ Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
return new StoreInst(II->getArgOperand(0), Ptr);
@@ -570,7 +570,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
- const Type *OpPtrTy =
+ Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
return new StoreInst(II->getArgOperand(1), Ptr);
@@ -765,9 +765,9 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
if (!CS.paramHasAttr(ix, Attribute::ByVal))
return true;
- const Type* SrcTy =
+ Type* SrcTy =
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
- const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
+ Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
@@ -884,8 +884,8 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
if (In->getIntrinsicID() == Intrinsic::init_trampoline)
return transformCallThroughTrampoline(CS);
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ PointerType *PTy = cast<PointerType>(Callee->getType());
+ FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
if (FTy->isVarArg()) {
int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
// See if we can optimize any arguments passed through the varargs area of
@@ -934,9 +934,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// would cause a type conversion of one of our arguments, change this call to
// be a direct call with arguments casted to the appropriate types.
//
- const FunctionType *FT = Callee->getFunctionType();
- const Type *OldRetTy = Caller->getType();
- const Type *NewRetTy = FT->getReturnType();
+ FunctionType *FT = Callee->getFunctionType();
+ Type *OldRetTy = Caller->getType();
+ Type *NewRetTy = FT->getReturnType();
if (NewRetTy->isStructTy())
return false; // TODO: Handle multiple return values.
@@ -982,8 +982,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
CallSite::arg_iterator AI = CS.arg_begin();
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
- const Type *ActTy = (*AI)->getType();
+ Type *ParamTy = FT->getParamType(i);
+ Type *ActTy = (*AI)->getType();
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
@@ -995,11 +995,11 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If the parameter is passed as a byval argument, then we have to have a
// sized type and the sized type has to have the same size as the old type.
if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
- const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
+ PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
return false;
- const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
+ Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
if (TD->getTypeAllocSize(CurElTy) !=
TD->getTypeAllocSize(ParamPTy->getElementType()))
return false;
@@ -1023,7 +1023,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// If the callee is just a declaration, don't change the varargsness of the
// call. We don't want to introduce a varargs call where one doesn't
// already exist.
- const PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
+ PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
return false;
}
@@ -1062,7 +1062,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
+ Type *ParamTy = FT->getParamType(i);
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
@@ -1089,7 +1089,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
} else {
// Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
- const Type *PTy = getPromotedType((*AI)->getType());
+ Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
Instruction::CastOps opcode =
@@ -1168,8 +1168,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
//
Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
Value *Callee = CS.getCalledValue();
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ PointerType *PTy = cast<PointerType>(Callee->getType());
+ FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const AttrListPtr &Attrs = CS.getAttributes();
// If the call already has the 'nest' attribute somewhere then give up -
@@ -1181,8 +1181,8 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
- const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
- const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
+ PointerType *NestFPTy = cast<PointerType>(NestF->getType());
+ FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
const AttrListPtr &NestAttrs = NestF->getAttributes();
if (!NestAttrs.isEmpty()) {
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 82c734e0b8..f99e457482 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -79,14 +79,14 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// This requires TargetData to get the alloca alignment and size information.
if (!TD) return 0;
- const PointerType *PTy = cast<PointerType>(CI.getType());
+ PointerType *PTy = cast<PointerType>(CI.getType());
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
// Get the type really allocated and the type casted to.
- const Type *AllocElTy = AI.getAllocatedType();
- const Type *CastElTy = PTy->getElementType();
+ Type *AllocElTy = AI.getAllocatedType();
+ Type *CastElTy = PTy->getElementType();
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
@@ -151,7 +151,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
/// insert the code to evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
@@ -229,12 +229,12 @@ static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
- const Type *DstTy, ///< The target type for the second cast instruction
+ Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
- const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
- const Type *MidTy = CI->getType(); // B from above
+ Type *SrcTy = CI->getOperand(0)->getType(); // A from above
+ Type *MidTy = CI->getType(); // B from above
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
@@ -260,7 +260,7 @@ isEliminableCastPair(
/// the cast can be eliminated by some other simple transformation, we prefer
/// to do the simplification first.
bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
- const Type *Ty) {
+ Type *Ty) {
// Noop casts and casts of constants should be eliminated trivially.
if (V->getType() == Ty || isa<Constant>(V)) return false;
@@ -324,7 +324,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
///
/// This function works on both vectors and scalars.
///
-static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
+static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
@@ -332,7 +332,7 @@ static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
- const Type *OrigTy = V->getType();
+ Type *OrigTy = V->getType();
// If this is an extension from the dest type, we can eliminate it, even if it
// has multiple uses.
@@ -435,7 +435,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
return &CI;
Value *Src = CI.getOperand(0);
- const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
+ Type *DestTy = CI.getType(), *SrcTy = Src->getType();
// Attempt to truncate the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
@@ -586,7 +586,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
// may lead to additional simplifications.
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
- if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
uint32_t BitWidth = ITy->getBitWidth();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
@@ -644,7 +644,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
/// clear the top bits anyway, doing this has no extra cost.
///
/// This function works on both vectors and scalars.
-static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
+static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
@@ -758,7 +758,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
return &CI;
Value *Src = CI.getOperand(0);
- const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
@@ -965,10 +965,10 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
}
// vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
- if (const VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
+ if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
Op0->getType() == CI.getType()) {
- const Type *EltTy = VTy->getElementType();
+ Type *EltTy = VTy->getElementType();
// splat the shift constant to a constant vector.
Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
@@ -988,7 +988,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
///
/// This function works on both vectors and scalars.
///
-static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
+static bool CanEvaluateSExtd(Value *V, Type *Ty) {
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
"Can't sign extend type to a smaller type");
// If this is a constant, it can be trivially promoted.
@@ -1063,7 +1063,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
return &CI;
Value *Src = CI.getOperand(0);
- const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
@@ -1192,7 +1192,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
- const Type *SrcTy = OpI->getType();
+ Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
if (LHSTrunc->getType() != SrcTy &&
@@ -1351,7 +1351,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
- const Type *GEPIdxTy =
+ Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
@@ -1402,12 +1402,12 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
/// replace it with a shuffle (and vector/vector bitcast) if possible.
///
/// The source and destination vector types may have different element types.
-static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
+static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
InstCombiner &IC) {
// We can only do this optimization if the output is a multiple of the input
// element size, or the input is a multiple of the output element size.
// Convert the input type to have the same element type as the output.
- const VectorType *SrcTy = cast<VectorType>(InVal->getType());
+ VectorType *SrcTy = cast<VectorType>(InVal->getType());
if (SrcTy->getElementType() != DestTy->getElementType()) {
// The input types don't need to be identical, but for now they must be the
@@ -1427,7 +1427,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
// size of the input.
SmallVector<Constant*, 16> ShuffleMask;
Value *V2;
- const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
+ IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
// If we're shrinking the number of elements, just shuffle in the low
@@ -1453,11 +1453,11 @@ static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
}
-static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
+static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
return Value % Ty->getPrimitiveSizeInBits() == 0;
}
-static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
+static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
return Value / Ty->getPrimitiveSizeInBits();
}
@@ -1471,7 +1471,7 @@ static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
/// filling in Elements with the elements found here.
static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
SmallVectorImpl<Value*> &Elements,
- const Type *VecEltTy) {
+ Type *VecEltTy) {
// Undef values never contribute useful bits to the result.
if (isa<UndefValue>(V)) return true;
@@ -1508,7 +1508,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
C->getType()->getPrimitiveSizeInBits()));
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
- const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
+ Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
@@ -1572,7 +1572,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
/// Into two insertelements that do "buildvector{%inc, %inc5}".
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
InstCombiner &IC) {
- const VectorType *DestVecTy = cast<VectorType>(CI.getType());
+ VectorType *DestVecTy = cast<VectorType>(CI.getType());
Value *IntInput = CI.getOperand(0);
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
@@ -1599,7 +1599,7 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
/// bitcast. The various long double bitcasts can't get in here.
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Value *Src = CI.getOperand(0);
- const Type *DestTy = CI.getType();
+ Type *DestTy = CI.getType();
// If this is a bitcast from int to float, check to see if the int is an
// extraction from a vector.
@@ -1607,7 +1607,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
// bitcast(trunc(bitcast(somevector)))
if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
isa<VectorType>(VecInput->getType())) {
- const VectorType *VecTy = cast<VectorType>(VecInput->getType());
+ VectorType *VecTy = cast<VectorType>(VecInput->getType());
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
@@ -1628,7 +1628,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
m_ConstantInt(ShAmt)))) &&
isa<VectorType>(VecInput->getType())) {
- const VectorType *VecTy = cast<VectorType>(VecInput->getType());
+ VectorType *VecTy = cast<VectorType>(VecInput->getType());
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
ShAmt->getZExtValue() % DestWidth == 0) {
@@ -1651,18 +1651,18 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the operands are integer typed then apply the integer transforms,
// otherwise just apply the common ones.
Value *Src = CI.getOperand(0);
- const Type *SrcTy = Src->getType();
- const Type *DestTy = CI.getType();
+ Type *SrcTy = Src->getType();
+ Type *DestTy = CI.getType();
// Get rid of casts from one type to the same type. These are useless and can
// be replaced by the operand.
if (DestTy == Src->getType())
return ReplaceInstUsesWith(CI, Src);
- if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
- const PointerType *SrcPTy = cast<PointerType>(SrcTy);
- const Type *DstElTy = DstPTy->getElementType();
- const Type *SrcElTy = SrcPTy->getElementType();
+ if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
+ PointerType *SrcPTy = cast<PointerType>(SrcTy);
+ Type *DstElTy = DstPTy->getElementType();
+ Type *SrcElTy = SrcPTy->getElementType();
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
@@ -1702,7 +1702,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
return I;
- if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
@@ -1731,7 +1731,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
}
- if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+ if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Value *Elem =
Builder->CreateExtractElement(Src,
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index c78760b206..b8ce4b7eb9 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -56,7 +56,7 @@ static bool AddWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
- if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasAddOverflow(ExtractElement(Result, Idx),
@@ -91,7 +91,7 @@ static bool SubWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
- if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasSubOverflow(ExtractElement(Result, Idx),
@@ -220,7 +220,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// structs.
SmallVector<unsigned, 4> LaterIndices;
- const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
+ Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (Idx == 0) return 0; // Variable index.
@@ -228,9 +228,9 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
uint64_t IdxVal = Idx->getZExtValue();
if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
- if (const StructType *STy = dyn_cast<StructType>(EltTy))
+ if (StructType *STy = dyn_cast<StructType>(EltTy))
EltTy = STy->getElementType(IdxVal);
- else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+ else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
if (IdxVal >= ATy->getNumElements()) return 0;
EltTy = ATy->getElementType();
} else {
@@ -441,7 +441,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// ((magic_cst >> i) & 1) != 0
if (Init->getNumOperands() <= 32 ||
(TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
- const Type *Ty;
+ Type *Ty;
if (Init->getNumOperands() <= 32)
Ty = Type::getInt32Ty(Init->getContext());
else
@@ -483,7 +483,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
@@ -513,7 +513,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
@@ -530,7 +530,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
- const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
}
return VariableIdx;
@@ -552,7 +552,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
- const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
true /*Signed*/);
@@ -1098,7 +1098,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If the LHS is an AND of a zext, and we have an equality compare, we can
// shrink the and/compare to the smaller type, eliminating the cast.
if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
- const IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
+ IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
// Make sure we don't compare the upper bits, SimplifyDemandedBits
// should fold the icmp to true/false in that case.
if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
@@ -1121,8 +1121,8 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
ConstantInt *ShAmt;
ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
- const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
- const Type *AndTy = AndCST->getType(); // Type of the and.
+ Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
+ Type *AndTy = AndCST->getType(); // Type of the and.
// We can fold this as long as we can't shift unknown bits
// into the mask. This can only happen with signed shift
@@ -1517,8 +1517,8 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
- const Type *SrcTy = LHSCIOp->getType();
- const Type *DestTy = LHSCI->getType();
+ Type *SrcTy = LHSCIOp->getType();
+ Type *DestTy = LHSCI->getType();
Value *RHSCIOp;
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
@@ -1786,7 +1786,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
- const Type *Ty = Op0->getType();
+ Type *Ty = Op0->getType();
// icmp's with boolean values can always be turned into bitwise operations
if (Ty->isIntegerTy(1)) {
@@ -2637,7 +2637,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
}
- const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+ IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
// Now we know that the APFloat is a normal number, zero or inf.
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index f499290fe8..bdd2edb991 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -26,7 +26,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
if (TD) {
- const Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
+ Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
if (AI.getArraySize()->getType() != IntPtrTy) {
Value *V = Builder->CreateIntCast(AI.getArraySize(),
IntPtrTy, false);
@@ -38,7 +38,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
if (AI.isArrayAllocation()) { // Check C != 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- const Type *NewTy =
+ Type *NewTy =
ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
@@ -92,22 +92,22 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
User *CI = cast<User>(LI.getOperand(0));
Value *CastOp = CI->getOperand(0);
- const PointerType *DestTy = cast<PointerType>(CI->getType());
- const Type *DestPTy = DestTy->getElementType();
- if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
+ PointerType *DestTy = cast<PointerType>(CI->getType());
+ Type *DestPTy = DestTy->getElementType();
+ if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
// If the address spaces don't match, don't eliminate the cast.
if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
return 0;
- const Type *SrcPTy = SrcTy->getElementType();
+ Type *SrcPTy = SrcTy->getElementType();
if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
DestPTy->isVectorTy()) {
// If the source is an array, the code below will not succeed. Check to
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
// constants.
- if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
+ if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
if (ASrcTy->getNumElements() != 0) {
Value *Idxs[2];
@@ -256,11 +256,11 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
User *CI = cast<User>(SI.getOperand(1));
Value *CastOp = CI->getOperand(0);
- const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
- const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
+ Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
+ PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
if (SrcTy == 0) return 0;
- const Type *SrcPTy = SrcTy->getElementType();
+ Type *SrcPTy = SrcTy->getElementType();
if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
return 0;
@@ -280,12 +280,12 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
NewGEPIndices.push_back(Zero);
while (1) {
- if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
+ if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
if (!STy->getNumElements()) /* Struct can be empty {} */
break;
NewGEPIndices.push_back(Zero);
SrcPTy = STy->getElementType(0);
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
NewGEPIndices.push_back(Zero);
SrcPTy = ATy->getElementType();
} else {
@@ -314,8 +314,8 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
Value *NewCast;
Value *SIOp0 = SI.getOperand(0);
Instruction::CastOps opcode = Instruction::BitCast;
- const Type* CastSrcTy = SIOp0->getType();
- const Type* CastDstTy = SrcPTy;
+ Type* CastSrcTy = SIOp0->getType();
+ Type* CastDstTy = SrcPTy;
if (CastDstTy->isPointerTy()) {
if (CastSrcTy->isIntegerTy())
opcode = Instruction::IntToPtr;
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 630a6fee39..53341ccbfc 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -421,7 +421,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
/// dyn_castZExtVal - Checks if V is a zext or constant that can
/// be truncated to Ty without losing bits.
-static Value *dyn_castZExtVal(Value *V, const Type *Ty) {
+static Value *dyn_castZExtVal(Value *V, Type *Ty) {
if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
if (Z->getSrcTy() == Ty)
return Z->getOperand(0);
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
index 3777340349..bf1049d152 100644
--- a/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -28,8 +28,8 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
Value *LHSVal = FirstInst->getOperand(0);
Value *RHSVal = FirstInst->getOperand(1);
- const Type *LHSType = LHSVal->getType();
- const Type *RHSType = RHSVal->getType();
+ Type *LHSType = LHSVal->getType();
+ Type *RHSType = RHSVal->getType();
bool isNUW = false, isNSW = false, isExact = false;
if (OverflowingBinaryOperator *BO =
@@ -397,7 +397,7 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
// the same type or "+42") we can pull the operation through the PHI, reducing
// code size and simplifying code.
Constant *ConstantOp = 0;
- const Type *CastSrcTy = 0;
+ Type *CastSrcTy = 0;
bool isNUW = false, isNSW = false, isExact = false;
if (isa<CastInst>(FirstInst)) {
@@ -572,7 +572,7 @@ struct LoweredPHIRecord {
unsigned Shift; // The amount shifted.
unsigned Width; // The width extracted.
- LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
+ LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
: PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
// Ctor form used by DenseMap.
@@ -701,7 +701,7 @@ Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
unsigned PHIId = PHIUsers[UserI].PHIId;
PHINode *PN = PHIsToSlice[PHIId];
unsigned Offset = PHIUsers[UserI].Shift;
- const Type *Ty = PHIUsers[UserI].Inst->getType();
+ Type *Ty = PHIUsers[UserI].Inst->getType();
PHINode *EltPHI;
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
index 5733c20828..eb463902d6 100644
--- a/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -363,7 +363,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: {
// These transformations only work for selects over integers.
- const IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
+ IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
if (!SelectTy)
break;
@@ -443,7 +443,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
// FIXME: Type and constness constraints could be lifted, but we have to
// watch code size carefully. We should consider xor instead of
// sub/add when we decide to do that.
- if (const IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
+ if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
if (TrueVal->getType() == Ty) {
if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
ConstantInt *C1 = NULL, *C2 = NULL;
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 811f94976f..65d1a66f71 100644
--- a/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -528,7 +528,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
- const IntegerType *Ty = cast<IntegerType>(I.getType());
+ IntegerType *Ty = cast<IntegerType>(I.getType());
// Check for (X << c1) << c2 and (X >> c1) >> c2
if (I.getOpcode() == ShiftOp->getOpcode()) {
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index 8fea8eb7ef..66f39be17b 100644
--- a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -103,7 +103,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(V != 0 && "Null pointer of Value???");
assert(Depth <= 6 && "Limit Search Depth");
uint32_t BitWidth = DemandedMask.getBitWidth();
- const Type *VTy = V->getType();
+ Type *VTy = V->getType();
assert((TD || !VTy->isPointerTy()) &&
"SimplifyDemandedBits needs to know bit widths!");
assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
@@ -404,8 +404,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
return 0; // vector->int or fp->int?
- if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
- if (const VectorType *SrcVTy =
+ if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
+ if (VectorType *SrcVTy =
dyn_cast<VectorType>(I->getOperand(0)->getType())) {
if (DstVTy->getNumElements() != SrcVTy->getNumElements())
// Don't touch a bitcast between vectors of different element counts.
@@ -826,7 +826,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = 0;
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
- const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+ Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
@@ -855,7 +855,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (DemandedElts.isAllOnesValue())
return 0;
- const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+ Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Constant *Zero = Constant::getNullValue(EltTy);
Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
@@ -992,7 +992,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
}
case Instruction::BitCast: {
// Vector->vector casts only.
- const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
+ VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
if (!VTy) break;
unsigned InVWidth = VTy->getNumElements();
APInt InputDemandedElts(InVWidth, 0);
diff --git a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
index ad6a8d054e..154267c034 100644
--- a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -77,7 +77,7 @@ static std::vector<int> getShuffleMask(const ShuffleVectorInst *SVI) {
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo) {
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
- const VectorType *PTy = cast<VectorType>(V->getType());
+ VectorType *PTy = cast<VectorType>(V->getType());
unsigned Width = PTy->getNumElements();
if (EltNo >= Width) // Out of range access.
return UndefValue::get(PTy->getElementType());
@@ -175,7 +175,7 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// the same number of elements, see if we can find the source element from
// it. In this case, we will end up needing to bitcast the scalars.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
- if (const VectorType *VT =
+ if (VectorType *VT =
dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
if (VT->getNumElements() == VectorWidth)
if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
@@ -225,7 +225,7 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
}
- const Type *Int32Ty = Type::getInt32Ty(EI.getContext());
+ Type *Int32Ty = Type::getInt32Ty(EI.getContext());
return ExtractElementInst::Create(Src,
ConstantInt::get(Int32Ty,
SrcIdx, false));
@@ -555,7 +555,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// shuffle mask, do the replacement.
if (isSplat || NewMask == LHSMask || NewMask == Mask) {
std::vector<Constant*> Elts;
- const Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
+ Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
if (NewMask[i] < 0) {
Elts.push_back(UndefValue::get(Int32Ty));
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index ab98ef9fcc..5828ec2ee9 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -83,7 +83,7 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
/// ShouldChangeType - Return true if it is desirable to convert a computation
/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
/// type for example, or from a smaller to a larger illegal type.
-bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
+bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
assert(From->isIntegerTy() && To->isIntegerTy());
// If we don't have TD, we don't know if the source/dest are legal.
@@ -516,8 +516,8 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
// If it's a bitcast involving vectors, make sure it has the same number of
// elements on both sides.
if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
- const VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
- const VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
+ VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
+ VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
// Verify that either both or neither are vectors.
if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
@@ -654,7 +654,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
}
} else {
CastInst *CI = cast<CastInst>(&I);
- const Type *RetTy = CI->getType();
+ Type *RetTy = CI->getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
@@ -680,7 +680,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset. If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
-const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
+Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices) {
if (!TD) return 0;
if (!Ty->isSized()) return 0;
@@ -688,7 +688,7 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
int64_t FirstIdx = 0;
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
@@ -711,7 +711,7 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
return 0;
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TD->getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
@@ -722,7 +722,7 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
- } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
@@ -751,13 +751,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// by multiples of a zero size type with zero.
if (TD) {
bool MadeChange = false;
- const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
+ Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
I != E; ++I, ++GTI) {
// Skip indices into struct types.
- const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
if (!SeqTy) continue;
// If the element type has zero size then any index over it is equivalent
@@ -859,7 +859,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Value *StrippedPtr = PtrOp->stripPointerCasts();
- const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
+ PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
if (StrippedPtr != PtrOp &&
StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
@@ -875,8 +875,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
//
// This occurs when the program declares an array extern like "int X[];"
if (HasZeroPointerIndex) {
- const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
- if (const ArrayType *CATy =
+ PointerType *CPTy = cast<PointerType>(PtrOp->getType());
+ if (ArrayType *CATy =
dyn_cast<ArrayType>(CPTy->getElementType())) {
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
@@ -889,7 +889,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return Res;
}
- if (const ArrayType *XATy =
+ if (ArrayType *XATy =
dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
@@ -907,8 +907,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Transform things like:
// %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
- const Type *SrcElTy = StrippedPtrTy->getElementType();
- const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
+ Type *SrcElTy = StrippedPtrTy->getElementType();
+ Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
if (TD && SrcElTy->isArrayTy() &&
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
TD->getTypeAllocSize(ResElTy)) {
@@ -1023,7 +1023,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// field at Offset in 'A's type. If so, we can pull the cast through the
// GEP.
SmallVector<Value*, 8> NewIndices;
- const Type *InTy =
+ Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
if (FindElementAtOffset(InTy, Offset, NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
diff --git a/lib/Transforms/Instrumentation/EdgeProfiling.cpp b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
index 1d31fcc4df..e8ef2654d2 100644
--- a/lib/Transforms/Instrumentation/EdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
@@ -74,7 +74,7 @@ bool EdgeProfiler::runOnModule(Module &M) {
}
}
- const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumEdges);
+ Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumEdges);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "EdgeProfCounters");
diff --git a/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
index 3f2c412388..bd1b46307e 100644
--- a/lib/Transforms/Instrumentation/GCOVProfiling.cpp
+++ b/lib/Transforms/Instrumentation/GCOVProfiling.cpp
@@ -444,7 +444,7 @@ bool GCOVProfiler::emitProfileArcs(DebugInfoFinder &DIF) {
Edges += TI->getNumSuccessors();
}
- const ArrayType *CounterTy =
+ ArrayType *CounterTy =
ArrayType::get(Type::getInt64Ty(*Ctx), Edges);
GlobalVariable *Counters =
new GlobalVariable(*M, CounterTy, false,
@@ -499,7 +499,7 @@ bool GCOVProfiler::emitProfileArcs(DebugInfoFinder &DIF) {
ComplexEdgePreds, ComplexEdgeSuccs);
GlobalVariable *EdgeState = getEdgeStateValue();
- const Type *Int32Ty = Type::getInt32Ty(*Ctx);
+ Type *Int32Ty = Type::getInt32Ty(*Ctx);
for (int i = 0, e = ComplexEdgePreds.size(); i != e; ++i) {
IRBuilder<> Builder(ComplexEdgePreds[i+1]->getTerminator());
Builder.CreateStore(ConstantInt::get(Int32Ty, i), EdgeState);
@@ -535,8 +535,8 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
// read it. Threads and invoke make this untrue.
// emit [(succs * preds) x i64*], logically [succ x [pred x i64*]].
- const Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx);
- const ArrayType *EdgeTableTy = ArrayType::get(
+ Type *Int64PtrTy = Type::getInt64PtrTy(*Ctx);
+ ArrayType *EdgeTableTy = ArrayType::get(
Int64PtrTy, Succs.size() * Preds.size());
Constant **EdgeTable = new Constant*[Succs.size() * Preds.size()];
@@ -572,7 +572,7 @@ GlobalVariable *GCOVProfiler::buildEdgeLookupTable(
}
Constant *GCOVProfiler::getStartFileFunc() {
- const FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
Type::getInt8PtrTy(*Ctx), false);
return M->getOrInsertFunction("llvm_gcda_start_file", FTy);
}
@@ -582,7 +582,7 @@ Constant *GCOVProfiler::getIncrementIndirectCounterFunc() {
Type::getInt32PtrTy(*Ctx), // uint32_t *predecessor
Type::getInt64PtrTy(*Ctx)->getPointerTo(), // uint64_t **state_table_row
};
- const FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
Args, false);
return M->getOrInsertFunction("llvm_gcda_increment_indirect_counter", FTy);
}
@@ -592,7 +592,7 @@ Constant *GCOVProfiler::getEmitFunctionFunc() {
Type::getInt32Ty(*Ctx), // uint32_t ident
Type::getInt8PtrTy(*Ctx), // const char *function_name
};
- const FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
Args, false);
return M->getOrInsertFunction("llvm_gcda_emit_function", FTy);
}
@@ -602,13 +602,13 @@ Constant *GCOVProfiler::getEmitArcsFunc() {
Type::getInt32Ty(*Ctx), // uint32_t num_counters
Type::getInt64PtrTy(*Ctx), // uint64_t *counters
};
- const FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx),
Args, false);
return M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy);
}
Constant *GCOVProfiler::getEndFileFunc() {
- const FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false);
return M->getOrInsertFunction("llvm_gcda_end_file", FTy);
}
@@ -628,7 +628,7 @@ GlobalVariable *GCOVProfiler::getEdgeStateValue() {
void GCOVProfiler::insertCounterWriteout(
DebugInfoFinder &DIF,
SmallVector<std::pair<GlobalVariable *, MDNode *>, 8> &CountersBySP) {
- const FunctionType *WriteoutFTy =
+ FunctionType *WriteoutFTy =
FunctionType::get(Type::getVoidTy(*Ctx), false);
Function *WriteoutF = Function::Create(WriteoutFTy,
GlobalValue::InternalLinkage,
diff --git a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
index e09f882aa3..62c21b8e9c 100644
--- a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -112,8 +112,8 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
// be calculated from other edge counters on reading the profile info back
// in.
- const Type *Int32 = Type::getInt32Ty(M.getContext());
- const ArrayType *ATy = ArrayType::get(Int32, NumEdges);
+ Type *Int32 = Type::getInt32Ty(M.getContext());
+ ArrayType *ATy = ArrayType::get(Int32, NumEdges);
GlobalVariable *Counters =
new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "OptEdgeProfCounters");
diff --git a/lib/Transforms/Instrumentation/PathProfiling.cpp b/lib/Transforms/Instrumentation/PathProfiling.cpp
index 75416637db..c6147fa18f 100644
--- a/lib/Transforms/Instrumentation/PathProfiling.cpp
+++ b/lib/Transforms/Instrumentation/PathProfiling.cpp
@@ -374,7 +374,7 @@ namespace llvm {
template<bool xcompile> class TypeBuilder<PathProfilingFunctionTable,
xcompile> {
public:
- static const StructType *get(LLVMContext& C) {
+ static StructType *get(LLVMContext& C) {
return( StructType::get(
TypeBuilder<types::i<32>, xcompile>::get(C), // type
TypeBuilder<types::i<32>, xcompile>::get(C), // array size
@@ -1289,7 +1289,7 @@ void PathProfiler::runOnFunction(std::vector<Constant*> &ftInit,
// Should we store the information in an array or hash
if( dag.getNumberOfPaths() <= HASH_THRESHHOLD ) {
- const Type* t = ArrayType::get(Type::getInt32Ty(*Context),
+ Type* t = ArrayType::get(Type::getInt32Ty(*Context),
dag.getNumberOfPaths());
dag.setCounterArray(new GlobalVariable(M, t, false,
@@ -1301,7 +1301,7 @@ void PathProfiler::runOnFunction(std::vector<Constant*> &ftInit,
// Add to global function reference table
unsigned type;
- const Type* voidPtr = TypeBuilder<types::i<8>*, true>::get(*Context);
+ Type* voidPtr = TypeBuilder<types::i<8>*, true>::get(*Context);
if( dag.getNumberOfPaths() <= HASH_THRESHHOLD )
type = ProfilingArray;
@@ -1315,7 +1315,7 @@ void PathProfiler::runOnFunction(std::vector<Constant*> &ftInit,
ConstantExpr::getBitCast(dag.getCounterArray(), voidPtr) :
Constant::getNullValue(voidPtr);
- const StructType* at = ftEntryTypeBuilder::get(*Context);
+ StructType* at = ftEntryTypeBuilder::get(*Context);
ConstantStruct* functionEntry =
(ConstantStruct*)ConstantStruct::get(at, entryArray);
ftInit.push_back(functionEntry);
@@ -1379,8 +1379,8 @@ bool PathProfiler::runOnModule(Module &M) {
runOnFunction(ftInit, *F, M);
}
- const Type *t = ftEntryTypeBuilder::get(*Context);
- const ArrayType* ftArrayType = ArrayType::get(t, ftInit.size());
+ Type *t = ftEntryTypeBuilder::get(*Context);
+ ArrayType* ftArrayType = ArrayType::get(t, ftInit.size());
Constant* ftInitConstant = ConstantArray::get(ftArrayType, ftInit);
DEBUG(dbgs() << " ftArrayType:" << *ftArrayType << "\n");
@@ -1388,7 +1388,7 @@ bool PathProfiler::runOnModule(Module &M) {
GlobalVariable* functionTable =
new GlobalVariable(M, ftArrayType, false, GlobalValue::InternalLinkage,
ftInitConstant, "functionPathTable");
- const Type *eltType = ftArrayType->getTypeAtIndex((unsigned)0);
+ Type *eltType = ftArrayType->getTypeAtIndex((unsigned)0);
InsertProfilingInitCall(Main, "llvm_start_path_profiling", functionTable,
PointerType::getUnqual(eltType));
diff --git a/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index 445a5b6f60..0ebab33f5c 100644
--- a/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -25,9 +25,9 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array,
PointerType *arrayType) {
LLVMContext &Context = MainFn->getContext();
- const Type *ArgVTy =
+ Type *ArgVTy =
PointerType::getUnqual(Type::getInt8PtrTy(Context));
- const PointerType *UIntPtr = arrayType ? arrayType :
+ PointerType *UIntPtr = arrayType ? arrayType :
Type::getInt32PtrTy(Context);
Module &M = *MainFn->getParent();
Constant *InitFn = M.getOrInsertFunction(FnName, Type::getInt32Ty(Context),
@@ -137,7 +137,7 @@ void llvm::InsertProfilingShutdownCall(Function *Callee, Module *Mod) {
Type::getInt32Ty(Mod->getContext()),
FunctionType::get(Type::getVoidTy(Mod->getContext()), false)->getPointerTo()
};
- const StructType *GlobalDtorElemTy =
+ StructType *GlobalDtorElemTy =
StructType::get(Mod->getContext(), GlobalDtorElems, false);
// Construct the new element we'll be adding.
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 0af14ed17b..17beeb5aa8 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -104,7 +104,7 @@ namespace {
void EliminateMostlyEmptyBlock(BasicBlock *BB);
bool OptimizeBlock(BasicBlock &BB);
bool OptimizeInst(Instruction *I);
- bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy);
+ bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
bool OptimizeInlineAsmInst(CallInst *CS);
bool OptimizeCallInst(CallInst *CI);
bool MoveExtToFormExtLoad(Instruction *I);
@@ -528,7 +528,7 @@ bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
- const Type *ReturnTy = CI->getType();
+ Type *ReturnTy = CI->getType();
Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
// Substituting this can cause recursive simplifications, which can
@@ -724,7 +724,7 @@ static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
/// This method is used to optimize both load/store and inline asms with memory
/// operands.
bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
- const Type *AccessTy) {
+ Type *AccessTy) {
Value *Repl = Addr;
// Try to collapse single-value PHI nodes. This is necessary to undo
@@ -837,7 +837,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
} else {
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
- const Type *IntPtrTy =
+ Type *IntPtrTy =
TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
Value *Result = 0;
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index cb9b5bebc5..e6089a9a43 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -264,7 +264,7 @@ static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
}
assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
- const PointerType *PT = cast<PointerType>(V->getType());
+ PointerType *PT = cast<PointerType>(V->getType());
return TD->getTypeAllocSize(PT->getElementType());
}
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 87b7317ad2..b4d5667bfa 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -63,7 +63,7 @@ static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
namespace {
struct Expression {
uint32_t opcode;
- const Type *type;
+ Type *type;
SmallVector<uint32_t, 4> varargs;
Expression(uint32_t o = ~2U) : opcode(o) { }
@@ -655,7 +655,7 @@ SpeculationFailure:
/// CanCoerceMustAliasedValueToLoad - Return true if
/// CoerceAvailableValueToLoadType will succeed.
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
- const Type *LoadTy,
+ Type *LoadTy,
const TargetData &TD) {
// If the loaded or stored value is an first class array or struct, don't try
// to transform them. We need to be able to bitcast to integer.
@@ -680,14 +680,14 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
///
/// If we can't do it, return null.
static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
- const Type *LoadedTy,
+ Type *LoadedTy,
Instruction *InsertPt,
const TargetData &TD) {
if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
return 0;
// If this is already the right type, just return it.
- const Type *StoredValTy = StoredVal->getType();
+ Type *StoredValTy = StoredVal->getType();
uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
uint64_t LoadSize = TD.getTypeStoreSizeInBits(LoadedTy);
@@ -704,7 +704,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
- const Type *TypeToCastTo = LoadedTy;
+ Type *TypeToCastTo = LoadedTy;
if (TypeToCastTo->isPointerTy())
TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
@@ -743,7 +743,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
}
// Truncate the integer to the right size now.
- const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
+ Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
if (LoadedTy == NewIntTy)
@@ -765,7 +765,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
/// Check this case to see if there is anything more we can do before we give
/// up. This returns -1 if we have to give up, or a byte number in the stored
/// value of the piece that feeds the load.
-static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
+static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
Value *WritePtr,
uint64_t WriteSizeInBits,
const TargetData &TD) {
@@ -839,7 +839,7 @@ static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
/// AnalyzeLoadFromClobberingStore - This function is called when we have a
/// memdep query of a load that ends up being a clobbering store.
-static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
+static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
StoreInst *DepSI,
const TargetData &TD) {
// Cannot handle reading from store of first-class aggregate yet.
@@ -856,7 +856,7 @@ static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
/// AnalyzeLoadFromClobberingLoad - This function is called when we have a
/// memdep query of a load that ends up being clobbered by another load. See if
/// the other load can feed into the second load.
-static int AnalyzeLoadFromClobberingLoad(const Type *LoadTy, Value *LoadPtr,
+static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
LoadInst *DepLI, const TargetData &TD){
// Cannot handle reading from store of first-class aggregate yet.
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
@@ -883,7 +883,7 @@ static int AnalyzeLoadFromClobberingLoad(const Type *LoadTy, Value *LoadPtr,
-static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
+static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
MemIntrinsic *MI,
const TargetData &TD) {
// If the mem operation is a non-constant size, we can't handle it.
@@ -934,7 +934,7 @@ static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
/// mustalias. Check this case to see if there is anything more we can do
/// before we give up.
static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
- const Type *LoadTy,
+ Type *LoadTy,
Instruction *InsertPt, const TargetData &TD){
LLVMContext &Ctx = SrcVal->getType()->getContext();
@@ -974,7 +974,7 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
/// because the pointers don't mustalias. Check this case to see if there is
/// anything more we can do before we give up.
static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
- const Type *LoadTy, Instruction *InsertPt,
+ Type *LoadTy, Instruction *InsertPt,
GVN &gvn) {
const TargetData &TD = *gvn.getTargetData();
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
@@ -996,7 +996,7 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
// memdep queries will find the new load. We can't easily remove the old
// load completely because it is already in the value numbering table.
IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
- const Type *DestPTy =
+ Type *DestPTy =
IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
DestPTy = PointerType::get(DestPTy,
cast<PointerType>(PtrVal->getType())->getAddressSpace());
@@ -1034,7 +1034,7 @@ static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
/// GetMemInstValueForLoad - This function is called when we have a
/// memdep query of a load that ends up being a clobbering mem intrinsic.
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
- const Type *LoadTy, Instruction *InsertPt,
+ Type *LoadTy, Instruction *InsertPt,
const TargetData &TD){
LLVMContext &Ctx = LoadTy->getContext();
uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
@@ -1154,7 +1154,7 @@ struct AvailableValueInBlock {
/// MaterializeAdjustedValue - Emit code into this block to adjust the value
/// defined here to the specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(const Type *LoadTy, GVN &gvn) const {
+ Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
Value *Res;
if (isSimpleValue()) {
Res = getSimpleValue();
@@ -1213,7 +1213,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI,
SSAUpdater SSAUpdate(&NewPHIs);
SSAUpdate.Initialize(LI->getType(), LI->getName());
- const Type *LoadTy = LI->getType();
+ Type *LoadTy = LI->getType();
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index dee3d38d72..cf75448aa2 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -390,7 +390,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
return;
}
- const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
+ IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
@@ -665,7 +665,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
// of different sizes.
for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
- const Type *UseTy = Op->getType();
+ Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
@@ -747,7 +747,7 @@ namespace {
// extend operations. This information is recorded by CollectExtend and
// provides the input to WidenIV.
struct WideIVInfo {
- const Type *WidestNativeType; // Widest integer type created [sz]ext
+ Type *WidestNativeType; // Widest integer type created [sz]ext
bool IsSigned; // Was an sext user seen before a zext?
WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
@@ -759,7 +759,7 @@ namespace {
/// the final width of the IV before actually widening it.
static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
ScalarEvolution *SE, const TargetData *TD) {
- const Type *Ty = Cast->getType();
+ Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
if (TD && !TD->isLegalInteger(Width))
return;
@@ -787,7 +787,7 @@ namespace {
class WidenIV {
// Parameters
PHINode *OrigPhi;
- const Type *WideType;
+ Type *WideType;
bool IsSigned;
// Context
@@ -839,7 +839,7 @@ protected:
};
} // anonymous namespace
-static Value *getExtend( Value *NarrowOper, const Type *WideType,
+static Value *getExtend( Value *NarrowOper, Type *WideType,
bool IsSigned, IRBuilder<> &Builder) {
return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
Builder.CreateZExt(NarrowOper, WideType);
@@ -1489,7 +1489,7 @@ static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
/// through Truncs.
///
/// TODO: Unnecessary if LFTR does not force a canonical IV.
-static const Type *getBackedgeIVType(Loop *L) {
+static Type *getBackedgeIVType(Loop *L) {
if (!L->getExitingBlock())
return 0;
@@ -1502,7 +1502,7 @@ static const Type *getBackedgeIVType(Loop *L) {
if (!Cond)
return 0;
- const Type *Ty = 0;
+ Type *Ty = 0;
for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
OI != OE; ++OI) {
assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
@@ -1748,7 +1748,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted.
- const Type *LargestType = 0;
+ Type *LargestType = 0;
bool NeedCannIV = false;
bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
if (ExpandBECount) {
@@ -1756,7 +1756,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
NeedCannIV = true;
- const Type *Ty = BackedgeTakenCount->getType();
+ Type *Ty = BackedgeTakenCount->getType();
if (DisableIVRewrite) {
// In this mode, SimplifyIVUsers may have already widened the IV used by
// the backedge test and inserted a Trunc on the compare's operand. Get
@@ -1772,7 +1772,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
if (!DisableIVRewrite) {
for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
NeedCannIV = true;
- const Type *Ty =
+ Type *Ty =
SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index a0e41d9a97..ea4c515f41 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -498,7 +498,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- const Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
+ Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -604,7 +604,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- const Type *IntPtr = TD->getIntPtrType(SI->getContext());
+ Type *IntPtr = TD->getIntPtrType(SI->getContext());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 509d0264f1..e90b5bcacd 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -219,7 +219,7 @@ struct Formula {
void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
unsigned getNumRegs() const;
- const Type *getType() const;
+ Type *getType() const;
void DeleteBaseReg(const SCEV *&S);
@@ -319,7 +319,7 @@ unsigned Formula::getNumRegs() const {
/// getType - Return the type of this formula, if it has one, or null
/// otherwise. This type is meaningless except for the bit size.
-const Type *Formula::getType() const {
+Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
AM.BaseGV ? AM.BaseGV->getType() :
@@ -397,7 +397,7 @@ void Formula::dump() const {
/// isAddRecSExtable - Return true if the given addrec can be sign-extended
/// without changing its value.
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
- const Type *WideTy =
+ Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
}
@@ -405,7 +405,7 @@ static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
/// isAddSExtable - Return true if the given add can be sign-extended
/// without changing its value.
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
- const Type *WideTy =
+ Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
}
@@ -413,7 +413,7 @@ static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
/// isMulSExtable - Return true if the given mul can be sign-extended
/// without changing its value.
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
- const Type *WideTy =
+ Type *WideTy =
IntegerType::get(SE.getContext(),
SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
@@ -594,8 +594,8 @@ static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
}
/// getAccessType - Return the type of the memory being accessed.
-static const Type *getAccessType(const Instruction *Inst) {
- const Type *AccessTy = Inst->getType();
+static Type *getAccessType(const Instruction *Inst) {
+ Type *AccessTy = Inst->getType();
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
AccessTy = SI->getOperand(0)->getType();
else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
@@ -614,7 +614,7 @@ static const Type *getAccessType(const Instruction *Inst) {
// All pointers have the same requirements, so canonicalize them to an
// arbitrary pointer type to minimize variation.
- if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
+ if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
PTy->getAddressSpace());
@@ -980,7 +980,7 @@ public:
};
KindType Kind;
- const Type *AccessTy;
+ Type *AccessTy;
SmallVector<int64_t, 8> Offsets;
int64_t MinOffset;
@@ -995,7 +995,7 @@ public:
/// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
/// max fixup widths to be equivalent, because the narrower one may be relying
/// on the implicit truncation to truncate away bogus bits.
- const Type *WidestFixupType;
+ Type *WidestFixupType;
/// Formulae - A list of ways to build a value that can satisfy this user.
/// After the list is populated, one of these is selected heuristically and
@@ -1005,7 +1005,7 @@ public:
/// Regs - The set of register candidates used by all formulae in this LSRUse.
SmallPtrSet<const SCEV *, 4> Regs;
- LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
+ LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
MinOffset(INT64_MAX),
MaxOffset(INT64_MIN),
AllFixupsOutsideLoop(true),
@@ -1127,7 +1127,7 @@ void LSRUse::dump() const {
/// be completely folded into the user instruction at isel time. This includes
/// address-mode folding and special icmp tricks.
static bool isLegalUse(const TargetLowering::AddrMode &AM,
- LSRUse::KindType Kind, const Type *AccessTy,
+ LSRUse::KindType Kind, Type *AccessTy,
const TargetLowering *TLI) {
switch (Kind) {
case LSRUse::Address:
@@ -1176,7 +1176,7 @@ static bool isLegalUse(const TargetLowering::AddrMode &AM,
static bool isLegalUse(TargetLowering::AddrMode AM,
int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, const Type *AccessTy,
+ LSRUse::KindType Kind, Type *AccessTy,
const TargetLowering *TLI) {
// Check for overflow.
if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
@@ -1198,7 +1198,7 @@ static bool isLegalUse(TargetLowering::AddrMode AM,
static bool isAlwaysFoldable(int64_t BaseOffs,
GlobalValue *BaseGV,
bool HasBaseReg,
- LSRUse::KindType Kind, const Type *AccessTy,
+ LSRUse::KindType Kind, Type *AccessTy,
const TargetLowering *TLI) {
// Fast-path: zero is always foldable.
if (BaseOffs == 0 && !BaseGV) return true;
@@ -1224,7 +1224,7 @@ static bool isAlwaysFoldable(int64_t BaseOffs,
static bool isAlwaysFoldable(const SCEV *S,
int64_t MinOffset, int64_t MaxOffset,
bool HasBaseReg,
- LSRUse::KindType Kind, const Type *AccessTy,
+ LSRUse::KindType Kind, Type *AccessTy,
const TargetLowering *TLI,
ScalarEvolution &SE) {
// Fast-path: zero is always foldable.
@@ -1299,7 +1299,7 @@ class LSRInstance {
SmallSetVector<int64_t, 8> Factors;
/// Types - Interesting use types, to facilitate truncation reuse.
- SmallSetVector<const Type *, 4> Types;
+ SmallSetVector<Type *, 4> Types;
/// Fixups - The list of operands which are to be replaced.
SmallVector<LSRFixup, 16> Fixups;
@@ -1330,11 +1330,11 @@ class LSRInstance {
UseMapTy UseMap;
bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, const Type *AccessTy);
+ LSRUse::KindType Kind, Type *AccessTy);
std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
LSRUse::KindType Kind,
- const Type *AccessTy);
+ Type *AccessTy);
void DeleteUse(LSRUse &LU, size_t LUIdx);
@@ -1426,7 +1426,7 @@ void LSRInstance::OptimizeShadowIV() {
IVUsers::const_iterator CandidateUI = UI;
++UI;
Instruction *ShadowUse = CandidateUI->getUser();
- const Type *DestTy = NULL;
+ Type *DestTy = NULL;
/* If shadow use is a int->float cast then insert a second IV
to eliminate this cast.
@@ -1457,7 +1457,7 @@ void LSRInstance::OptimizeShadowIV() {
if (!PH) continue;
if (PH->getNumIncomingValues() != 2) continue;
- const Type *SrcTy = PH->getType();
+ Type *SrcTy = PH->getType();
int Mantissa = DestTy->getFPMantissaWidth();
if (Mantissa == -1) continue;
if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
@@ -1776,7 +1776,7 @@ LSRInstance::OptimizeLoopTermCond() {
if (!TLI)
goto decline_post_inc;
// Check for possible scaled-address reuse.
- const Type *AccessTy = getAccessType(UI->getUser());
+ Type *AccessTy = getAccessType(UI->getUser());
TargetLowering::AddrMode AM;
AM.Scale = C->getSExtValue();
if (TLI->isLegalAddressingMode(AM, AccessTy))
@@ -1840,10 +1840,10 @@ LSRInstance::OptimizeLoopTermCond() {
/// return true.
bool
LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, const Type *AccessTy) {
+ LSRUse::KindType Kind, Type *AccessTy) {
int64_t NewMinOffset = LU.MinOffset;
int64_t NewMaxOffset = LU.MaxOffset;
- const Type *NewAccessTy = AccessTy;
+ Type *NewAccessTy = AccessTy;
// Check for a mismatched kind. It's tempting to collapse mismatched kinds to
// something conservative, however this can pessimize in the case that one of
@@ -1882,7 +1882,7 @@ LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
/// Either reuse an existing use or create a new one, as needed.
std::pair<size_t, int64_t>
LSRInstance::getUse(const SCEV *&Expr,
- LSRUse::KindType Kind, const Type *AccessTy) {
+ LSRUse::KindType Kind, Type *AccessTy) {
const SCEV *Copy = Expr;
int64_t Offset = ExtractImmediate(Expr, SE);
@@ -2044,7 +2044,7 @@ void LSRInstance::CollectFixupsAndInitialFormulae() {
LF.PostIncLoops = UI->getPostIncLoops();
LSRUse::KindType Kind = LSRUse::Basic;
- const Type *AccessTy = 0;
+ Type *AccessTy = 0;
if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
Kind = LSRUse::Address;
AccessTy = getAccessType(LF.UserInst);
@@ -2464,7 +2464,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
if (LU.Kind != LSRUse::ICmpZero) return;
// Determine the integer type for the base formula.
- const Type *IntTy = Base.getType();
+ Type *IntTy = Base.getType();
if (!IntTy) return;
if (SE.getTypeSizeInBits(IntTy) > 64) return;
@@ -2538,7 +2538,7 @@ void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
/// scaled-offset address modes, for example.
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// Determine the integer type for the base formula.
- const Type *IntTy = Base.getType();
+ Type *IntTy = Base.getType();
if (!IntTy) return;
// If this Formula already has a scaled register, we can't add another one.
@@ -2598,13 +2598,13 @@ void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
if (Base.AM.BaseGV) return;
// Determine the integer type for the base formula.
- const Type *DstTy = Base.getType();
+ Type *DstTy = Base.getType();
if (!DstTy) return;
DstTy = SE.getEffectiveSCEVType(DstTy);
- for (SmallSetVector<const Type *, 4>::const_iterator
+ for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
- const Type *SrcTy = *I;
+ Type *SrcTy = *I;
if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
Formula F = Base;
@@ -2741,7 +2741,7 @@ void LSRInstance::GenerateCrossUseConstantOffsets() {
int64_t Imm = WI.Imm;
const SCEV *OrigReg = WI.OrigReg;
- const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
+ Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
@@ -3440,9 +3440,9 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
Rewriter.setPostInc(LF.PostIncLoops);
// This is the type that the user actually needs.
- const Type *OpTy = LF.OperandValToReplace->getType();
+ Type *OpTy = LF.OperandValToReplace->getType();
// This will be the type that we'll initially expand to.
- const Type *Ty = F.getType();
+ Type *Ty = F.getType();
if (!Ty)
// No type known; just expand directly to the ultimate type.
Ty = OpTy;
@@ -3450,7 +3450,7 @@ Value *LSRInstance::Expand(const LSRFixup &LF,
// Expand directly to the ultimate type if it's the right size.
Ty = OpTy;
// This is the type to do integer arithmetic in.
- const Type *IntTy = SE.getEffectiveSCEVType(Ty);
+ Type *IntTy = SE.getEffectiveSCEVType(Ty);
// Build up a list of operands to add together to form the full base.
SmallVector<const SCEV *, 8> Ops;
@@ -3637,7 +3637,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
// If this is reuse-by-noop-cast, insert the noop cast.
- const Type *OpTy = LF.OperandValToReplace->getType();
+ Type *OpTy = LF.OperandValToReplace->getType();
if (FullV->getType() != OpTy)
FullV =
CastInst::Create(CastInst::getCastOpcode(FullV, false,
@@ -3667,7 +3667,7 @@ void LSRInstance::Rewrite(const LSRFixup &LF,
Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
// If this is reuse-by-noop-cast, insert the noop cast.
- const Type *OpTy = LF.OperandValToReplace->getType();
+ Type *OpTy = LF.OperandValToReplace->getType();
if (FullV->getType() != OpTy) {
Instruction *Cast =
CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
@@ -3793,7 +3793,7 @@ void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
OS << '*' << *I;
}
- for (SmallSetVector<const Type *, 4>::const_iterator
+ for (SmallSetVector<Type *, 4>::const_iterator
I = Types.begin(), E = Types.end(); I != E; ++I) {
if (!First) OS << ", ";
First = false;
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 7ed3db6cc1..ba5ee68ebb 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -54,7 +54,7 @@ static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
if (OpC->isZero()) continue; // No offset.
// Handle struct indices, which add their field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
continue;
}
@@ -448,7 +448,7 @@ Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
// Determine alignment
unsigned Alignment = Range.Alignment;
if (Alignment == 0) {
- const Type *EltType =
+ Type *EltType =
cast<PointerType>(StartPtr->getType())->getElementType();
Alignment = TD->getABITypeAlignment(EltType);
}
@@ -616,7 +616,7 @@ bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
if (!A->hasStructRetAttr())
return false;
- const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
+ Type *StructTy = cast<PointerType>(A->getType())->getElementType();
uint64_t destSize = TD->getTypeAllocSize(StructTy);
if (destSize < srcSize)
@@ -860,7 +860,7 @@ bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
// Find out what feeds this byval argument.
Value *ByValArg = CS.getArgument(ArgNo);
- const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
+ Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
MemDepResult DepInfo =
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
diff --git a/lib/Transforms/Scalar/ObjCARC.cpp b/lib/Transforms/Scalar/ObjCARC.cpp
index ee132d3be4..f2e5ff9ac9 100644
--- a/lib/Transforms/Scalar/ObjCARC.cpp
+++ b/lib/Transforms/Scalar/ObjCARC.cpp
@@ -180,7 +180,7 @@ static bool IsPotentialUse(const Value *Op) {
Arg->hasStructRetAttr())
return false;
// Only consider values with pointer types, and not function pointers.
- const PointerType *Ty = dyn_cast<PointerType>(Op->getType());
+ PointerType *Ty = dyn_cast<PointerType>(Op->getType());
if (!Ty || isa<FunctionType>(Ty->getElementType()))
return false;
// Conservatively assume anything else is a potential use.
@@ -213,8 +213,8 @@ static InstructionClass GetFunctionClass(const Function *F) {
const Argument *A0 = AI++;
if (AI == AE)
// Argument is a pointer.
- if (const PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
- const Type *ETy = PTy->getElementType();
+ if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
+ Type *ETy = PTy->getElementType();
// Argument is i8*.
if (ETy->isIntegerTy(8))
return StringSwitch<InstructionClass>(F->getName())
@@ -234,7 +234,7 @@ static InstructionClass GetFunctionClass(const Function *F) {
.Default(IC_CallOrUser);
// Argument is i8**
- if (const PointerType *Pte = dyn_cast<PointerType>(ETy))
+ if (PointerType *Pte = dyn_cast<PointerType>(ETy))
if (Pte->getElementType()->isIntegerTy(8))
return StringSwitch<InstructionClass>(F->getName())
.Case("objc_loadWeakRetained", IC_LoadWeakRetained)
@@ -246,11 +246,11 @@ static InstructionClass GetFunctionClass(const Function *F) {
// Two arguments, first is i8**.
const Argument *A1 = AI++;
if (AI == AE)
- if (const PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
- if (const PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
+ if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
+ if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
if (Pte->getElementType()->isIntegerTy(8))
- if (const PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
- const Type *ETy1 = PTy1->getElementType();
+ if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
+ Type *ETy1 = PTy1->getElementType();
// Second argument is i8*
if (ETy1->isIntegerTy(8))
return StringSwitch<InstructionClass>(F->getName())
@@ -258,7 +258,7 @@ static InstructionClass GetFunctionClass(const Function *F) {
.Case("objc_initWeak", IC_InitWeak)
.Default(IC_CallOrUser);
// Second argument is i8**.
- if (const PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
+ if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
if (Pte1->getElementType()->isIntegerTy(8))
return StringSwitch<InstructionClass>(F->getName())
.Case("objc_moveWeak", IC_MoveWeak)
@@ -1501,7 +1501,7 @@ Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
std::vector<Type *> Params;
Params.push_back(I8X);
- const FunctionType *FTy =
+ FunctionType *FTy =
FunctionType::get(I8X, Params, /*isVarArg=*/false);
AttrListPtr Attributes;
Attributes.addAttr(~0u, Attribute::NoUnwind);
@@ -1518,7 +1518,7 @@ Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
std::vector<Type *> Params;
Params.push_back(I8X);
- const FunctionType *FTy =
+ FunctionType *FTy =
FunctionType::get(I8X, Params, /*isVarArg=*/false);
AttrListPtr Attributes;
Attributes.addAttr(~0u, Attribute::NoUnwind);
@@ -1953,7 +1953,7 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
case IC_DestroyWeak: {
CallInst *CI = cast<CallInst>(Inst);
if (isNullOrUndef(CI->getArgOperand(0))) {
- const Type *Ty = CI->getArgOperand(0)->getType();
+ Type *Ty = CI->getArgOperand(0)->getType();
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
@@ -1968,7 +1968,7 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
CallInst *CI = cast<CallInst>(Inst);
if (isNullOrUndef(CI->getArgOperand(0)) ||
isNullOrUndef(CI->getArgOperand(1))) {
- const Type *Ty = CI->getArgOperand(0)->getType();
+ Type *Ty = CI->getArgOperand(0)->getType();
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
Constant::getNullValue(Ty),
CI);
@@ -2090,7 +2090,7 @@ void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
++NumPartialNoops;
// Clone the call into each predecessor that has a non-null value.
CallInst *CInst = cast<CallInst>(Inst);
- const Type *ParamTy = CInst->getArgOperand(0)->getType();
+ Type *ParamTy = CInst->getArgOperand(0)->getType();
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming =
StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
@@ -2566,8 +2566,8 @@ void ObjCARCOpt::MoveCalls(Value *Arg,
MapVector<Value *, RRInfo> &Retains,
DenseMap<Value *, RRInfo> &Releases,
SmallVectorImpl<Instruction *> &DeadInsts) {
- const Type *ArgTy = Arg->getType();
- const Type *ParamTy =
+ Type *ArgTy = Arg->getType();
+ Type *ParamTy =
(RetainRVFunc ? RetainRVFunc :
RetainFunc ? RetainFunc :
RetainBlockFunc)->arg_begin()->getType();
@@ -3294,7 +3294,7 @@ Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
std::vector<Type *> Params;
Params.push_back(I8X);
- const FunctionType *FTy =
+ FunctionType *FTy =
FunctionType::get(I8X, Params, /*isVarArg=*/false);
AttrListPtr Attributes;
Attributes.addAttr(~0u, Attribute::NoUnwind);
@@ -3310,7 +3310,7 @@ Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
std::vector<Type *> Params;
Params.push_back(I8X);
- const FunctionType *FTy =
+ FunctionType *FTy =
FunctionType::get(I8X, Params, /*isVarArg=*/false);
AttrListPtr Attributes;
Attributes.addAttr(~0u, Attribute::NoUnwind);
@@ -3411,8 +3411,8 @@ void ObjCARCContract::ContractRelease(Instruction *Release,
++NumStoreStrongs;
LLVMContext &C = Release->getContext();
- const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
- const Type *I8XX = PointerType::getUnqual(I8X);
+ Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
+ Type *I8XX = PointerType::getUnqual(I8X);
Value *Args[] = { Load->getPointerOperand(), New };
if (Args[0]->getType() != I8XX)
@@ -3548,7 +3548,7 @@ bool ObjCARCContract::runOnFunction(Function &F) {
if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
Changed = true;
Instruction *Replacement = Inst;
- const Type *UseTy = U.get()->getType();
+ Type *UseTy = U.get()->getType();
if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
// For PHI nodes, insert the bitcast in the predecessor block.
unsigned ValNo =
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index 083412ed94..3d116417f5 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -241,7 +241,7 @@ public:
/// this method must be called.
void AddTrackedFunction(Function *F) {
// Add an entry, F -> undef.
- if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
+ if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
MRVFunctionsTracked.insert(F);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
@@ -302,7 +302,7 @@ public:
/// markAnythingOverdefined - Mark the specified value overdefined. This
/// works with both scalars and structs.
void markAnythingOverdefined(Value *V) {
- if (const StructType *STy = dyn_cast<StructType>(V->getType()))
+ if (StructType *STy = dyn_cast<StructType>(V->getType()))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
markOverdefined(getStructValueState(V, i), V);
else
@@ -417,7 +417,7 @@ private:
else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
LV.markConstant(CS->getOperand(i)); // Constants are constant.
else if (isa<ConstantAggregateZero>(C)) {
- const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
+ Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
LV.markConstant(Constant::getNullValue(FieldTy));
} else
LV.markOverdefined(); // Unknown sort of constant.
@@ -772,7 +772,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) {
// Handle functions that return multiple values.
if (!TrackedMultipleRetVals.empty()) {
- if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
+ if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
if (MRVFunctionsTracked.count(F))
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
@@ -825,7 +825,7 @@ void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
}
void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
- const StructType *STy = dyn_cast<StructType>(IVI.getType());
+ StructType *STy = dyn_cast<StructType>(IVI.getType());
if (STy == 0)
return markOverdefined(&IVI);
@@ -925,7 +925,7 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
// Could annihilate value.
if (I.getOpcode() == Instruction::And)
markConstant(IV, &I, Constant::getNullValue(I.getType()));
- else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
+ else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
markConstant(IV, &I, Constant::getAllOnesValue(PT));
else
markConstant(IV, &I,
@@ -1303,7 +1303,7 @@ CallOverdefined:
continue;
}
- if (const StructType *STy = dyn_cast<StructType>(AI->getType())) {
+ if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
LatticeVal CallArg = getStructValueState(*CAI, i);
mergeInValue(getStructValueState(AI, i), AI, CallArg);
@@ -1315,7 +1315,7 @@ CallOverdefined:
}
// If this is a single/zero retval case, see if we're tracking the function.
- if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
+ if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
if (!MRVFunctionsTracked.count(F))
goto CallOverdefined; // Not tracking this callee.
@@ -1419,7 +1419,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// Look for instructions which produce undef values.
if (I->getType()->isVoidTy()) continue;
- if (const StructType *STy = dyn_cast<StructType>(I->getType())) {
+ if (StructType *STy = dyn_cast<StructType>(I->getType())) {
// Only a few things that can be structs matter for undef. Just send
// all their results to overdefined. We could be more precise than this
// but it isn't worth bothering.
@@ -1457,7 +1457,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// If this is an instructions whose result is defined even if the input is
// not fully defined, propagate the information.
- const Type *ITy = I->getType();
+ Type *ITy = I->getType();
switch (I->getOpcode()) {
default: break; // Leave the instruction as an undef.
case Instruction::ZExt:
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index 7d6349cf4e..9b704f6e72 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -129,11 +129,11 @@ namespace {
AllocaInfo &Info);
void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
- const Type *MemOpType, bool isStore, AllocaInfo &Info,
+ Type *MemOpType, bool isStore, AllocaInfo &Info,
Instruction *TheAccess, bool AllowWholeAccess);
- bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
- uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
- const Type *&IdxTy);
+ bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
+ uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
+ Type *&IdxTy);
void DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList);
@@ -253,7 +253,7 @@ class ConvertToScalarInfo {
/// VectorTy - This tracks the type that we should promote the vector to if
/// it is possible to turn it into a vector. This starts out null, and if it
/// isn't possible to turn into a vector type, it gets set to VoidTy.
- const VectorType *VectorTy;
+ VectorType *VectorTy;
/// HadNonMemTransferAccess - True if there is at least one access to the
/// alloca that is not a MemTransferInst. We don't want to turn structs into
@@ -269,11 +269,11 @@ public:
private:
bool CanConvertToScalar(Value *V, uint64_t Offset);
- void MergeInTypeForLoadOrStore(const Type *In, uint64_t Offset);
- bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
+ void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
+ bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
- Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
+ Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
uint64_t Offset, IRBuilder<> &Builder);
Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
uint64_t Offset, IRBuilder<> &Builder);
@@ -306,7 +306,7 @@ AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
// random stuff that doesn't use vectors (e.g. <9 x double>) because then
// we just get a lot of insert/extracts. If at least one vector is
// involved, then we probably really do have a union of vector/array.
- const Type *NewTy;
+ Type *NewTy;
if (ScalarKind == Vector) {
assert(VectorTy && "Missing type for vector scalar.");
DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
@@ -344,7 +344,7 @@ AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
/// large) integer type with extract and insert operations where the loads
/// and stores would mutate the memory. We mark this by setting VectorTy
/// to VoidTy.
-void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type *In,
+void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
uint64_t Offset) {
// If we already decided to turn this into a blob of integer memory, there is
// nothing to be done.
@@ -355,7 +355,7 @@ void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type *In,
// If the In type is a vector that is the same size as the alloca, see if it
// matches the existing VecTy.
- if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
+ if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
if (MergeInVectorType(VInTy, Offset))
return;
} else if (In->isFloatTy() || In->isDoubleTy() ||
@@ -395,7 +395,7 @@ void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type *In,
/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
/// returning true if the type was successfully merged and false otherwise.
-bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
+bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
uint64_t Offset) {
// TODO: Support nonzero offsets?
if (Offset != 0)
@@ -422,8 +422,8 @@ bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
return true;
}
- const Type *ElementTy = VectorTy->getElementType();
- const Type *InElementTy = VInTy->getElementType();
+ Type *ElementTy = VectorTy->getElementType();
+ Type *InElementTy = VInTy->getElementType();
// Do not allow mixed integer and floating-point accesses from vectors of
// different sizes.
@@ -668,8 +668,8 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
// pointer (bitcasted), then a store to our new alloca.
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
Value *SrcPtr = MTI->getSource();
- const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
- const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
+ PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
+ PointerType* AIPTy = cast<PointerType>(NewAI->getType());
if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
AIPTy = PointerType::get(AIPTy->getElementType(),
SPTy->getAddressSpace());
@@ -685,8 +685,8 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
- const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
- const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
+ PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
+ PointerType* AIPTy = cast<PointerType>(NewAI->getType());
if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
AIPTy = PointerType::get(AIPTy->getElementType(),
DPTy->getAddressSpace());
@@ -711,7 +711,7 @@ void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
/// access of an alloca. The input types must be integer or floating-point
/// scalar or vector types, and the resulting type is an integer, float or
/// double.
-static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
+static Type *getScaledElementType(Type *Ty1, Type *Ty2,
unsigned NewBitWidth) {
bool IsFP1 = Ty1->isFloatingPointTy() ||
(Ty1->isVectorTy() &&
@@ -737,11 +737,11 @@ static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
/// to another vector of the same element type which has the same allocation
/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
-static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
+static Value *CreateShuffleVectorCast(Value *FromVal, Type *ToType,
IRBuilder<> &Builder) {
- const Type *FromType = FromVal->getType();
- const VectorType *FromVTy = cast<VectorType>(FromType);
- const VectorType *ToVTy = cast<VectorType>(ToType);
+ Type *FromType = FromVal->getType();
+ VectorType *FromVTy = cast<VectorType>(FromType);
+ VectorType *ToVTy = cast<VectorType>(ToType);
assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
"Vectors must have the same element type");
Value *UnV = UndefValue::get(FromType);
@@ -749,7 +749,7 @@ static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
unsigned numEltsTo = ToVTy->getNumElements();
SmallVector<Constant*, 3> Args;
- const Type* Int32Ty = Builder.getInt32Ty();
+ Type* Int32Ty = Builder.getInt32Ty();
unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
unsigned i;
for (i=0; i != minNumElts; ++i)
@@ -775,16 +775,16 @@ static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.
Value *ConvertToScalarInfo::
-ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
+ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
uint64_t Offset, IRBuilder<> &Builder) {
// If the load is of the whole new alloca, no conversion is needed.
- const Type *FromType = FromVal->getType();
+ Type *FromType = FromVal->getType();
if (FromType == ToType && Offset == 0)
return FromVal;
// If the result alloca is a vector type, this is either an element
// access or a bitcast to another vector type of the same size.
- if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
+ if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
if (FromTypeSize == ToTypeSize) {
@@ -803,12 +803,12 @@ ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
"of a smaller vector type at a nonzero offset.");
- const Type *CastElementTy = getScaledElementType(FromType, ToType,
+ Type *CastElementTy = getScaledElementType(FromType, ToType,
ToTypeSize * 8);
unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
LLVMContext &Context = FromVal->getContext();
- const Type *CastTy = VectorType::get(CastElementTy,
+ Type *CastTy = VectorType::get(CastElementTy,
NumCastVectorElements);
Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
@@ -837,7 +837,7 @@ ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
// If ToType is a first class aggregate, extract out each of the pieces and
// use insertvalue's to form the FCA.
- if (const StructType *ST = dyn_cast<StructType>(ToType)) {
+ if (StructType *ST = dyn_cast<StructType>(ToType)) {
const StructLayout &Layout = *TD.getStructLayout(ST);
Value *Res = UndefValue::get(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
@@ -849,7 +849,7 @@ ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
return Res;
}
- if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
Value *Res = UndefValue::get(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
@@ -861,7 +861,7 @@ ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
}
// Otherwise, this must be a union that was converted to an integer value.
- const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
+ IntegerType *NTy = cast<IntegerType>(FromVal->getType());
// If this is a big-endian system and the load is narrower than the
// full alloca type, we need to do a shift to get the right bits.
@@ -927,10 +927,10 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
uint64_t Offset, IRBuilder<> &Builder) {
// Convert the stored type to the actual type, shift it left to insert
// then 'or' into place.
- const Type *AllocaType = Old->getType();
+ Type *AllocaType = Old->getType();
LLVMContext &Context = Old->getContext();
- if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
+ if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
@@ -952,12 +952,12 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
"value of a smaller vector type at a nonzero offset.");
- const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
+ Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
ValSize);
unsigned NumCastVectorElements = VecSize / ValSize;
LLVMContext &Context = SV->getContext();
- const Type *OldCastTy = VectorType::get(CastElementTy,
+ Type *OldCastTy = VectorType::get(CastElementTy,
NumCastVectorElements);
Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
@@ -982,7 +982,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
}
// If SV is a first-class aggregate value, insert each value recursively.
- if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
+ if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
const StructLayout &Layout = *TD.getStructLayout(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
@@ -993,7 +993,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
return Old;
}
- if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
@@ -1393,7 +1393,7 @@ static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
continue;
}
- const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
+ Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
PN->getName()+".ld", PN);
@@ -1483,13 +1483,13 @@ bool SROA::performPromotion(Function &F) {
/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
/// SROA. It must be a struct or array type with a small number of elements.
static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
- const Type *T = AI->getAllocatedType();
+ Type *T = AI->getAllocatedType();
// Do not promote any struct into more than 32 separate vars.
- if (const StructType *ST = dyn_cast<StructType>(T))
+ if (StructType *ST = dyn_cast<StructType>(T))
return ST->getNumElements() <= 32;
// Arrays are much less likely to be safe for SROA; only consider
// them if they are very small.
- if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+ if (ArrayType *AT = dyn_cast<ArrayType>(T))
return AT->getNumElements() <= 8;
return false;
}
@@ -1594,7 +1594,7 @@ void SROA::DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList) {
DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
SmallVector<AllocaInst*, 32> ElementAllocas;
- if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
+ if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
ElementAllocas.reserve(ST->getNumContainedTypes());
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
@@ -1604,9 +1604,9 @@ void SROA::DoScalarReplacement(AllocaInst *AI,
WorkList.push_back(NA); // Add to worklist for recursive processing
}
} else {
- const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
+ ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
ElementAllocas.reserve(AT->getNumElements());
- const Type *ElTy = AT->getElementType();
+ Type *ElTy = AT->getElementType();
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
AI->getName() + "." + Twine(i), AI);
@@ -1672,7 +1672,7 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
if (LI->isVolatile())
return MarkUnsafe(Info, User);
- const Type *LIType = LI->getType();
+ Type *LIType = LI->getType();
isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
LIType, false, Info, LI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1682,7 +1682,7 @@ void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
if (SI->isVolatile() || SI->getOperand(0) == I)
return MarkUnsafe(Info, User);
- const Type *SIType = SI->getOperand(0)->getType();
+ Type *SIType = SI->getOperand(0)->getType();
isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
SIType, true, Info, SI, true /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1727,7 +1727,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
if (LI->isVolatile())
return MarkUnsafe(Info, User);
- const Type *LIType = LI->getType();
+ Type *LIType = LI->getType();
isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
LIType, false, Info, LI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1737,7 +1737,7 @@ void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
if (SI->isVolatile() || SI->getOperand(0) == I)
return MarkUnsafe(Info, User);
- const Type *SIType = SI->getOperand(0)->getType();
+ Type *SIType = SI->getOperand(0)->getType();
isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
SIType, true, Info, SI, false /*AllowWholeAccess*/);
Info.hasALoadOrStore = true;
@@ -1786,14 +1786,14 @@ void SROA::isSafeGEP(GetElementPtrInst *GEPI,
/// elements of the same type (which is always true for arrays). If so,
/// return true with NumElts and EltTy set to the number of elements and the
/// element type, respectively.
-static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
- const Type *&EltTy) {
- if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
+static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
+ Type *&EltTy) {
+ if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
NumElts = AT->getNumElements();
EltTy = (NumElts == 0 ? 0 : AT->getElementType());
return true;
}
- if (const StructType *ST = dyn_cast<StructType>(T)) {
+ if (StructType *ST = dyn_cast<StructType>(T)) {
NumElts = ST->getNumContainedTypes();
EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
for (unsigned n = 1; n < NumElts; ++n) {
@@ -1807,12 +1807,12 @@ static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
/// "homogeneous" aggregates with the same element type and number of elements.
-static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
+static bool isCompatibleAggregate(Type *T1, Type *T2) {
if (T1 == T2)
return true;
unsigned NumElts1, NumElts2;
- const Type *EltTy1, *EltTy2;
+ Type *EltTy1, *EltTy2;
if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
NumElts1 == NumElts2 &&
@@ -1830,7 +1830,7 @@ static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
/// unit. If false, it only allows accesses known to be in a single element.
void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
- const Type *MemOpType, bool isStore,
+ Type *MemOpType, bool isStore,
AllocaInfo &Info, Instruction *TheAccess,
bool AllowWholeAccess) {
// Check if this is a load/store of the entire alloca.
@@ -1857,7 +1857,7 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
}
}
// Check if the offset/size correspond to a component within the alloca type.
- const Type *T = Info.AI->getAllocatedType();
+ Type *T = Info.AI->getAllocatedType();
if (TypeHasComponent(T, Offset, MemSize)) {
Info.hasSubelementAccess = true;
return;
@@ -1868,16 +1868,16 @@ void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
/// TypeHasComponent - Return true if T has a component type with the
/// specified offset and size. If Size is zero, do not check the size.
-bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
- const Type *EltTy;
+bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
+ Type *EltTy;
uint64_t EltSize;
- if (const StructType *ST = dyn_cast<StructType>(T)) {
+ if (StructType *ST = dyn_cast<StructType>(T)) {
const StructLayout *Layout = TD->getStructLayout(ST);
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
EltTy = ST->getContainedType(EltIdx);
EltSize = TD->getTypeAllocSize(EltTy);
Offset -= Layout->getElementOffset(EltIdx);
- } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
+ } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
EltTy = AT->getElementType();
EltSize = TD->getTypeAllocSize(EltTy);
if (Offset >= AT->getNumElements() * EltSize)
@@ -1926,7 +1926,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
}
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- const Type *LIType = LI->getType();
+ Type *LIType = LI->getType();
if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
// Replace:
@@ -1956,7 +1956,7 @@ void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Value *Val = SI->getOperand(0);
- const Type *SIType = Val->getType();
+ Type *SIType = Val->getType();
if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
// Replace:
// store { i32, i32 } %val, { i32, i32 }* %alloc
@@ -2026,10 +2026,10 @@ void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
/// Sets T to the type of the element and Offset to the offset within that
/// element. IdxTy is set to the type of the index result to be used in a
/// GEP instruction.
-uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
- const Type *&IdxTy) {
+uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
+ Type *&IdxTy) {
uint64_t Idx = 0;
- if (const StructType *ST = dyn_cast<StructType>(T)) {
+ if (StructType *ST = dyn_cast<StructType>(T)) {
const StructLayout *Layout = TD->getStructLayout(ST);
Idx = Layout->getElementContainingOffset(Offset);
T = ST->getContainedType(Idx);
@@ -2037,7 +2037,7 @@ uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
IdxTy = Type::getInt32Ty(T->getContext());
return Idx;
}
- const ArrayType *AT = cast<ArrayType>(T);
+ ArrayType *AT = cast<ArrayType>(T);
T = AT->getElementType();
uint64_t EltSize = TD->getTypeAllocSize(T);
Idx = Offset / EltSize;
@@ -2058,8 +2058,8 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
- const Type *T = AI->getAllocatedType();
- const Type *IdxTy;
+ Type *T = AI->getAllocatedType();
+ Type *IdxTy;
uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
if (GEPI->getOperand(0) == AI)
OldIdx = ~0ULL; // Force the GEP to be rewritten.
@@ -2073,7 +2073,7 @@ void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
if (Idx == OldIdx)
return;
- const Type *i32Ty = Type::getInt32Ty(AI->getContext());
+ Type *i32Ty = Type::getInt32Ty(AI->getContext());
SmallVector<Value*, 8> NewArgs;
NewArgs.push_back(Constant::getNullValue(i32Ty));
while (EltOffset != 0) {
@@ -2139,7 +2139,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
// If the pointer is not the right type, insert a bitcast to the right
// type.
- const Type *NewTy =
+ Type *NewTy =
PointerType::get(AI->getType()->getElementType(), AddrSpace);
if (OtherPtr->getType() != NewTy)
@@ -2163,12 +2163,12 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
OtherPtr->getName()+"."+Twine(i),
MI);
uint64_t EltOffset;
- const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
- const Type *OtherTy = OtherPtrTy->getElementType();
- if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
+ PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
+ Type *OtherTy = OtherPtrTy->getElementType();
+ if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
} else {
- const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
+ Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
EltOffset = TD->getTypeAllocSize(EltTy)*i;
}
@@ -2181,7 +2181,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
}
Value *EltPtr = NewElts[i];
- const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
+ Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
// If we got down to a scalar, insert a load or store as appropriate.
if (EltTy->isSingleValueType()) {
@@ -2207,7 +2207,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
} else {
// If EltTy is a vector type, get the element type.
- const Type *ValTy = EltTy->getScalarType();
+ Type *ValTy = EltTy->getScalarType();
// Construct an integer with the right value.
unsigned EltSize = TD->getTypeSizeInBits(ValTy);
@@ -2271,7 +2271,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// Extract each element out of the integer according to its structure offset
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
- const Type *AllocaEltTy = AI->getAllocatedType();
+ Type *AllocaEltTy = AI->getAllocatedType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
IRBuilder<> Builder(SI);
@@ -2286,12 +2286,12 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
- if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+ if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
const StructLayout *Layout = TD->getStructLayout(EltSTy);
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Get the number of bits to shift SrcVal to get the value.
- const Type *FieldTy = EltSTy->getElementType(i);
+ Type *FieldTy = EltSTy->getElementType(i);
uint64_t Shift = Layout->getElementOffsetInBits(i);
if (TD->isBigEndian())
@@ -2327,8 +2327,8 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
}
} else {
- const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
- const Type *ArrayEltTy = ATy->getElementType();
+ ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
+ Type *ArrayEltTy = ATy->getElementType();
uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
@@ -2384,7 +2384,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
SmallVector<AllocaInst*, 32> &NewElts) {
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
- const Type *AllocaEltTy = AI->getAllocatedType();
+ Type *AllocaEltTy = AI->getAllocatedType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
@@ -2394,10 +2394,10 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
// have different ways to compute the element offset.
const StructLayout *Layout = 0;
uint64_t ArrayEltBitOffset = 0;
- if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
+ if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
Layout = TD->getStructLayout(EltSTy);
} else {
- const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
+ Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
}
@@ -2408,14 +2408,14 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
// Load the value from the alloca. If the NewElt is an aggregate, cast
// the pointer to an integer of the same size before doing the load.
Value *SrcField = NewElts[i];
- const Type *FieldTy =
+ Type *FieldTy =
cast<PointerType>(SrcField->getType())->getElementType();
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
- const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
+ IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
FieldSizeBits);
if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
!FieldTy->isVectorTy())
@@ -2468,14 +2468,14 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
/// HasPadding - Return true if the specified type has any structure or
/// alignment padding in between the elements that would be split apart
/// by SROA; return false otherwise.
-static bool HasPadding(const Type *Ty, const TargetData &TD) {
- if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+static bool HasPadding(Type *Ty, const TargetData &TD) {
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Ty = ATy->getElementType();
return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
}
// SROA currently handles only Arrays and Structs.
- const StructType *STy = cast<StructType>(Ty);
+ StructType *STy = cast<StructType>(Ty);
const StructLayout *SL = TD.getStructLayout(STy);
unsigned PrevFieldBitOffset = 0;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
@@ -2530,7 +2530,7 @@ bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
// and fusion code.
if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
// If the struct/array just has one element, use basic SRoA.
- if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
+ if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
if (ST->getNumElements() > 1) return false;
} else {
if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index 7c415e5150..ad52417f7f 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -134,7 +134,7 @@ namespace {
struct StrCatOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
@@ -184,7 +184,7 @@ struct StrCatOpt : public LibCallOptimization {
struct StrNCatOpt : public StrCatOpt {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
@@ -232,7 +232,7 @@ struct StrNCatOpt : public StrCatOpt {
struct StrChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
@@ -282,7 +282,7 @@ struct StrChrOpt : public LibCallOptimization {
struct StrRChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strrchr" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
@@ -323,7 +323,7 @@ struct StrRChrOpt : public LibCallOptimization {
struct StrCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
@@ -371,7 +371,7 @@ struct StrCmpOpt : public LibCallOptimization {
struct StrNCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
@@ -426,7 +426,7 @@ struct StrCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
unsigned NumParams = OptChkCall ? 3 : 2;
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != NumParams ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
@@ -462,7 +462,7 @@ struct StrCpyOpt : public LibCallOptimization {
struct StrNCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
@@ -511,7 +511,7 @@ struct StrNCpyOpt : public LibCallOptimization {
struct StrLenOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getReturnType()->isIntegerTy())
@@ -537,7 +537,7 @@ struct StrLenOpt : public LibCallOptimization {
struct StrPBrkOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
@@ -575,7 +575,7 @@ struct StrPBrkOpt : public LibCallOptimization {
struct StrToOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy())
@@ -597,7 +597,7 @@ struct StrToOpt : public LibCallOptimization {
struct StrSpnOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
@@ -626,7 +626,7 @@ struct StrSpnOpt : public LibCallOptimization {
struct StrCSpnOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
@@ -658,7 +658,7 @@ struct StrCSpnOpt : public LibCallOptimization {
struct StrStrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
@@ -722,7 +722,7 @@ struct StrStrOpt : public LibCallOptimization {
struct MemCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy(32))
@@ -773,7 +773,7 @@ struct MemCpyOpt : public LibCallOptimization {
// These optimizations require TargetData.
if (!TD) return 0;
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
@@ -795,7 +795,7 @@ struct MemMoveOpt : public LibCallOptimization {
// These optimizations require TargetData.
if (!TD) return 0;
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
@@ -817,7 +817,7 @@ struct MemSetOpt : public LibCallOptimization {
// These optimizations require TargetData.
if (!TD) return 0;
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
@@ -840,7 +840,7 @@ struct MemSetOpt : public LibCallOptimization {
struct PowOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
@@ -895,7 +895,7 @@ struct PowOpt : public LibCallOptimization {
struct Exp2Opt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
@@ -946,7 +946,7 @@ struct Exp2Opt : public LibCallOptimization {
struct UnaryDoubleFPOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
return 0;
@@ -973,7 +973,7 @@ struct UnaryDoubleFPOpt : public LibCallOptimization {
struct FFSOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 1 ||
@@ -1009,7 +1009,7 @@ struct FFSOpt : public LibCallOptimization {
struct IsDigitOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
@@ -1028,7 +1028,7 @@ struct IsDigitOpt : public LibCallOptimization {
struct IsAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
@@ -1046,7 +1046,7 @@ struct IsAsciiOpt : public LibCallOptimization {
struct AbsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// We require integer(integer) where the types agree.
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
FT->getParamType(0) != FT->getReturnType())
@@ -1067,7 +1067,7 @@ struct AbsOpt : public LibCallOptimization {
struct ToAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isIntegerTy(32))
@@ -1147,7 +1147,7 @@ struct PrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
!(FT->getReturnType()->isIntegerTy() ||
FT->getReturnType()->isVoidTy()))
@@ -1241,7 +1241,7 @@ struct SPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed pointer arguments and an integer result.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
@@ -1272,7 +1272,7 @@ struct SPrintFOpt : public LibCallOptimization {
struct FWriteOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require a pointer, an integer, an integer, a pointer, returning integer.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
!FT->getParamType(2)->isIntegerTy() ||
@@ -1310,7 +1310,7 @@ struct FPutsOpt : public LibCallOptimization {
if (!TD) return 0;
// Require two pointers. Also, we can't optimize if return value is used.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!CI->use_empty())
@@ -1379,7 +1379,7 @@ struct FPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed paramters as pointers and integer result.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
@@ -1410,7 +1410,7 @@ struct FPrintFOpt : public LibCallOptimization {
struct PutsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
!(FT->getReturnType()->isIntegerTy() ||
FT->getReturnType()->isVoidTy()))
@@ -1685,7 +1685,7 @@ void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
void SimplifyLibCalls::inferPrototypeAttributes(Function &F) {
- const FunctionType *FTy = F.getFunctionType();
+ FunctionType *FTy = F.getFunctionType();
StringRef Name = F.getName();
switch (Name[0]) {
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
index be7bed1cec..8e5a1eb2c8 100644
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ b/lib/Transforms/Utils/AddrModeMatcher.cpp
@@ -222,7 +222,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
const TargetData *TD = TLI.getTargetData();
gep_type_iterator GTI = gep_type_begin(AddrInst);
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD->getStructLayout(STy);
unsigned Idx =
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
@@ -557,7 +557,7 @@ IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
Value *Address = User->getOperand(OpNo);
if (!Address->getType()->isPointerTy())
return false;
- const Type *AddressAccessTy =
+ Type *AddressAccessTy =
cast<PointerType>(Address->getType())->getElementType();
// Do a match against the root of this address, ignoring profitability. This
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
index 14bb17fbda..4b5f45b31f 100644
--- a/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -58,8 +58,8 @@ Value *llvm::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B,
AttributeWithIndex AWI =
AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
- const Type *I8Ptr = B.getInt8PtrTy();
- const Type *I32Ty = B.getInt32Ty();
+ Type *I8Ptr = B.getInt8PtrTy();
+ Type *I32Ty = B.getInt32Ty();
Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(&AWI, 1),
I8Ptr, I8Ptr, I32Ty, NULL);
CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B),
@@ -102,7 +102,7 @@ Value *llvm::EmitStrCpy(Value *Dst, Value *Src, IRBuilder<> &B,
AttributeWithIndex AWI[2];
AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- const Type *I8Ptr = B.getInt8PtrTy();
+ Type *I8Ptr = B.getInt8PtrTy();
Value *StrCpy = M->getOrInsertFunction(Name, AttrListPtr::get(AWI, 2),
I8Ptr, I8Ptr, I8Ptr, NULL);
CallInst *CI = B.CreateCall2(StrCpy, CastToCStr(Dst, B), CastToCStr(Src, B),
@@ -120,7 +120,7 @@ Value *llvm::EmitStrNCpy(Value *Dst, Value *Src, Value *Len,
AttributeWithIndex AWI[2];
AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture);
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
- const Type *I8Ptr = B.getInt8PtrTy();
+ Type *I8Ptr = B.getInt8PtrTy();
Value *StrNCpy = M->getOrInsertFunction(Name, AttrListPtr::get(AWI, 2),
I8Ptr, I8Ptr, I8Ptr,
Len->getType(), NULL);
@@ -361,7 +361,7 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const TargetData *TD) {
this->CI = CI;
Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
- const FunctionType *FT = Callee->getFunctionType();
+ FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
IRBuilder<> B(CI);
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index 081352358b..8f8e3dc0b0 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -50,7 +50,7 @@ namespace {
DominatorTree* DT;
bool AggregateArgs;
unsigned NumExitBlocks;
- const Type *RetTy;
+ Type *RetTy;
public:
CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
: DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
@@ -290,7 +290,7 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
paramTy.clear();
paramTy.push_back(StructPtr);
}
- const FunctionType *funcType =
+ FunctionType *funcType =
FunctionType::get(RetTy, paramTy, false);
// Create the new function
@@ -580,7 +580,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
}
// Now that we've done the deed, simplify the switch instruction.
- const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
+ Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
switch (NumExitBlocks) {
case 0:
// There are no successors (the block containing the switch itself), which
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index d5b382e55e..6d8a319635 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -636,7 +636,7 @@ static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
const Function *CalledFunc,
InlineFunctionInfo &IFI,
unsigned ByValAlignment) {
- const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
+ Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
// If the called function is readonly, then it could not mutate the caller's
// copy of the byval'd memory. In this case, it is safe to elide the copy and
@@ -726,7 +726,7 @@ static bool isUsedByLifetimeMarker(Value *V) {
// hasLifetimeMarkers - Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
- const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
+ Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
if (AI->getType() == Int8PtrTy)
return isUsedByLifetimeMarker(AI);
@@ -1090,7 +1090,7 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
- const Type *RTy = CalledFunc->getReturnType();
+ Type *RTy = CalledFunc->getReturnType();
PHINode *PHI = 0;
if (Returns.size() > 1) {
diff --git a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
index c1213fac7b..61ab3f6533 100644
--- a/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
+++ b/lib/Transforms/Utils/LowerExpectIntrinsic.cpp
@@ -58,7 +58,7 @@ bool LowerExpectIntrinsic::HandleSwitchExpect(SwitchInst *SI) {
return false;
LLVMContext &Context = CI->getContext();
- const Type *Int32Ty = Type::getInt32Ty(Context);
+ Type *Int32Ty = Type::getInt32Ty(Context);
unsigned caseNo = SI->findCaseValue(ExpectedValue);
std::vector<Value *> Vec;
@@ -105,7 +105,7 @@ bool LowerExpectIntrinsic::HandleIfExpect(BranchInst *BI) {
return false;
LLVMContext &Context = CI->getContext();
- const Type *Int32Ty = Type::getInt32Ty(Context);
+ Type *Int32Ty = Type::getInt32Ty(Context);
bool Likely = ExpectedValue->isOne();
// If expect value is equal to 1 it means that we are more likely to take
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index f77d19de90..8b5891f329 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -120,7 +120,7 @@ FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
// doInitialization - Make sure that there is a prototype for abort in the
// current module.
bool LowerInvoke::doInitialization(Module &M) {
- const Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
+ Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
if (useExpensiveEHSupport) {
// Insert a type for the linked list of jump buffers.
unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
@@ -131,7 +131,7 @@ bool LowerInvoke::doInitialization(Module &M) {
Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
JBLinkTy->setBody(Elts);
- const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
+ Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
// Now that we've done that, insert the jmpbuf list head global, unless it
// already exists.
@@ -305,7 +305,7 @@ splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
++AfterAllocaInsertPt;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI) {
- const Type *Ty = AI->getType();
+ Type *Ty = AI->getType();
// Aggregate types can't be cast, but are legal argument types, so we have
// to handle them differently. We use an extract/insert pair as a
// lightweight method to achieve the same goal.
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
index d2ff8aea38..fa8061c2b4 100644
--- a/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -44,7 +44,7 @@ SSAUpdater::~SSAUpdater() {
/// Initialize - Reset this object to get ready for a new set of SSA
/// updates with type 'Ty'. PHI nodes get a name based on 'Name'.
-void SSAUpdater::Initialize(const Type *Ty, StringRef Name) {
+void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
if (AV == 0)
AV = new AvailableValsTy();
else
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index 9d9c324b84..52145b9c97 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -322,7 +322,7 @@ static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
- const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
+ IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))