summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/Target/LLVMBuild.txt2
-rw-r--r--lib/Target/SystemZ/AsmParser/CMakeLists.txt7
-rw-r--r--lib/Target/SystemZ/AsmParser/LLVMBuild.txt23
-rw-r--r--lib/Target/SystemZ/AsmParser/Makefile16
-rw-r--r--lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp689
-rw-r--r--lib/Target/SystemZ/CMakeLists.txt32
-rw-r--r--lib/Target/SystemZ/InstPrinter/CMakeLists.txt7
-rw-r--r--lib/Target/SystemZ/InstPrinter/LLVMBuild.txt23
-rw-r--r--lib/Target/SystemZ/InstPrinter/Makefile16
-rw-r--r--lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp150
-rw-r--r--lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h68
-rw-r--r--lib/Target/SystemZ/LLVMBuild.txt34
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/CMakeLists.txt9
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/LLVMBuild.txt23
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/Makefile16
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp151
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp38
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h31
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp131
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h31
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp140
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp160
-rw-r--r--lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h62
-rw-r--r--lib/Target/SystemZ/Makefile28
-rw-r--r--lib/Target/SystemZ/README.txt146
-rw-r--r--lib/Target/SystemZ/SystemZ.h77
-rw-r--r--lib/Target/SystemZ/SystemZ.td75
-rw-r--r--lib/Target/SystemZ/SystemZAsmPrinter.cpp113
-rw-r--r--lib/Target/SystemZ/SystemZAsmPrinter.h52
-rw-r--r--lib/Target/SystemZ/SystemZCallingConv.cpp21
-rw-r--r--lib/Target/SystemZ/SystemZCallingConv.h23
-rw-r--r--lib/Target/SystemZ/SystemZCallingConv.td65
-rw-r--r--lib/Target/SystemZ/SystemZConstantPoolValue.cpp62
-rw-r--r--lib/Target/SystemZ/SystemZConstantPoolValue.h55
-rw-r--r--lib/Target/SystemZ/SystemZFrameLowering.cpp535
-rw-r--r--lib/Target/SystemZ/SystemZFrameLowering.h93
-rw-r--r--lib/Target/SystemZ/SystemZISelDAGToDAG.cpp616
-rw-r--r--lib/Target/SystemZ/SystemZISelLowering.cpp2233
-rw-r--r--lib/Target/SystemZ/SystemZISelLowering.h212
-rw-r--r--lib/Target/SystemZ/SystemZInstrBuilder.h48
-rw-r--r--lib/Target/SystemZ/SystemZInstrFP.td318
-rw-r--r--lib/Target/SystemZ/SystemZInstrFormats.td987
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.cpp444
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.h123
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.td955
-rw-r--r--lib/Target/SystemZ/SystemZMCInstLower.cpp116
-rw-r--r--lib/Target/SystemZ/SystemZMCInstLower.h47
-rw-r--r--lib/Target/SystemZ/SystemZMachineFunctionInfo.h74
-rw-r--r--lib/Target/SystemZ/SystemZOperands.td435
-rw-r--r--lib/Target/SystemZ/SystemZOperators.td196
-rw-r--r--lib/Target/SystemZ/SystemZPatterns.td71
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.cpp162
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.h70
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.td150
-rw-r--r--lib/Target/SystemZ/SystemZSubtarget.cpp56
-rw-r--r--lib/Target/SystemZ/SystemZSubtarget.h48
-rw-r--r--lib/Target/SystemZ/SystemZTargetMachine.cpp60
-rw-r--r--lib/Target/SystemZ/SystemZTargetMachine.h74
-rw-r--r--lib/Target/SystemZ/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/SystemZ/TargetInfo/LLVMBuild.txt23
-rw-r--r--lib/Target/SystemZ/TargetInfo/Makefile15
-rw-r--r--lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp20
62 files changed, 10763 insertions, 1 deletions
diff --git a/lib/Target/LLVMBuild.txt b/lib/Target/LLVMBuild.txt
index c06e8bc3cd..1022ae9088 100644
--- a/lib/Target/LLVMBuild.txt
+++ b/lib/Target/LLVMBuild.txt
@@ -16,7 +16,7 @@
;===------------------------------------------------------------------------===;
[common]
-subdirectories = AArch64 ARM CppBackend Hexagon MBlaze MSP430 NVPTX Mips PowerPC R600 Sparc X86 XCore
+subdirectories = AArch64 ARM CppBackend Hexagon MBlaze MSP430 NVPTX Mips PowerPC R600 Sparc SystemZ X86 XCore
; This is a special group whose required libraries are extended (by llvm-build)
; with the best execution engine (the native JIT, if available, or the
diff --git a/lib/Target/SystemZ/AsmParser/CMakeLists.txt b/lib/Target/SystemZ/AsmParser/CMakeLists.txt
new file mode 100644
index 0000000000..78a57146e1
--- /dev/null
+++ b/lib/Target/SystemZ/AsmParser/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSystemZAsmParser
+ SystemZAsmParser.cpp
+ )
+
+add_dependencies(LLVMSystemZAsmParser SystemZCommonTableGen)
diff --git a/lib/Target/SystemZ/AsmParser/LLVMBuild.txt b/lib/Target/SystemZ/AsmParser/LLVMBuild.txt
new file mode 100644
index 0000000000..0b97e71e92
--- /dev/null
+++ b/lib/Target/SystemZ/AsmParser/LLVMBuild.txt
@@ -0,0 +1,23 @@
+;===- ./lib/Target/SystemZ/AsmParser/LLVMBuild.txt -------------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = SystemZAsmParser
+parent = SystemZ
+required_libraries = SystemZDesc SystemZInfo MC MCParser Support
+add_to_library_groups = SystemZ
diff --git a/lib/Target/SystemZ/AsmParser/Makefile b/lib/Target/SystemZ/AsmParser/Makefile
new file mode 100644
index 0000000000..623ae2c4e3
--- /dev/null
+++ b/lib/Target/SystemZ/AsmParser/Makefile
@@ -0,0 +1,16 @@
+##===- lib/Target/SystemZ/AsmParser/Makefile ---------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZAsmParser
+
+# Hack: we need to include 'main' SystemZ target directory to grab private headers
+CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp b/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
new file mode 100644
index 0000000000..c7725a1459
--- /dev/null
+++ b/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
@@ -0,0 +1,689 @@
+//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+// Return true if Expr is in the range [MinValue, MaxValue].
+static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ int64_t Value = CE->getValue();
+ return Value >= MinValue && Value <= MaxValue;
+ }
+ return false;
+}
+
+namespace {
+class SystemZOperand : public MCParsedAsmOperand {
+public:
+ enum RegisterKind {
+ GR32Reg,
+ GR64Reg,
+ GR128Reg,
+ ADDR32Reg,
+ ADDR64Reg,
+ FP32Reg,
+ FP64Reg,
+ FP128Reg
+ };
+
+private:
+ enum OperandKind {
+ KindToken,
+ KindReg,
+ KindAccessReg,
+ KindImm,
+ KindMem
+ };
+
+ OperandKind Kind;
+ SMLoc StartLoc, EndLoc;
+
+ // A string of length Length, starting at Data.
+ struct TokenOp {
+ const char *Data;
+ unsigned Length;
+ };
+
+ // LLVM register Num, which has kind Kind.
+ struct RegOp {
+ RegisterKind Kind;
+ unsigned Num;
+ };
+
+ // Base + Disp + Index, where Base and Index are LLVM registers or 0.
+ // RegKind says what type the registers have (ADDR32Reg or ADDR64Reg).
+ struct MemOp {
+ unsigned Base : 8;
+ unsigned Index : 8;
+ unsigned RegKind : 8;
+ unsigned Unused : 8;
+ const MCExpr *Disp;
+ };
+
+ union {
+ TokenOp Token;
+ RegOp Reg;
+ unsigned AccessReg;
+ const MCExpr *Imm;
+ MemOp Mem;
+ };
+
+ SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
+ : Kind(kind), StartLoc(startLoc), EndLoc(endLoc)
+ {}
+
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediates when possible. Null MCExpr = 0.
+ if (Expr == 0)
+ Inst.addOperand(MCOperand::CreateImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::CreateExpr(Expr));
+ }
+
+public:
+ // Create particular kinds of operand.
+ static SystemZOperand *createToken(StringRef Str, SMLoc Loc) {
+ SystemZOperand *Op = new SystemZOperand(KindToken, Loc, Loc);
+ Op->Token.Data = Str.data();
+ Op->Token.Length = Str.size();
+ return Op;
+ }
+ static SystemZOperand *createReg(RegisterKind Kind, unsigned Num,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ SystemZOperand *Op = new SystemZOperand(KindReg, StartLoc, EndLoc);
+ Op->Reg.Kind = Kind;
+ Op->Reg.Num = Num;
+ return Op;
+ }
+ static SystemZOperand *createAccessReg(unsigned Num, SMLoc StartLoc,
+ SMLoc EndLoc) {
+ SystemZOperand *Op = new SystemZOperand(KindAccessReg, StartLoc, EndLoc);
+ Op->AccessReg = Num;
+ return Op;
+ }
+ static SystemZOperand *createImm(const MCExpr *Expr, SMLoc StartLoc,
+ SMLoc EndLoc) {
+ SystemZOperand *Op = new SystemZOperand(KindImm, StartLoc, EndLoc);
+ Op->Imm = Expr;
+ return Op;
+ }
+ static SystemZOperand *createMem(RegisterKind RegKind, unsigned Base,
+ const MCExpr *Disp, unsigned Index,
+ SMLoc StartLoc, SMLoc EndLoc) {
+ SystemZOperand *Op = new SystemZOperand(KindMem, StartLoc, EndLoc);
+ Op->Mem.RegKind = RegKind;
+ Op->Mem.Base = Base;
+ Op->Mem.Index = Index;
+ Op->Mem.Disp = Disp;
+ return Op;
+ }
+
+ // Token operands
+ virtual bool isToken() const LLVM_OVERRIDE {
+ return Kind == KindToken;
+ }
+ StringRef getToken() const {
+ assert(Kind == KindToken && "Not a token");
+ return StringRef(Token.Data, Token.Length);
+ }
+
+ // Register operands.
+ virtual bool isReg() const LLVM_OVERRIDE {
+ return Kind == KindReg;
+ }
+ bool isReg(RegisterKind RegKind) const {
+ return Kind == KindReg && Reg.Kind == RegKind;
+ }
+ virtual unsigned getReg() const LLVM_OVERRIDE {
+ assert(Kind == KindReg && "Not a register");
+ return Reg.Num;
+ }
+
+ // Access register operands. Access registers aren't exposed to LLVM
+ // as registers.
+ bool isAccessReg() const {
+ return Kind == KindAccessReg;
+ }
+
+ // Immediate operands.
+ virtual bool isImm() const LLVM_OVERRIDE {
+ return Kind == KindImm;
+ }
+ bool isImm(int64_t MinValue, int64_t MaxValue) const {
+ return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
+ }
+ const MCExpr *getImm() const {
+ assert(Kind == KindImm && "Not an immediate");
+ return Imm;
+ }
+
+ // Memory operands.
+ virtual bool isMem() const LLVM_OVERRIDE {
+ return Kind == KindMem;
+ }
+ bool isMem(RegisterKind RegKind, bool HasIndex) const {
+ return (Kind == KindMem &&
+ Mem.RegKind == RegKind &&
+ (HasIndex || !Mem.Index));
+ }
+ bool isMemDisp12(RegisterKind RegKind, bool HasIndex) const {
+ return isMem(RegKind, HasIndex) && inRange(Mem.Disp, 0, 0xfff);
+ }
+ bool isMemDisp20(RegisterKind RegKind, bool HasIndex) const {
+ return isMem(RegKind, HasIndex) && inRange(Mem.Disp, -524288, 524287);
+ }
+
+ // Override MCParsedAsmOperand.
+ virtual SMLoc getStartLoc() const LLVM_OVERRIDE { return StartLoc; }
+ virtual SMLoc getEndLoc() const LLVM_OVERRIDE { return EndLoc; }
+ virtual void print(raw_ostream &OS) const LLVM_OVERRIDE;
+
+ // Used by the TableGen code to add particular types of operand
+ // to an instruction.
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+ void addAccessRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ assert(Kind == KindAccessReg && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateImm(AccessReg));
+ }
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands");
+ addExpr(Inst, getImm());
+ }
+ void addBDAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands");
+ assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ }
+ void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 3 && "Invalid number of operands");
+ assert(Kind == KindMem && "Invalid operand type");
+ Inst.addOperand(MCOperand::CreateReg(Mem.Base));
+ addExpr(Inst, Mem.Disp);
+ Inst.addOperand(MCOperand::CreateReg(Mem.Index));
+ }
+
+ // Used by the TableGen code to check for particular operand types.
+ bool isGR32() const { return isReg(GR32Reg); }
+ bool isGR64() const { return isReg(GR64Reg); }
+ bool isGR128() const { return isReg(GR128Reg); }
+ bool isADDR32() const { return isReg(ADDR32Reg); }
+ bool isADDR64() const { return isReg(ADDR64Reg); }
+ bool isADDR128() const { return false; }
+ bool isFP32() const { return isReg(FP32Reg); }
+ bool isFP64() const { return isReg(FP64Reg); }
+ bool isFP128() const { return isReg(FP128Reg); }
+ bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, false); }
+ bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, false); }
+ bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, false); }
+ bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, false); }
+ bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, true); }
+ bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, true); }
+ bool isU4Imm() const { return isImm(0, 15); }
+ bool isU6Imm() const { return isImm(0, 63); }
+ bool isU8Imm() const { return isImm(0, 255); }
+ bool isS8Imm() const { return isImm(-128, 127); }
+ bool isU16Imm() const { return isImm(0, 65535); }
+ bool isS16Imm() const { return isImm(-32768, 32767); }
+ bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
+ bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
+};
+
+// Maps of asm register numbers to LLVM register numbers, with 0 indicating
+// an invalid register. We don't use register class directly because that
+// specifies the allocation order.
+static const unsigned GR32Regs[] = {
+ SystemZ::R0W, SystemZ::R1W, SystemZ::R2W, SystemZ::R3W,
+ SystemZ::R4W, SystemZ::R5W, SystemZ::R6W, SystemZ::R7W,
+ SystemZ::R8W, SystemZ::R9W, SystemZ::R10W, SystemZ::R11W,
+ SystemZ::R12W, SystemZ::R13W, SystemZ::R14W, SystemZ::R15W
+};
+static const unsigned GR64Regs[] = {
+ SystemZ::R0D, SystemZ::R1D, SystemZ::R2D, SystemZ::R3D,
+ SystemZ::R4D, SystemZ::R5D, SystemZ::R6D, SystemZ::R7D,
+ SystemZ::R8D, SystemZ::R9D, SystemZ::R10D, SystemZ::R11D,
+ SystemZ::R12D, SystemZ::R13D, SystemZ::R14D, SystemZ::R15D
+};
+static const unsigned GR128Regs[] = {
+ SystemZ::R0Q, 0, SystemZ::R2Q, 0,
+ SystemZ::R4Q, 0, SystemZ::R6Q, 0,
+ SystemZ::R8Q, 0, SystemZ::R10Q, 0,
+ SystemZ::R12Q, 0, SystemZ::R14Q, 0
+};
+static const unsigned FP32Regs[] = {
+ SystemZ::F0S, SystemZ::F1S, SystemZ::F2S, SystemZ::F3S,
+ SystemZ::F4S, SystemZ::F5S, SystemZ::F6S, SystemZ::F7S,
+ SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
+ SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S
+};
+static const unsigned FP64Regs[] = {
+ SystemZ::F0D, SystemZ::F1D, SystemZ::F2D, SystemZ::F3D,
+ SystemZ::F4D, SystemZ::F5D, SystemZ::F6D, SystemZ::F7D,
+ SystemZ::F8D, SystemZ::F9D, SystemZ::F10D, SystemZ::F11D,
+ SystemZ::F12D, SystemZ::F13D, SystemZ::F14D, SystemZ::F15D
+};
+static const unsigned FP128Regs[] = {
+ SystemZ::F0Q, SystemZ::F1Q, 0, 0,
+ SystemZ::F4Q, SystemZ::F5Q, 0, 0,
+ SystemZ::F8Q, SystemZ::F9Q, 0, 0,
+ SystemZ::F12Q, SystemZ::F13Q, 0, 0
+};
+
+class SystemZAsmParser : public MCTargetAsmParser {
+#define GET_ASSEMBLER_HEADER
+#include "SystemZGenAsmMatcher.inc"
+
+private:
+ MCSubtargetInfo &STI;
+ MCAsmParser &Parser;
+ struct Register {
+ char Prefix;
+ unsigned Number;
+ SMLoc StartLoc, EndLoc;
+ };
+
+ bool parseRegister(Register &Reg);
+
+ OperandMatchResultTy
+ parseRegister(Register &Reg, char Prefix, const unsigned *Regs,
+ bool IsAddress = false);
+
+ OperandMatchResultTy
+ parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ char Prefix, const unsigned *Regs,
+ SystemZOperand::RegisterKind Kind,
+ bool IsAddress = false);
+
+ OperandMatchResultTy
+ parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ const unsigned *Regs, SystemZOperand::RegisterKind RegKind,
+ bool HasIndex);
+
+ bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ StringRef Mnemonic);
+
+public:
+ SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
+ : MCTargetAsmParser(), STI(sti), Parser(parser) {
+ MCAsmParserExtension::Initialize(Parser);
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+ }
+
+ // Override MCTargetAsmParser.
+ virtual bool ParseDirective(AsmToken DirectiveID) LLVM_OVERRIDE;
+ virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) LLVM_OVERRIDE;
+ virtual bool ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands)
+ LLVM_OVERRIDE;
+ virtual bool
+ MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) LLVM_OVERRIDE;
+
+ // Used by the TableGen code to parse particular operand types.
+ OperandMatchResultTy
+ parseGR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'r', GR32Regs, SystemZOperand::GR32Reg);
+ }
+ OperandMatchResultTy
+ parseGR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'r', GR64Regs, SystemZOperand::GR64Reg);
+ }
+ OperandMatchResultTy
+ parseGR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'r', GR128Regs, SystemZOperand::GR128Reg);
+ }
+ OperandMatchResultTy
+ parseADDR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'r', GR32Regs, SystemZOperand::ADDR32Reg,
+ true);
+ }
+ OperandMatchResultTy
+ parseADDR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'r', GR64Regs, SystemZOperand::ADDR64Reg,
+ true);
+ }
+ OperandMatchResultTy
+ parseADDR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ llvm_unreachable("Shouldn't be used as an operand");
+ }
+ OperandMatchResultTy
+ parseFP32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'f', FP32Regs, SystemZOperand::FP32Reg);
+ }
+ OperandMatchResultTy
+ parseFP64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'f', FP64Regs, SystemZOperand::FP64Reg);
+ }
+ OperandMatchResultTy
+ parseFP128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseRegister(Operands, 'f', FP128Regs, SystemZOperand::FP128Reg);
+ }
+ OperandMatchResultTy
+ parseBDAddr32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseAddress(Operands, GR32Regs, SystemZOperand::ADDR32Reg, false);
+ }
+ OperandMatchResultTy
+ parseBDAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseAddress(Operands, GR64Regs, SystemZOperand::ADDR64Reg, false);
+ }
+ OperandMatchResultTy
+ parseBDXAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ return parseAddress(Operands, GR64Regs, SystemZOperand::ADDR64Reg, true);
+ }
+ OperandMatchResultTy
+ parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
+};
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_SUBTARGET_FEATURE_NAME
+#define GET_MATCHER_IMPLEMENTATION
+#include "SystemZGenAsmMatcher.inc"
+
+void SystemZOperand::print(raw_ostream &OS) const {
+ llvm_unreachable("Not implemented");
+}
+
+// Parse one register of the form %<prefix><number>.
+bool SystemZAsmParser::parseRegister(Register &Reg) {
+ Reg.StartLoc = Parser.getTok().getLoc();
+
+ // Eat the % prefix.
+ if (Parser.getTok().isNot(AsmToken::Percent))
+ return true;
+ Parser.Lex();
+
+ // Expect a register name.
+ if (Parser.getTok().isNot(AsmToken::Identifier))
+ return true;
+
+ // Check the prefix.
+ StringRef Name = Parser.getTok().getString();
+ if (Name.size() < 2)
+ return true;
+ Reg.Prefix = Name[0];
+
+ // Treat the rest of the register name as a register number.
+ if (Name.substr(1).getAsInteger(10, Reg.Number))
+ return true;
+
+ Reg.EndLoc = Parser.getTok().getLoc();
+ Parser.Lex();
+ return false;
+}
+
+// Parse a register with prefix Prefix and convert it to LLVM numbering.
+// Regs maps asm register numbers to LLVM register numbers, with zero
+// entries indicating an invalid register. IsAddress says whether the
+// register appears in an address context.
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseRegister(Register &Reg, char Prefix,
+ const unsigned *Regs, bool IsAddress) {
+ if (parseRegister(Reg))
+ return MatchOperand_NoMatch;
+ if (Reg.Prefix != Prefix || Reg.Number > 15 || Regs[Reg.Number] == 0) {
+ Error(Reg.StartLoc, "invalid register");
+ return MatchOperand_ParseFail;
+ }
+ if (Reg.Number == 0 && IsAddress) {
+ Error(Reg.StartLoc, "%r0 used in an address");
+ return MatchOperand_ParseFail;
+ }
+ Reg.Number = Regs[Reg.Number];
+ return MatchOperand_Success;
+}
+
+// Parse a register and add it to Operands. Prefix is 'r' for GPRs,
+// 'f' for FPRs, etc. Regs maps asm register numbers to LLVM register numbers,
+// with zero entries indicating an invalid register. Kind is the type of
+// register represented by Regs and IsAddress says whether the register is
+// being parsed in an address context, meaning that %r0 evaluates as 0.
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ char Prefix, const unsigned *Regs,
+ SystemZOperand::RegisterKind Kind,
+ bool IsAddress) {
+ Register Reg;
+ OperandMatchResultTy Result = parseRegister(Reg, Prefix, Regs, IsAddress);
+ if (Result == MatchOperand_Success)
+ Operands.push_back(SystemZOperand::createReg(Kind, Reg.Number,
+ Reg.StartLoc, Reg.EndLoc));
+ return Result;
+}
+
+// Parse a memory operand and add it to Operands. Regs maps asm register
+// numbers to LLVM address registers and RegKind says what kind of address
+// register we're using (ADDR32Reg or ADDR64Reg). HasIndex says whether
+// the address allows index registers.
+SystemZAsmParser::OperandMatchResultTy
+SystemZAsmParser::parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ const unsigned *Regs,
+ SystemZOperand::RegisterKind RegKind,
+ bool HasIndex) {
+ SMLoc StartLoc = Parser.getTok().getLoc();
+
+ // Parse the displacement, which must always be present.
+ const MCExpr *Disp;
+ if (getParser().parseExpression(Disp))
+ return MatchOperand_NoMatch;
+
+ // Parse the optional base and index.
+ unsigned Index = 0;
+ unsigned Base = 0;
+ if (getLexer().is(AsmToken::LParen)) {
+ Parser.Lex();
+
+ // Parse the first register.
+ Register Reg;
+ OperandMatchResultTy Result = parseRegister(Reg, 'r', GR64Regs, true);
+ if (Result != MatchOperand_Success)
+ return Result;
+
+ // Check whether there's a second register. If so, the one that we
+ // just parsed was the index.
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+
+ if (!HasIndex) {
+ Error(Reg.StartLoc, "invalid use of indexed addressing");
+ return MatchOperand_ParseFail;
+ }
+
+ Index = Reg.Number;
+ Result = parseRegister(Reg, 'r', GR64Regs, true);
+ if (Result != MatchOperand_Success)
+ return Result;
+ }
+ Base = Reg.Number;
+
+ // Consume the closing bracket.
+ if (getLexer().isNot(AsmToken::RParen))
+ return MatchOperand_NoMatch;
+ Parser.Lex();
+ }
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index,
+ StartLoc, EndLoc));
+ return MatchOperand_Success;
+}
+
+bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
+ return true;
+}
+
+bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return Error(Reg.StartLoc, "register expected");
+ if (Reg.Prefix == 'r' && Reg.Number < 16)
+ RegNo = GR64Regs[Reg.Number];
+ else if (Reg.Prefix == 'f' && Reg.Number < 16)
+ RegNo = FP64Regs[Reg.Number];
+ else
+ return Error(Reg.StartLoc, "invalid register");
+ StartLoc = Reg.StartLoc;
+ EndLoc = Reg.EndLoc;
+ return false;
+}
+
+bool SystemZAsmParser::
+ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Name)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+
+ // Read any subsequent operands.
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex();
+ if (parseOperand(Operands, Name)) {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ }
+
+ // Consume the EndOfStatement.
+ Parser.Lex();
+ return false;
+}
+
+bool SystemZAsmParser::
+parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ StringRef Mnemonic) {
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ // The only other type of operand is an immediate.
+ const MCExpr *Expr;
+ SMLoc StartLoc = Parser.getTok().getLoc();
+ if (getParser().parseExpression(Expr))
+ return true;
+
+ SMLoc EndLoc =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
+ return false;
+}
+
+bool SystemZAsmParser::
+MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ MCStreamer &Out, unsigned &ErrorInfo,
+ bool MatchingInlineAsm) {
+ MCInst Inst;
+ unsigned MatchResult;
+
+ MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm);
+ switch (MatchResult) {
+ default: break;
+ case Match_Success:
+ Inst.setLoc(IDLoc);
+ Out.EmitInstruction(Inst);
+ return false;
+
+ case Match_MissingFeature: {
+ assert(ErrorInfo && "Unknown missing feature!");
+ // Special case the error message for the very common case where only
+ // a single subtarget feature is missing
+ std::string Msg = "instruction requires:";
+ unsigned Mask = 1;
+ for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
+ if (ErrorInfo & Mask) {
+ Msg += " ";
+ Msg += getSubtargetFeatureName(ErrorInfo & Mask);
+ }
+ Mask <<= 1;
+ }
+ return Error(IDLoc, Msg);
+ }
+
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((SystemZOperand*)Operands[ErrorInfo])->getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction");
+ }
+
+ llvm_unreachable("Unexpected match type");
+}
+
+SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::
+parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ Register Reg;
+ if (parseRegister(Reg))
+ return MatchOperand_NoMatch;
+ if (Reg.Prefix != 'a' || Reg.Number > 15) {
+ Error(Reg.StartLoc, "invalid register");
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(SystemZOperand::createAccessReg(Reg.Number,
+ Reg.StartLoc, Reg.EndLoc));
+ return MatchOperand_Success;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmParser() {
+ RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
+}
diff --git a/lib/Target/SystemZ/CMakeLists.txt b/lib/Target/SystemZ/CMakeLists.txt
new file mode 100644
index 0000000000..67b17fcc59
--- /dev/null
+++ b/lib/Target/SystemZ/CMakeLists.txt
@@ -0,0 +1,32 @@
+set(LLVM_TARGET_DEFINITIONS SystemZ.td)
+
+tablegen(LLVM SystemZGenAsmMatcher.inc -gen-asm-matcher)
+tablegen(LLVM SystemZGenAsmWriter.inc -gen-asm-writer)
+tablegen(LLVM SystemZGenCallingConv.inc -gen-callingconv)
+tablegen(LLVM SystemZGenDAGISel.inc -gen-dag-isel)
+tablegen(LLVM SystemZGenMCCodeEmitter.inc -gen-emitter -mc-emitter)
+tablegen(LLVM SystemZGenInstrInfo.inc -gen-instr-info)
+tablegen(LLVM SystemZGenRegisterInfo.inc -gen-register-info)
+tablegen(LLVM SystemZGenSubtargetInfo.inc -gen-subtarget)
+add_public_tablegen_target(SystemZCommonTableGen)
+
+add_llvm_target(SystemZCodeGen
+ SystemZAsmPrinter.cpp
+ SystemZCallingConv.cpp
+ SystemZConstantPoolValue.cpp
+ SystemZFrameLowering.cpp
+ SystemZISelDAGToDAG.cpp
+ SystemZISelLowering.cpp
+ SystemZInstrInfo.cpp
+ SystemZMCInstLower.cpp
+ SystemZRegisterInfo.cpp
+ SystemZSubtarget.cpp
+ SystemZTargetMachine.cpp
+ )
+
+add_dependencies(LLVMSystemZCodeGen intrinsics_gen)
+
+add_subdirectory(AsmParser)
+add_subdirectory(InstPrinter)
+add_subdirectory(TargetInfo)
+add_subdirectory(MCTargetDesc)
diff --git a/lib/Target/SystemZ/InstPrinter/CMakeLists.txt b/lib/Target/SystemZ/InstPrinter/CMakeLists.txt
new file mode 100644
index 0000000000..ddbf82fe16
--- /dev/null
+++ b/lib/Target/SystemZ/InstPrinter/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSystemZAsmPrinter
+ SystemZInstPrinter.cpp
+ )
+
+add_dependencies(LLVMSystemZAsmPrinter SystemZCommonTableGen)
diff --git a/lib/Target/SystemZ/InstPrinter/LLVMBuild.txt b/lib/Target/SystemZ/InstPrinter/LLVMBuild.txt
new file mode 100644
index 0000000000..fdfd738683
--- /dev/null
+++ b/lib/Target/SystemZ/InstPrinter/LLVMBuild.txt
@@ -0,0 +1,23 @@
+;===- ./lib/Target/SystemZ/InstPrinter/LLVMBuild.txt -----------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = SystemZAsmPrinter
+parent = SystemZ
+required_libraries = MC Support
+add_to_library_groups = SystemZ
diff --git a/lib/Target/SystemZ/InstPrinter/Makefile b/lib/Target/SystemZ/InstPrinter/Makefile
new file mode 100644
index 0000000000..3ba8126735
--- /dev/null
+++ b/lib/Target/SystemZ/InstPrinter/Makefile
@@ -0,0 +1,16 @@
+##===- lib/Target/SystemZ/AsmPrinter/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZAsmPrinter
+
+# Hack: we need to include 'main' mips target directory to grab private headers
+CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp b/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp
new file mode 100644
index 0000000000..d73cf49808
--- /dev/null
+++ b/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.cpp
@@ -0,0 +1,150 @@
+//===-- SystemZInstPrinter.cpp - Convert SystemZ MCInst to assembly syntax ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+
+#include "SystemZInstPrinter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#include "SystemZGenAsmWriter.inc"
+
+void SystemZInstPrinter::printAddress(unsigned Base, int64_t Disp,
+ unsigned Index, raw_ostream &O) {
+ O << Disp;
+ if (Base) {
+ O << '(';
+ if (Index)
+ O << '%' << getRegisterName(Index) << ',';
+ O << '%' << getRegisterName(Base) << ')';
+ } else
+ assert(!Index && "Shouldn't have an index without a base");
+}
+
+void SystemZInstPrinter::printOperand(const MCOperand &MO, raw_ostream &O) {
+ if (MO.isReg())
+ O << '%' << getRegisterName(MO.getReg());
+ else if (MO.isImm())
+ O << MO.getImm();
+ else if (MO.isExpr())
+ O << *MO.getExpr();
+ else
+ llvm_unreachable("Invalid operand");
+}
+
+void SystemZInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
+ StringRef Annot) {
+ printInstruction(MI, O);
+ printAnnotation(O, Annot);
+}
+
+void SystemZInstPrinter::printRegName(raw_ostream &O, unsigned RegNo) const {
+ O << '%' << getRegisterName(RegNo);
+}
+
+void SystemZInstPrinter::printU4ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<4>(Value) && "Invalid u4imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU6ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<6>(Value) && "Invalid u6imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS8ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<8>(Value) && "Invalid s8imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU8ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<8>(Value) && "Invalid u8imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS16ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<16>(Value) && "Invalid s16imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU16ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<16>(Value) && "Invalid u16imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printS32ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isInt<32>(Value) && "Invalid s32imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printU32ImmOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ int64_t Value = MI->getOperand(OpNum).getImm();
+ assert(isUInt<32>(Value) && "Invalid u32imm argument");
+ O << Value;
+}
+
+void SystemZInstPrinter::printAccessRegOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ uint64_t Value = MI->getOperand(OpNum).getImm();
+ assert(Value < 16 && "Invalid access register number");
+ O << "%a" << (unsigned int)Value;
+}
+
+void SystemZInstPrinter::printCallOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printOperand(MI, OpNum, O);
+ O << "@PLT";
+}
+
+void SystemZInstPrinter::printOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printOperand(MI->getOperand(OpNum), O);
+}
+
+void SystemZInstPrinter::printBDAddrOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printAddress(MI->getOperand(OpNum).getReg(),
+ MI->getOperand(OpNum + 1).getImm(), 0, O);
+}
+
+void SystemZInstPrinter::printBDXAddrOperand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ printAddress(MI->getOperand(OpNum).getReg(),
+ MI->getOperand(OpNum + 1).getImm(),
+ MI->getOperand(OpNum + 2).getReg(), O);
+}
+
+void SystemZInstPrinter::printCond4Operand(const MCInst *MI, int OpNum,
+ raw_ostream &O) {
+ static const char *const CondNames[] = {
+ "o", "h", "nle", "l", "nhe", "lh", "ne",
+ "e", "nlh", "he", "nl", "le", "nh", "no"
+ };
+ uint64_t Imm = MI->getOperand(OpNum).getImm();
+ assert(Imm > 0 && Imm < 15 && "Invalid condition");
+ O << CondNames[Imm - 1];
+}
diff --git a/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h b/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
new file mode 100644
index 0000000000..b82e79d93c
--- /dev/null
+++ b/lib/Target/SystemZ/InstPrinter/SystemZInstPrinter.h
@@ -0,0 +1,68 @@
+//==- SystemZInstPrinter.h - Convert SystemZ MCInst to assembly --*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints a SystemZ MCInst to a .s file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZINSTPRINTER_H
+#define LLVM_SYSTEMZINSTPRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class MCOperand;
+
+class SystemZInstPrinter : public MCInstPrinter {
+public:
+ SystemZInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ // Automatically generated by tblgen.
+ void printInstruction(const MCInst *MI, raw_ostream &O);
+ static const char *getRegisterName(unsigned RegNo);
+
+ // Print an address with the given base, displacement and index.
+ static void printAddress(unsigned Base, int64_t Disp, unsigned Index,
+ raw_ostream &O);
+
+ // Print the given operand.
+ static void printOperand(const MCOperand &MO, raw_ostream &O);
+
+ // Override MCInstPrinter.
+ virtual void printRegName(raw_ostream &O, unsigned RegNo) const
+ LLVM_OVERRIDE;
+ virtual void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot)
+ LLVM_OVERRIDE;
+
+private:
+ // Print various types of operand.
+ void printOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printBDAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printBDXAddrOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU4ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU6ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS8ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU8ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS16ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU16ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printS32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printU32ImmOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printCallOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+ void printAccessRegOperand(const MCInst *MI, int OpNum, raw_ostream &O);
+
+ // Print the mnemonic for a condition-code mask ("ne", "lh", etc.)
+ // This forms part of the instruction name rather than the operand list.
+ void printCond4Operand(const MCInst *MI, int OpNum, raw_ostream &O);
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/LLVMBuild.txt b/lib/Target/SystemZ/LLVMBuild.txt
new file mode 100644
index 0000000000..aba0de27ac
--- /dev/null
+++ b/lib/Target/SystemZ/LLVMBuild.txt
@@ -0,0 +1,34 @@
+;===- ./lib/Target/SystemZ/LLVMBuild.txt -----------------------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[common]
+subdirectories = AsmParser InstPrinter MCTargetDesc TargetInfo
+
+[component_0]
+type = TargetGroup
+name = SystemZ
+parent = Target
+has_asmparser = 1
+has_asmprinter = 1
+has_jit = 1
+
+[component_1]
+type = Library
+name = SystemZCodeGen
+parent = SystemZ
+required_libraries = AsmPrinter CodeGen Core MC SelectionDAG SystemZDesc SystemZInfo Support Target
+add_to_library_groups = SystemZ
diff --git a/lib/Target/SystemZ/MCTargetDesc/CMakeLists.txt b/lib/Target/SystemZ/MCTargetDesc/CMakeLists.txt
new file mode 100644
index 0000000000..3d131288c7
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/CMakeLists.txt
@@ -0,0 +1,9 @@
+add_llvm_library(LLVMSystemZDesc
+ SystemZMCAsmBackend.cpp
+ SystemZMCAsmInfo.cpp
+ SystemZMCCodeEmitter.cpp
+ SystemZMCObjectWriter.cpp
+ SystemZMCTargetDesc.cpp
+ )
+
+add_dependencies(LLVMSystemZDesc SystemZCommonTableGen)
diff --git a/lib/Target/SystemZ/MCTargetDesc/LLVMBuild.txt b/lib/Target/SystemZ/MCTargetDesc/LLVMBuild.txt
new file mode 100644
index 0000000000..cbdb59ce31
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/LLVMBuild.txt
@@ -0,0 +1,23 @@
+;===- ./lib/Target/SystemZ/MCTargetDesc/LLVMBuild.txt ----------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = SystemZDesc
+parent = SystemZ
+required_libraries = MC SystemZAsmPrinter SystemZInfo Support
+add_to_library_groups = SystemZ
diff --git a/lib/Target/SystemZ/MCTargetDesc/Makefile b/lib/Target/SystemZ/MCTargetDesc/Makefile
new file mode 100644
index 0000000000..08f1a9d51f
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/Makefile
@@ -0,0 +1,16 @@
+##===- lib/Target/SystemZ/TargetDesc/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZDesc
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp
new file mode 100644
index 0000000000..e901c6c691
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmBackend.cpp
@@ -0,0 +1,151 @@
+//===-- SystemZMCAsmBackend.cpp - SystemZ assembler backend ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCObjectWriter.h"
+
+using namespace llvm;
+
+// Value is a fully-resolved relocation value: Symbol + Addend [- Pivot].
+// Return the bits that should be installed in a relocation field for
+// fixup kind Kind.
+static uint64_t extractBitsForFixup(MCFixupKind Kind, uint64_t Value) {
+ if (Kind < FirstTargetFixupKind)
+ return Value;
+
+ switch (unsigned(Kind)) {
+ case SystemZ::FK_390_PC16DBL:
+ case SystemZ::FK_390_PC32DBL:
+ case SystemZ::FK_390_PLT16DBL:
+ case SystemZ::FK_390_PLT32DBL:
+ return (int64_t)Value / 2;
+ }
+
+ llvm_unreachable("Unknown fixup kind!");
+}
+
+// If Opcode can be relaxed, return the relaxed form, otherwise return 0.
+static unsigned getRelaxedOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::BRC: return SystemZ::BRCL;
+ case SystemZ::J: return SystemZ::JG;
+ case SystemZ::BRAS: return SystemZ::BRASL;
+ }
+ return 0;
+}
+
+namespace {
+class SystemZMCAsmBackend : public MCAsmBackend {
+ uint8_t OSABI;
+public:
+ SystemZMCAsmBackend(uint8_t osABI)
+ : OSABI(osABI) {}
+
+ // Override MCAsmBackend
+ virtual unsigned getNumFixupKinds() const LLVM_OVERRIDE {
+ return SystemZ::NumTargetFixupKinds;
+ }
+ virtual const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const
+ LLVM_OVERRIDE;
+ virtual void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
+ uint64_t Value) const LLVM_OVERRIDE;
+ virtual bool mayNeedRelaxation(const MCInst &Inst) const LLVM_OVERRIDE;
+ virtual bool fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *Fragment,
+ const MCAsmLayout &Layout) const
+ LLVM_OVERRIDE;
+ virtual void relaxInstruction(const MCInst &Inst,
+ MCInst &Res) const LLVM_OVERRIDE;
+ virtual bool writeNopData(uint64_t Count,
+ MCObjectWriter *OW) const LLVM_OVERRIDE;
+ virtual MCObjectWriter *createObjectWriter(raw_ostream &OS) const
+ LLVM_OVERRIDE {
+ return createSystemZObjectWriter(OS, OSABI);
+ }
+ virtual bool doesSectionRequireSymbols(const MCSection &Section) const
+ LLVM_OVERRIDE {
+ return false;
+ }
+};
+} // end anonymous namespace
+
+const MCFixupKindInfo &
+SystemZMCAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
+ const static MCFixupKindInfo Infos[SystemZ::NumTargetFixupKinds] = {
+ { "FK_390_PC16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PC32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PLT16DBL", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
+ { "FK_390_PLT32DBL", 0, 32, MCFixupKindInfo::FKF_IsPCRel }
+ };
+
+ if (Kind < FirstTargetFixupKind)
+ return MCAsmBackend::getFixupKindInfo(Kind);
+
+ assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
+ "Invalid kind!");
+ return Infos[Kind - FirstTargetFixupKind];
+}
+
+void SystemZMCAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
+ unsigned DataSize, uint64_t Value) const {
+ MCFixupKind Kind = Fixup.getKind();
+ unsigned Offset = Fixup.getOffset();
+ unsigned Size = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
+
+ assert(Offset + Size <= DataSize && "Invalid fixup offset!");
+
+ // Big-endian insertion of Size bytes.
+ Value = extractBitsForFixup(Kind, Value);
+ unsigned ShiftValue = (Size * 8) - 8;
+ for (unsigned I = 0; I != Size; ++I) {
+ Data[Offset + I] |= uint8_t(Value >> ShiftValue);
+ ShiftValue -= 8;
+ }
+}
+
+bool SystemZMCAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
+ return getRelaxedOpcode(Inst.getOpcode()) != 0;
+}
+
+bool
+SystemZMCAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
+ uint64_t Value,
+ const MCRelaxableFragment *Fragment,
+ const MCAsmLayout &Layout) const {
+ // At the moment we just need to relax 16-bit fields to wider fields.
+ Value = extractBitsForFixup(Fixup.getKind(), Value);
+ return (int16_t)Value != (int64_t)Value;
+}
+
+void SystemZMCAsmBackend::relaxInstruction(const MCInst &Inst,
+ MCInst &Res) const {
+ unsigned Opcode = getRelaxedOpcode(Inst.getOpcode());
+ assert(Opcode && "Unexpected insn to relax");
+ Res = Inst;
+ Res.setOpcode(Opcode);
+}
+
+bool SystemZMCAsmBackend::writeNopData(uint64_t Count,
+ MCObjectWriter *OW) const {
+ for (uint64_t I = 0; I != Count; ++I)
+ OW->Write8(7);
+ return true;
+}
+
+MCAsmBackend *llvm::createSystemZMCAsmBackend(const Target &T, StringRef TT,
+ StringRef CPU) {
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
+ return new SystemZMCAsmBackend(OSABI);
+}
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
new file mode 100644
index 0000000000..c96a0d4c67
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.cpp
@@ -0,0 +1,38 @@
+//===-- SystemZMCAsmInfo.cpp - SystemZ asm properties ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+
+using namespace llvm;
+
+SystemZMCAsmInfo::SystemZMCAsmInfo(const Target &T, StringRef TT) {
+ PointerSize = 8;
+ CalleeSaveStackSlotSize = 8;
+ IsLittleEndian = false;
+
+ CommentString = "#";
+ PCSymbol = ".";
+ GlobalPrefix = "";
+ PrivateGlobalPrefix = ".L";
+ WeakRefDirective = "\t.weak\t";
+ ZeroDirective = "\t.space\t";
+ Data64bitsDirective = "\t.quad\t";
+ UsesELFSectionDirectiveForBSS = true;
+ SupportsDebugInformation = true;
+ HasLEB128 = true;
+ ExceptionsType = ExceptionHandling::DwarfCFI;
+}
+
+const MCSection *
+SystemZMCAsmInfo::getNonexecutableStackSection(MCContext &Ctx) const {
+ return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
+ 0, SectionKind::getMetadata());
+}
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
new file mode 100644
index 0000000000..bac1bca381
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCAsmInfo.h
@@ -0,0 +1,31 @@
+//====-- SystemZMCAsmInfo.h - SystemZ asm properties -----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZTARGETASMINFO_H
+#define SystemZTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class Target;
+class StringRef;
+
+class SystemZMCAsmInfo : public MCAsmInfo {
+public:
+ explicit SystemZMCAsmInfo(const Target &T, StringRef TT);
+
+ // Override MCAsmInfo;
+ virtual const MCSection *getNonexecutableStackSection(MCContext &Ctx) const
+ LLVM_OVERRIDE;
+};
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp b/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp
new file mode 100644
index 0000000000..ea2250f546
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCCodeEmitter.cpp
@@ -0,0 +1,131 @@
+//===-- SystemZMCCodeEmitter.cpp - Convert SystemZ code to machine code ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZMCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "mccodeemitter"
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrInfo.h"
+
+using namespace llvm;
+
+namespace {
+class SystemZMCCodeEmitter : public MCCodeEmitter {
+ const MCInstrInfo &MCII;
+ MCContext &Ctx;
+
+public:
+ SystemZMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
+ : MCII(mcii), Ctx(ctx) {
+ }
+
+ ~SystemZMCCodeEmitter() {}
+
+ // OVerride MCCodeEmitter.
+ virtual void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups) const
+ LLVM_OVERRIDE;
+
+private:
+ // Automatically generated by TableGen.
+ uint64_t getBinaryCodeForInstr(const MCInst &MI,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+
+ // Called by the TableGen code to get the binary encoding of operand
+ // MO in MI. Fixups is the list of fixups against MI.
+ unsigned getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+
+ // Operand OpNum of MI needs a PC-relative fixup of kind Kind at
+ // Offset bytes from the start of MI. Add the fixup to Fixups
+ // and return the in-place addend, which since we're a RELA target
+ // is always 0.
+ unsigned getPCRelEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ unsigned Kind, int64_t Offset) const;
+
+ unsigned getPC16DBLEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC16DBL, 2);
+ }
+ unsigned getPC32DBLEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PC32DBL, 2);
+ }
+ unsigned getPLT16DBLEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PLT16DBL, 2);
+ }
+ unsigned getPLT32DBLEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ return getPCRelEncoding(MI, OpNum, Fixups, SystemZ::FK_390_PLT32DBL, 2);
+ }
+};
+}
+
+MCCodeEmitter *llvm::createSystemZMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &MCSTI,
+ MCContext &Ctx) {
+ return new SystemZMCCodeEmitter(MCII, Ctx);
+}
+
+void SystemZMCCodeEmitter::
+EncodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ uint64_t Bits = getBinaryCodeForInstr(MI, Fixups);
+ unsigned Size = MCII.get(MI.getOpcode()).getSize();
+ // Big-endian insertion of Size bytes.
+ unsigned ShiftValue = (Size * 8) - 8;
+ for (unsigned I = 0; I != Size; ++I) {
+ OS << uint8_t(Bits >> ShiftValue);
+ ShiftValue -= 8;
+ }
+}
+
+unsigned SystemZMCCodeEmitter::
+getMachineOpValue(const MCInst &MI, const MCOperand &MO,
+ SmallVectorImpl<MCFixup> &Fixups) const {
+ if (MO.isReg())
+ return Ctx.getRegisterInfo().getEncodingValue(MO.getReg());
+ if (MO.isImm())
+ return static_cast<unsigned>(MO.getImm());
+ llvm_unreachable("Unexpected operand type!");
+}
+
+unsigned
+SystemZMCCodeEmitter::getPCRelEncoding(const MCInst &MI, unsigned int OpNum,
+ SmallVectorImpl<MCFixup> &Fixups,
+ unsigned Kind, int64_t Offset) const {
+ const MCOperand &MO = MI.getOperand(OpNum);
+ // For compatibility with the GNU assembler, treat constant operands as
+ // unadjusted PC-relative offsets.
+ if (MO.isImm())
+ return MO.getImm() / 2;
+
+ const MCExpr *Expr = MO.getExpr();
+ if (Offset) {
+ // The operand value is relative to the start of MI, but the fixup
+ // is relative to the operand field itself, which is Offset bytes
+ // into MI. Add Offset to the relocation value to cancel out
+ // this difference.
+ const MCExpr *OffsetExpr = MCConstantExpr::Create(Offset, Ctx);
+ Expr = MCBinaryExpr::CreateAdd(Expr, OffsetExpr, Ctx);
+ }
+ Fixups.push_back(MCFixup::Create(Offset, Expr, (MCFixupKind)Kind));
+ return 0;
+}
+
+#include "SystemZGenMCCodeEmitter.inc"
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h b/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
new file mode 100644
index 0000000000..9c94ebbaac
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCFixups.h
@@ -0,0 +1,31 @@
+//===-- SystemZMCFixups.h - SystemZ-specific fixup entries ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZMCFIXUPS_H
+#define LLVM_SYSTEMZMCFIXUPS_H
+
+#include "llvm/MC/MCFixup.h"
+
+namespace llvm {
+namespace SystemZ {
+ enum FixupKind {
+ // These correspond directly to R_390_* relocations.
+ FK_390_PC16DBL = FirstTargetFixupKind,
+ FK_390_PC32DBL,
+ FK_390_PLT16DBL,
+ FK_390_PLT32DBL,
+
+ // Marker
+ LastTargetFixupKind,
+ NumTargetFixupKinds = LastTargetFixupKind - FirstTargetFixupKind
+ };
+}
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp b/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp
new file mode 100644
index 0000000000..36e3d83d4d
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCObjectWriter.cpp
@@ -0,0 +1,140 @@
+//===-- SystemZMCObjectWriter.cpp - SystemZ ELF writer --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "MCTargetDesc/SystemZMCFixups.h"
+#include "llvm/MC/MCELFObjectWriter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCValue.h"
+
+using namespace llvm;
+
+namespace {
+class SystemZObjectWriter : public MCELFObjectTargetWriter {
+public:
+ SystemZObjectWriter(uint8_t OSABI);
+
+ virtual ~SystemZObjectWriter();
+
+protected:
+ // Override MCELFObjectTargetWriter.
+ virtual unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel, bool IsRelocWithSymbol,
+ int64_t Addend) const LLVM_OVERRIDE;
+ virtual const MCSymbol *ExplicitRelSym(const MCAssembler &Asm,
+ const MCValue &Target,
+ const MCFragment &F,
+ const MCFixup &Fixup,
+ bool IsPCRel) const LLVM_OVERRIDE;
+};
+} // end anonymouse namespace
+
+SystemZObjectWriter::SystemZObjectWriter(uint8_t OSABI)
+ : MCELFObjectTargetWriter(/*Is64Bit=*/true, OSABI, ELF::EM_S390,
+ /*HasRelocationAddend=*/ true) {}
+
+SystemZObjectWriter::~SystemZObjectWriter() {
+}
+
+// Return the relocation type for an absolute value of MCFixupKind Kind.
+static unsigned getAbsoluteReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_1: return ELF::R_390_8;
+ case FK_Data_2: return ELF::R_390_16;
+ case FK_Data_4: return ELF::R_390_32;
+ case FK_Data_8: return ELF::R_390_64;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+// Return the relocation type for a PC-relative value of MCFixupKind Kind.
+static unsigned getPCRelReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_2: return ELF::R_390_PC16;
+ case FK_Data_4: return ELF::R_390_PC32;
+ case FK_Data_8: return ELF::R_390_PC64;
+ case SystemZ::FK_390_PC16DBL: return ELF::R_390_PC16DBL;
+ case SystemZ::FK_390_PC32DBL: return ELF::R_390_PC32DBL;
+ case SystemZ::FK_390_PLT16DBL: return ELF::R_390_PLT16DBL;
+ case SystemZ::FK_390_PLT32DBL: return ELF::R_390_PLT32DBL;
+ }
+ llvm_unreachable("Unsupported PC-relative address");
+}
+
+// Return the R_390_TLS_LE* relocation type for MCFixupKind Kind.
+static unsigned getTLSLEReloc(unsigned Kind) {
+ switch (Kind) {
+ case FK_Data_4: return ELF::R_390_TLS_LE32;
+ case FK_Data_8: return ELF::R_390_TLS_LE64;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+// Return the PLT relocation counterpart of MCFixupKind Kind.
+static unsigned getPLTReloc(unsigned Kind) {
+ switch (Kind) {
+ case SystemZ::FK_390_PC16DBL: return ELF::R_390_PLT16DBL;
+ case SystemZ::FK_390_PC32DBL: return ELF::R_390_PLT32DBL;
+ }
+ llvm_unreachable("Unsupported absolute address");
+}
+
+unsigned SystemZObjectWriter::GetRelocType(const MCValue &Target,
+ const MCFixup &Fixup,
+ bool IsPCRel,
+ bool IsRelocWithSymbol,
+ int64_t Addend) const {
+ MCSymbolRefExpr::VariantKind Modifier = (Target.isAbsolute() ?
+ MCSymbolRefExpr::VK_None :
+ Target.getSymA()->getKind());
+ unsigned Kind = Fixup.getKind();
+ switch (Modifier) {
+ case MCSymbolRefExpr::VK_None:
+ if (IsPCRel)
+ return getPCRelReloc(Kind);
+ return getAbsoluteReloc(Kind);
+
+ case MCSymbolRefExpr::VK_NTPOFF:
+ assert(!IsPCRel && "NTPOFF shouldn't be PC-relative");
+ return getTLSLEReloc(Kind);
+
+ case MCSymbolRefExpr::VK_GOT:
+ if (IsPCRel && Kind == SystemZ::FK_390_PC32DBL)
+ return ELF::R_390_GOTENT;
+ llvm_unreachable("Only PC-relative GOT accesses are supported for now");
+
+ case MCSymbolRefExpr::VK_PLT:
+ assert(IsPCRel && "@PLT shouldt be PC-relative");
+ return getPLTReloc(Kind);
+
+ default:
+ llvm_unreachable("Modifier not supported");
+ }
+}
+
+const MCSymbol *SystemZObjectWriter::ExplicitRelSym(const MCAssembler &Asm,
+ const MCValue &Target,
+ const MCFragment &F,
+ const MCFixup &Fixup,
+ bool IsPCRel) const {
+ // The addend in a PC-relative R_390_* relocation is always applied to
+ // the PC-relative part of the address. If some kind of indirection
+ // is applied to the symbol first, we can't use an addend there too.
+ if (!Target.isAbsolute() &&
+ Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None &&
+ IsPCRel)
+ return &Target.getSymA()->getSymbol().AliasedSymbol();
+ return NULL;
+}
+
+MCObjectWriter *llvm::createSystemZObjectWriter(raw_ostream &OS,
+ uint8_t OSABI) {
+ MCELFObjectTargetWriter *MOTW = new SystemZObjectWriter(OSABI);
+ return createELFObjectWriter(MOTW, OS, /*IsLittleEndian=*/false);
+}
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp b/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
new file mode 100644
index 0000000000..20eb98d8d6
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
@@ -0,0 +1,160 @@
+//===-- SystemZMCTargetDesc.cpp - SystemZ target descriptions -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCTargetDesc.h"
+#include "InstPrinter/SystemZInstPrinter.h"
+#include "SystemZMCAsmInfo.h"
+#include "llvm/MC/MCCodeGenInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/TargetRegistry.h"
+
+#define GET_INSTRINFO_MC_DESC
+#include "SystemZGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "SystemZGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "SystemZGenRegisterInfo.inc"
+
+using namespace llvm;
+
+static MCAsmInfo *createSystemZMCAsmInfo(const Target &T, StringRef TT) {
+ MCAsmInfo *MAI = new SystemZMCAsmInfo(T, TT);
+ MachineLocation FPDst(MachineLocation::VirtualFP);
+ MachineLocation FPSrc(SystemZ::R15D, -SystemZMC::CFAOffsetFromInitialSP);
+ MAI->addInitialFrameState(0, FPDst, FPSrc);
+ return MAI;
+}
+
+static MCInstrInfo *createSystemZMCInstrInfo() {
+ MCInstrInfo *X = new MCInstrInfo();
+ InitSystemZMCInstrInfo(X);
+ return X;
+}
+
+static MCRegisterInfo *createSystemZMCRegisterInfo(StringRef TT) {
+ MCRegisterInfo *X = new MCRegisterInfo();
+ InitSystemZMCRegisterInfo(X, SystemZ::R14D);
+ return X;
+}
+
+static MCSubtargetInfo *createSystemZMCSubtargetInfo(StringRef TT,
+ StringRef CPU,
+ StringRef FS) {
+ MCSubtargetInfo *X = new MCSubtargetInfo();
+ InitSystemZMCSubtargetInfo(X, TT, CPU, FS);
+ return X;
+}
+
+static MCCodeGenInfo *createSystemZMCCodeGenInfo(StringRef TT, Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level) {
+ MCCodeGenInfo *X = new MCCodeGenInfo();
+
+ // Static code is suitable for use in a dynamic executable; there is no
+ // separate DynamicNoPIC model.
+ if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC)
+ RM = Reloc::Static;
+
+ // For SystemZ we define the models as follows:
+ //
+ // Small: BRASL can call any function and will use a stub if necessary.
+ // Locally-binding symbols will always be in range of LARL.
+ //
+ // Medium: BRASL can call any function and will use a stub if necessary.
+ // GOT slots and locally-defined text will always be in range
+ // of LARL, but other symbols might not be.
+ //
+ // Large: Equivalent to Medium for now.
+ //
+ // Kernel: Equivalent to Medium for now.
+ //
+ // This means that any PIC module smaller than 4GB meets the
+ // requirements of Small, so Small seems like the best default there.
+ //
+ // All symbols bind locally in a non-PIC module, so the choice is less
+ // obvious. There are two cases:
+ //
+ // - When creating an executable, PLTs and copy relocations allow
+ // us to treat external symbols as part of the executable.
+ // Any executable smaller than 4GB meets the requirements of Small,
+ // so that seems like the best default.
+ //
+ // - When creating JIT code, stubs will be in range of BRASL if the
+ // image is less than 4GB in size. GOT entries will likewise be
+ // in range of LARL. However, the JIT environment has no equivalent
+ // of copy relocs, so locally-binding data symbols might not be in
+ // the range of LARL. We need the Medium model in that case.
+ if (CM == CodeModel::Default)
+ CM = CodeModel::Small;
+ else if (CM == CodeModel::JITDefault)
+ CM = RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
+ X->InitMCCodeGenInfo(RM, CM);
+ return X;
+}
+
+static MCInstPrinter *createSystemZMCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI) {
+ return new SystemZInstPrinter(MAI, MII, MRI);
+}
+
+static MCStreamer *createSystemZMCObjectStreamer(const Target &T, StringRef TT,
+ MCContext &Ctx,
+ MCAsmBackend &MAB,
+ raw_ostream &OS,
+ MCCodeEmitter *Emitter,
+ bool RelaxAll,
+ bool NoExecStack) {
+ return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
+}
+
+extern "C" void LLVMInitializeSystemZTargetMC() {
+ // Register the MCAsmInfo.
+ TargetRegistry::RegisterMCAsmInfo(TheSystemZTarget,
+ createSystemZMCAsmInfo);
+
+ // Register the MCCodeGenInfo.
+ TargetRegistry::RegisterMCCodeGenInfo(TheSystemZTarget,
+ createSystemZMCCodeGenInfo);
+
+ // Register the MCCodeEmitter.
+ TargetRegistry::RegisterMCCodeEmitter(TheSystemZTarget,
+ createSystemZMCCodeEmitter);
+
+ // Register the MCInstrInfo.
+ TargetRegistry::RegisterMCInstrInfo(TheSystemZTarget,
+ createSystemZMCInstrInfo);
+
+ // Register the MCRegisterInfo.
+ TargetRegistry::RegisterMCRegInfo(TheSystemZTarget,
+ createSystemZMCRegisterInfo);
+
+ // Register the MCSubtargetInfo.
+ TargetRegistry::RegisterMCSubtargetInfo(TheSystemZTarget,
+ createSystemZMCSubtargetInfo);
+
+ // Register the MCAsmBackend.
+ TargetRegistry::RegisterMCAsmBackend(TheSystemZTarget,
+ createSystemZMCAsmBackend);
+
+ // Register the MCInstPrinter.
+ TargetRegistry::RegisterMCInstPrinter(TheSystemZTarget,
+ createSystemZMCInstPrinter);
+
+ // Register the MCObjectStreamer;
+ TargetRegistry::RegisterMCObjectStreamer(TheSystemZTarget,
+ createSystemZMCObjectStreamer);
+}
diff --git a/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h b/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
new file mode 100644
index 0000000000..229912f161
--- /dev/null
+++ b/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h
@@ -0,0 +1,62 @@
+//===-- SystemZMCTargetDesc.h - SystemZ target descriptions -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZMCTARGETDESC_H
+#define SYSTEMZMCTARGETDESC_H
+
+#include "llvm/Support/DataTypes.h"
+
+namespace llvm {
+
+class MCAsmBackend;
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
+class MCObjectWriter;
+class MCRegisterInfo;
+class MCSubtargetInfo;
+class StringRef;
+class Target;
+class raw_ostream;
+
+extern Target TheSystemZTarget;
+
+namespace SystemZMC {
+ // How many bytes are in the ABI-defined, caller-allocated part of
+ // a stack frame.
+ const int64_t CallFrameSize = 160;
+
+ // The offset of the DWARF CFA from the incoming stack pointer.
+ const int64_t CFAOffsetFromInitialSP = CallFrameSize;
+}
+
+MCCodeEmitter *createSystemZMCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+MCAsmBackend *createSystemZMCAsmBackend(const Target &T, StringRef TT,
+ StringRef CPU);
+
+MCObjectWriter *createSystemZObjectWriter(raw_ostream &OS, uint8_t OSABI);
+} // end namespace llvm
+
+// Defines symbolic names for SystemZ registers.
+// This defines a mapping from register name to register number.
+#define GET_REGINFO_ENUM
+#include "SystemZGenRegisterInfo.inc"
+
+// Defines symbolic names for the SystemZ instructions.
+#define GET_INSTRINFO_ENUM
+#include "SystemZGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "SystemZGenSubtargetInfo.inc"
+
+#endif
diff --git a/lib/Target/SystemZ/Makefile b/lib/Target/SystemZ/Makefile
new file mode 100644
index 0000000000..c992584af9
--- /dev/null
+++ b/lib/Target/SystemZ/Makefile
@@ -0,0 +1,28 @@
+##===- lib/Target/SystemZ/Makefile -------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMSystemZCodeGen
+TARGET = SystemZ
+
+# Make sure that tblgen is run, first thing.
+BUILT_SOURCES = SystemZGenRegisterInfo.inc \
+ SystemZGenAsmWriter.inc \
+ SystemZGenAsmMatcher.inc \
+ SystemZGenCodeEmitter.inc \
+ SystemZGenInstrInfo.inc \
+ SystemZGenDAGISel.inc \
+ SystemZGenSubtargetInfo.inc \
+ SystemZGenCallingConv.inc \
+ SystemZGenMCCodeEmitter.inc
+
+DIRS = InstPrinter AsmParser TargetInfo MCTargetDesc
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/SystemZ/README.txt b/lib/Target/SystemZ/README.txt
new file mode 100644
index 0000000000..d1f56a4916
--- /dev/null
+++ b/lib/Target/SystemZ/README.txt
@@ -0,0 +1,146 @@
+//===---------------------------------------------------------------------===//
+// Random notes about and ideas for the SystemZ backend.
+//===---------------------------------------------------------------------===//
+
+The initial backend is deliberately restricted to z10. We should add support
+for later architectures at some point.
+
+--
+
+SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
+inline asm memory constraints; it doesn't get to see the original constraint.
+This means that it must conservatively treat all inline asm constraints
+as the most restricted type, "R".
+
+--
+
+If an inline asm ties an i32 "r" result to an i64 input, the input
+will be treated as an i32, leaving the upper bits uninitialised.
+For example:
+
+define void @f4(i32 *%dst) {
+ %val = call i32 asm "blah $0", "=r,0" (i64 103)
+ store i32 %val, i32 *%dst
+ ret void
+}
+
+from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
+to load 103. This seems to be a general target-independent problem.
+
+--
+
+The tuning of the choice between Load Address (LA) and addition in
+SystemZISelDAGToDAG.cpp is suspect. It should be tweaked based on
+performance measurements.
+
+--
+
+There is no scheduling support.
+
+--
+
+We don't use the Branch on Count or Branch on Index families of instruction.
+
+--
+
+We don't use the condition code results of anything except comparisons.
+
+Implementing this may need something more finely grained than the z_cmp
+and z_ucmp that we have now. It might (or might not) also be useful to
+have a mask of "don't care" values in conditional branches. For example,
+integer comparisons never set CC to 3, so the bottom bit of the CC mask
+isn't particularly relevant. JNLH and JE are equally good for testing
+equality after an integer comparison, etc.
+
+--
+
+We don't optimize string and block memory operations.
+
+--
+
+We don't take full advantage of builtins like fabsl because the calling
+conventions require f128s to be returned by invisible reference.
+
+--
+
+DAGCombiner can detect integer absolute, but there's not yet an associated
+ISD opcode. We could add one and implement it using Load Positive.
+Negated absolutes could use Load Negative.
+
+--
+
+DAGCombiner doesn't yet fold truncations of extended loads. Functions like:
+
+ unsigned long f (unsigned long x, unsigned short *y)
+ {
+ return (x << 32) | *y;
+ }
+
+therefore end up as:
+
+ sllg %r2, %r2, 32
+ llgh %r0, 0(%r3)
+ lr %r2, %r0
+ br %r14
+
+but truncating the load would give:
+
+ sllg %r2, %r2, 32
+ lh %r2, 0(%r3)
+ br %r14
+
+--
+
+Functions like:
+
+define i64 @f1(i64 %a) {
+ %and = and i64 %a, 1
+ ret i64 %and
+}
+
+ought to be implemented as:
+
+ lhi %r0, 1
+ ngr %r2, %r0
+ br %r14
+
+but two-address optimisations reverse the order of the AND and force:
+
+ lhi %r0, 1
+ ngr %r0, %r2
+ lgr %r2, %r0
+ br %r14
+
+CodeGen/SystemZ/and-04.ll has several examples of this.
+
+--
+
+Out-of-range displacements are usually handled by loading the full
+address into a register. In many cases it would be better to create
+an anchor point instead. E.g. for:
+
+define void @f4a(i128 *%aptr, i64 %base) {
+ %addr = add i64 %base, 524288
+ %bptr = inttoptr i64 %addr to i128 *
+ %a = load volatile i128 *%aptr
+ %b = load i128 *%bptr
+ %add = add i128 %a, %b
+ store i128 %add, i128 *%aptr
+ ret void
+}
+
+(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
+into separate registers, rather than using %base+524288 as a base for both.
+
+--
+
+Dynamic stack allocations round the size to 8 bytes and then allocate
+that rounded amount. It would be simpler to subtract the unrounded
+size from the copy of the stack pointer and then align the result.
+See CodeGen/SystemZ/alloca-01.ll for an example.
+
+--
+
+Atomic loads and stores use the default compare-and-swap based implementation.
+This is probably much too conservative in practice, and the overhead is
+especially bad for 8- and 16-bit accesses.
diff --git a/lib/Target/SystemZ/SystemZ.h b/lib/Target/SystemZ/SystemZ.h
new file mode 100644
index 0000000000..b811cbe9f0
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZ.h
@@ -0,0 +1,77 @@
+//==- SystemZ.h - Top-Level Interface for SystemZ representation -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM SystemZ backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZ_H
+#define SYSTEMZ_H
+
+#include "MCTargetDesc/SystemZMCTargetDesc.h"
+#include "llvm/Support/CodeGen.h"
+
+namespace llvm {
+ class SystemZTargetMachine;
+ class FunctionPass;
+
+ namespace SystemZ {
+ // Condition-code mask values.
+ const unsigned CCMASK_0 = 1 << 3;
+ const unsigned CCMASK_1 = 1 << 2;
+ const unsigned CCMASK_2 = 1 << 1;
+ const unsigned CCMASK_3 = 1 << 0;
+ const unsigned CCMASK_ANY = CCMASK_0 | CCMASK_1 | CCMASK_2 | CCMASK_3;
+
+ // Condition-code mask assignments for floating-point comparisons.
+ const unsigned CCMASK_CMP_EQ = CCMASK_0;
+ const unsigned CCMASK_CMP_LT = CCMASK_1;
+ const unsigned CCMASK_CMP_GT = CCMASK_2;
+ const unsigned CCMASK_CMP_UO = CCMASK_3;
+ const unsigned CCMASK_CMP_NE = CCMASK_CMP_LT | CCMASK_CMP_GT;
+ const unsigned CCMASK_CMP_LE = CCMASK_CMP_EQ | CCMASK_CMP_LT;
+ const unsigned CCMASK_CMP_GE = CCMASK_CMP_EQ | CCMASK_CMP_GT;
+ const unsigned CCMASK_CMP_O = CCMASK_ANY ^ CCMASK_CMP_UO;
+
+ // Return true if Val fits an LLILL operand.
+ static inline bool isImmLL(uint64_t Val) {
+ return (Val & ~0x000000000000ffffULL) == 0;
+ }
+
+ // Return true if Val fits an LLILH operand.
+ static inline bool isImmLH(uint64_t Val) {
+ return (Val & ~0x00000000ffff0000ULL) == 0;
+ }
+
+ // Return true if Val fits an LLIHL operand.
+ static inline bool isImmHL(uint64_t Val) {
+ return (Val & ~0x00000ffff00000000ULL) == 0;
+ }
+
+ // Return true if Val fits an LLIHH operand.
+ static inline bool isImmHH(uint64_t Val) {
+ return (Val & ~0xffff000000000000ULL) == 0;
+ }
+
+ // Return true if Val fits an LLILF operand.
+ static inline bool isImmLF(uint64_t Val) {
+ return (Val & ~0x00000000ffffffffULL) == 0;
+ }
+
+ // Return true if Val fits an LLIHF operand.
+ static inline bool isImmHF(uint64_t Val) {
+ return (Val & ~0xffffffff00000000ULL) == 0;
+ }
+ }
+
+ FunctionPass *createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+} // end namespace llvm;
+#endif
diff --git a/lib/Target/SystemZ/SystemZ.td b/lib/Target/SystemZ/SystemZ.td
new file mode 100644
index 0000000000..e03c32f56d
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZ.td
@@ -0,0 +1,75 @@
+//===-- SystemZ.td - Describe the SystemZ target machine -----*- tblgen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// SystemZ supported processors
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"z10", []>;
+
+//===----------------------------------------------------------------------===//
+// Register file description
+//===----------------------------------------------------------------------===//
+
+include "SystemZRegisterInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Calling convention description
+//===----------------------------------------------------------------------===//
+
+include "SystemZCallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction descriptions
+//===----------------------------------------------------------------------===//
+
+include "SystemZOperators.td"
+include "SystemZOperands.td"
+include "SystemZPatterns.td"
+include "SystemZInstrFormats.td"
+include "SystemZInstrInfo.td"
+include "SystemZInstrFP.td"
+
+def SystemZInstrInfo : InstrInfo {}
+
+//===----------------------------------------------------------------------===//
+// Assembly parser
+//===----------------------------------------------------------------------===//
+
+def SystemZAsmParser : AsmParser {
+ let ShouldEmitMatchRegisterName = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Assembly writer
+//===----------------------------------------------------------------------===//
+
+def SystemZAsmWriter : AsmWriter {
+ string AsmWriterClassName = "InstPrinter";
+ bit isMCAsmWriter = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-level target declaration
+//===----------------------------------------------------------------------===//
+
+def SystemZ : Target {
+ let InstructionSet = SystemZInstrInfo;
+ let AssemblyParsers = [SystemZAsmParser];
+ let AssemblyWriters = [SystemZAsmWriter];
+}
diff --git a/lib/Target/SystemZ/SystemZAsmPrinter.cpp b/lib/Target/SystemZ/SystemZAsmPrinter.cpp
new file mode 100644
index 0000000000..1e15ab1413
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZAsmPrinter.cpp
@@ -0,0 +1,113 @@
+//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly printer -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Streams SystemZ assembly language and associated data, in the form of
+// MCInsts and MCExprs respectively.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZAsmPrinter.h"
+#include "InstPrinter/SystemZInstPrinter.h"
+#include "SystemZConstantPoolValue.h"
+#include "SystemZMCInstLower.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/Mangler.h"
+
+using namespace llvm;
+
+void SystemZAsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ SystemZMCInstLower Lower(Mang, MF->getContext(), *this);
+ MCInst LoweredMI;
+ Lower.lower(MI, LoweredMI);
+ OutStreamer.EmitInstruction(LoweredMI);
+}
+
+// Convert a SystemZ-specific constant pool modifier into the associated
+// MCSymbolRefExpr variant kind.
+static MCSymbolRefExpr::VariantKind
+getModifierVariantKind(SystemZCP::SystemZCPModifier Modifier) {
+ switch (Modifier) {
+ case SystemZCP::NTPOFF: return MCSymbolRefExpr::VK_NTPOFF;
+ }
+ llvm_unreachable("Invalid SystemCPModifier!");
+}
+
+void SystemZAsmPrinter::
+EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
+ SystemZConstantPoolValue *ZCPV =
+ static_cast<SystemZConstantPoolValue*>(MCPV);
+
+ const MCExpr *Expr =
+ MCSymbolRefExpr::Create(Mang->getSymbol(ZCPV->getGlobalValue()),
+ getModifierVariantKind(ZCPV->getModifier()),
+ OutContext);
+ uint64_t Size = TM.getDataLayout()->getTypeAllocSize(ZCPV->getType());
+
+ OutStreamer.EmitValue(Expr, Size);
+}
+
+bool SystemZAsmPrinter::PrintAsmOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) {
+ if (ExtraCode && *ExtraCode == 'n') {
+ if (!MI->getOperand(OpNo).isImm())
+ return true;
+ OS << -int64_t(MI->getOperand(OpNo).getImm());
+ } else {
+ SystemZMCInstLower Lower(Mang, MF->getContext(), *this);
+ MCOperand MO(Lower.lowerOperand(MI->getOperand(OpNo)));
+ SystemZInstPrinter::printOperand(MO, OS);
+ }
+ return false;
+}
+
+bool SystemZAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) {
+ SystemZInstPrinter::printAddress(MI->getOperand(OpNo).getReg(),
+ MI->getOperand(OpNo + 1).getImm(),
+ MI->getOperand(OpNo + 2).getReg(), OS);
+ return false;
+}
+
+void SystemZAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetELF()) {
+ const TargetLoweringObjectFileELF &TLOFELF =
+ static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
+
+ MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
+
+ // Output stubs for external and common global variables.
+ MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
+ const DataLayout *TD = TM.getDataLayout();
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ OutStreamer.EmitLabel(Stubs[i].first);
+ OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(),
+ TD->getPointerSize(0), 0);
+ }
+ Stubs.clear();
+ }
+ }
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmPrinter() {
+ RegisterAsmPrinter<SystemZAsmPrinter> X(TheSystemZTarget);
+}
diff --git a/lib/Target/SystemZ/SystemZAsmPrinter.h b/lib/Target/SystemZ/SystemZAsmPrinter.h
new file mode 100644
index 0000000000..4b6c51b6f0
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZAsmPrinter.h
@@ -0,0 +1,52 @@
+//===-- SystemZAsmPrinter.h - SystemZ LLVM assembly printer ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZASMPRINTER_H
+#define SYSTEMZASMPRINTER_H
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class MCStreamer;
+class MachineBasicBlock;
+class MachineInstr;
+class Module;
+class raw_ostream;
+
+class LLVM_LIBRARY_VISIBILITY SystemZAsmPrinter : public AsmPrinter {
+private:
+ const SystemZSubtarget *Subtarget;
+
+public:
+ SystemZAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
+ : AsmPrinter(TM, Streamer) {
+ Subtarget = &TM.getSubtarget<SystemZSubtarget>();
+ }
+
+ // Override AsmPrinter.
+ virtual const char *getPassName() const LLVM_OVERRIDE {
+ return "SystemZ Assembly Printer";
+ }
+ virtual void EmitInstruction(const MachineInstr *MI) LLVM_OVERRIDE;
+ virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV)
+ LLVM_OVERRIDE;
+ virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode,
+ raw_ostream &OS) LLVM_OVERRIDE;
+ virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode,
+ raw_ostream &OS) LLVM_OVERRIDE;
+ virtual void EmitEndOfAsmFile(Module &M) LLVM_OVERRIDE;
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZCallingConv.cpp b/lib/Target/SystemZ/SystemZCallingConv.cpp
new file mode 100644
index 0000000000..cc9c84b6a0
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZCallingConv.cpp
@@ -0,0 +1,21 @@
+//===-- SystemZCallingConv.cpp - Calling conventions for SystemZ ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZCallingConv.h"
+#include "SystemZRegisterInfo.h"
+
+using namespace llvm;
+
+const unsigned SystemZ::ArgGPRs[SystemZ::NumArgGPRs] = {
+ SystemZ::R2D, SystemZ::R3D, SystemZ::R4D, SystemZ::R5D, SystemZ::R6D
+};
+
+const unsigned SystemZ::ArgFPRs[SystemZ::NumArgFPRs] = {
+ SystemZ::F0D, SystemZ::F2D, SystemZ::F4D, SystemZ::F6D
+};
diff --git a/lib/Target/SystemZ/SystemZCallingConv.h b/lib/Target/SystemZ/SystemZCallingConv.h
new file mode 100644
index 0000000000..298985e7e5
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZCallingConv.h
@@ -0,0 +1,23 @@
+//===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZCALLINGCONV_H
+#define SYSTEMZCALLINGCONV_H
+
+namespace llvm {
+ namespace SystemZ {
+ const unsigned NumArgGPRs = 5;
+ extern const unsigned ArgGPRs[NumArgGPRs];
+
+ const unsigned NumArgFPRs = 4;
+ extern const unsigned ArgFPRs[NumArgFPRs];
+ }
+}
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZCallingConv.td b/lib/Target/SystemZ/SystemZCallingConv.td
new file mode 100644
index 0000000000..c2d727fe4d
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZCallingConv.td
@@ -0,0 +1,65 @@
+//=- SystemZCallingConv.td - Calling conventions for SystemZ -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for the SystemZ ABI.
+//===----------------------------------------------------------------------===//
+
+class CCIfExtend<CCAction A>
+ : CCIf<"ArgFlags.isSExt() || ArgFlags.isZExt()", A>;
+
+//===----------------------------------------------------------------------===//
+// SVR4 return value calling convention
+//===----------------------------------------------------------------------===//
+def RetCC_SystemZ : CallingConv<[
+ // Promote i32 to i64 if it has an explicit extension type.
+ CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
+
+ // ABI-compliant code returns 64-bit integers in R2. Make the other
+ // call-clobbered argument registers available for code that doesn't
+ // care about the ABI. (R6 is an argument register too, but is
+ // call-saved and therefore not suitable for return values.)
+ CCIfType<[i32], CCAssignToReg<[R2W, R3W, R4W, R5W]>>,
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>,
+
+ // ABI-complaint code returns float and double in F0. Make the
+ // other floating-point argument registers available for code that
+ // doesn't care about the ABI. All floating-point argument registers
+ // are call-clobbered, so we can use all of them here.
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>
+
+ // ABI-compliant code returns long double by reference, but that conversion
+ // is left to higher-level code. Perhaps we could add an f128 definition
+ // here for code that doesn't care about the ABI?
+]>;
+
+//===----------------------------------------------------------------------===//
+// SVR4 argument calling conventions
+//===----------------------------------------------------------------------===//
+def CC_SystemZ : CallingConv<[
+ // Promote i32 to i64 if it has an explicit extension type.
+ // The convention is that true integer arguments that are smaller
+ // than 64 bits should be marked as extended, but structures that
+ // are smaller than 64 bits shouldn't.
+ CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
+
+ // Force long double values to the stack and pass i64 pointers to them.
+ CCIfType<[f128], CCPassIndirect<i64>>,
+
+ // The first 5 integer arguments are passed in R2-R6. Note that R6
+ // is call-saved.
+ CCIfType<[i32], CCAssignToReg<[R2W, R3W, R4W, R5W, R6W]>>,
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>,
+
+ // The first 4 float and double arguments are passed in even registers F0-F6.
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>,
+
+ // Other arguments are passed in 8-byte-aligned 8-byte stack slots.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
diff --git a/lib/Target/SystemZ/SystemZConstantPoolValue.cpp b/lib/Target/SystemZ/SystemZConstantPoolValue.cpp
new file mode 100644
index 0000000000..e9c4f6df52
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZConstantPoolValue.cpp
@@ -0,0 +1,62 @@
+//===-- SystemZConstantPoolValue.cpp - SystemZ constant-pool value --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZConstantPoolValue.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+SystemZConstantPoolValue::
+SystemZConstantPoolValue(const GlobalValue *gv,
+ SystemZCP::SystemZCPModifier modifier)
+ : MachineConstantPoolValue(gv->getType()), GV(gv), Modifier(modifier) {}
+
+SystemZConstantPoolValue *
+SystemZConstantPoolValue::Create(const GlobalValue *GV,
+ SystemZCP::SystemZCPModifier Modifier) {
+ return new SystemZConstantPoolValue(GV, Modifier);
+}
+
+unsigned SystemZConstantPoolValue::getRelocationInfo() const {
+ switch (Modifier) {
+ case SystemZCP::NTPOFF:
+ // May require a relocation, but the relocations are always resolved
+ // by the static linker.
+ return 1;
+ }
+ llvm_unreachable("Unknown modifier");
+}
+
+int SystemZConstantPoolValue::
+getExistingMachineCPValue(MachineConstantPool *CP, unsigned Alignment) {
+ unsigned AlignMask = Alignment - 1;
+ const std::vector<MachineConstantPoolEntry> Constants = CP->getConstants();
+ for (unsigned I = 0, E = Constants.size(); I != E; ++I) {
+ if (Constants[I].isMachineConstantPoolEntry() &&
+ (Constants[I].getAlignment() & AlignMask) == 0) {
+ SystemZConstantPoolValue *ZCPV =
+ static_cast<SystemZConstantPoolValue *>(Constants[I].Val.MachineCPVal);
+ if (ZCPV->GV == GV && ZCPV->Modifier == Modifier)
+ return I;
+ }
+ }
+ return -1;
+}
+
+void SystemZConstantPoolValue::addSelectionDAGCSEId(FoldingSetNodeID &ID) {
+ ID.AddPointer(GV);
+ ID.AddInteger(Modifier);
+}
+
+void SystemZConstantPoolValue::print(raw_ostream &O) const {
+ O << GV << "@" << int(Modifier);
+}
diff --git a/lib/Target/SystemZ/SystemZConstantPoolValue.h b/lib/Target/SystemZ/SystemZConstantPoolValue.h
new file mode 100644
index 0000000000..9927bdb262
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZConstantPoolValue.h
@@ -0,0 +1,55 @@
+//===- SystemZConstantPoolValue.h - SystemZ constant-pool value -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZCONSTANTPOOLVALUE_H
+#define SYSTEMZCONSTANTPOOLVALUE_H
+
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+
+class GlobalValue;
+
+namespace SystemZCP {
+ enum SystemZCPModifier {
+ NTPOFF
+ };
+}
+
+/// A SystemZ-specific constant pool value. At present, the only
+/// defined constant pool values are offsets of thread-local variables
+/// (written x@NTPOFF).
+class SystemZConstantPoolValue : public MachineConstantPoolValue {
+ const GlobalValue *GV;
+ SystemZCP::SystemZCPModifier Modifier;
+
+protected:
+ SystemZConstantPoolValue(const GlobalValue *GV,
+ SystemZCP::SystemZCPModifier Modifier);
+
+public:
+ static SystemZConstantPoolValue *
+ Create(const GlobalValue *GV, SystemZCP::SystemZCPModifier Modifier);
+
+ // Override MachineConstantPoolValue.
+ virtual unsigned getRelocationInfo() const LLVM_OVERRIDE;
+ virtual int getExistingMachineCPValue(MachineConstantPool *CP,
+ unsigned Alignment) LLVM_OVERRIDE;
+ virtual void addSelectionDAGCSEId(FoldingSetNodeID &ID) LLVM_OVERRIDE;
+ virtual void print(raw_ostream &O) const LLVM_OVERRIDE;
+
+ // Access SystemZ-specific fields.
+ const GlobalValue *getGlobalValue() const { return GV; }
+ SystemZCP::SystemZCPModifier getModifier() const { return Modifier; }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZFrameLowering.cpp b/lib/Target/SystemZ/SystemZFrameLowering.cpp
new file mode 100644
index 0000000000..fda33dee48
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZFrameLowering.cpp
@@ -0,0 +1,535 @@
+//===-- SystemZFrameLowering.cpp - Frame lowering for SystemZ -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZFrameLowering.h"
+#include "SystemZCallingConv.h"
+#include "SystemZInstrBuilder.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+
+using namespace llvm;
+
+SystemZFrameLowering::SystemZFrameLowering(const SystemZTargetMachine &tm,
+ const SystemZSubtarget &sti)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 8,
+ -SystemZMC::CallFrameSize),
+ TM(tm),
+ STI(sti) {
+ // The ABI-defined register save slots, relative to the incoming stack
+ // pointer.
+ static const unsigned SpillOffsetTable[][2] = {
+ { SystemZ::R2D, 0x10 },
+ { SystemZ::R3D, 0x18 },
+ { SystemZ::R4D, 0x20 },
+ { SystemZ::R5D, 0x28 },
+ { SystemZ::R6D, 0x30 },
+ { SystemZ::R7D, 0x38 },
+ { SystemZ::R8D, 0x40 },
+ { SystemZ::R9D, 0x48 },
+ { SystemZ::R10D, 0x50 },
+ { SystemZ::R11D, 0x58 },
+ { SystemZ::R12D, 0x60 },
+ { SystemZ::R13D, 0x68 },
+ { SystemZ::R14D, 0x70 },
+ { SystemZ::R15D, 0x78 },
+ { SystemZ::F0D, 0x80 },
+ { SystemZ::F2D, 0x88 },
+ { SystemZ::F4D, 0x90 },
+ { SystemZ::F6D, 0x98 }
+ };
+
+ // Create a mapping from register number to save slot offset.
+ RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
+ for (unsigned I = 0, E = array_lengthof(SpillOffsetTable); I != E; ++I)
+ RegSpillOffsets[SpillOffsetTable[I][0]] = SpillOffsetTable[I][1];
+}
+
+void SystemZFrameLowering::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
+ bool HasFP = hasFP(MF);
+ SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool IsVarArg = MF.getFunction()->isVarArg();
+
+ // va_start stores incoming FPR varargs in the normal way, but delegates
+ // the saving of incoming GPR varargs to spillCalleeSavedRegisters().
+ // Record these pending uses, which typically include the call-saved
+ // argument register R6D.
+ if (IsVarArg)
+ for (unsigned I = MFI->getVarArgsFirstGPR(); I < SystemZ::NumArgGPRs; ++I)
+ MRI.setPhysRegUsed(SystemZ::ArgGPRs[I]);
+
+ // If the function requires a frame pointer, record that the hard
+ // frame pointer will be clobbered.
+ if (HasFP)
+ MRI.setPhysRegUsed(SystemZ::R11D);
+
+ // If the function calls other functions, record that the return
+ // address register will be clobbered.
+ if (MFFrame->hasCalls())
+ MRI.setPhysRegUsed(SystemZ::R14D);
+
+ // If we are saving GPRs other than the stack pointer, we might as well
+ // save and restore the stack pointer at the same time, via STMG and LMG.
+ // This allows the deallocation to be done by the LMG, rather than needing
+ // a separate %r15 addition.
+ const uint16_t *CSRegs = TRI->getCalleeSavedRegs(&MF);
+ for (unsigned I = 0; CSRegs[I]; ++I) {
+ unsigned Reg = CSRegs[I];
+ if (SystemZ::GR64BitRegClass.contains(Reg) && MRI.isPhysRegUsed(Reg)) {
+ MRI.setPhysRegUsed(SystemZ::R15D);
+ break;
+ }
+ }
+}
+
+// Add GPR64 to the save instruction being built by MIB, which is in basic
+// block MBB. IsImplicit says whether this is an explicit operand to the
+// instruction, or an implicit one that comes between the explicit start
+// and end registers.
+static void addSavedGPR(MachineBasicBlock &MBB, MachineInstrBuilder &MIB,
+ const SystemZTargetMachine &TM,
+ unsigned GPR64, bool IsImplicit) {
+ const SystemZRegisterInfo *RI = TM.getRegisterInfo();
+ unsigned GPR32 = RI->getSubReg(GPR64, SystemZ::subreg_32bit);
+ bool IsLive = MBB.isLiveIn(GPR64) || MBB.isLiveIn(GPR32);
+ if (!IsLive || !IsImplicit) {
+ MIB.addReg(GPR64, getImplRegState(IsImplicit) | getKillRegState(!IsLive));
+ if (!IsLive)
+ MBB.addLiveIn(GPR64);
+ }
+}
+
+bool SystemZFrameLowering::
+spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool IsVarArg = MF.getFunction()->isVarArg();
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Scan the call-saved GPRs and find the bounds of the register spill area.
+ unsigned SavedGPRFrameSize = 0;
+ unsigned LowGPR = 0;
+ unsigned HighGPR = SystemZ::R15D;
+ unsigned StartOffset = -1U;
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg)) {
+ SavedGPRFrameSize += 8;
+ unsigned Offset = RegSpillOffsets[Reg];
+ assert(Offset && "Unexpected GPR save");
+ if (StartOffset > Offset) {
+ LowGPR = Reg;
+ StartOffset = Offset;
+ }
+ }
+ }
+
+ // Save information about the range and location of the call-saved
+ // registers, for use by the epilogue inserter.
+ ZFI->setSavedGPRFrameSize(SavedGPRFrameSize);
+ ZFI->setLowSavedGPR(LowGPR);
+ ZFI->setHighSavedGPR(HighGPR);
+
+ // Include the GPR varargs, if any. R6D is call-saved, so would
+ // be included by the loop above, but we also need to handle the
+ // call-clobbered argument registers.
+ if (IsVarArg) {
+ unsigned FirstGPR = ZFI->getVarArgsFirstGPR();
+ if (FirstGPR < SystemZ::NumArgGPRs) {
+ unsigned Reg = SystemZ::ArgGPRs[FirstGPR];
+ unsigned Offset = RegSpillOffsets[Reg];
+ if (StartOffset > Offset) {
+ LowGPR = Reg; StartOffset = Offset;
+ }
+ }
+ }
+
+ // Save GPRs
+ if (LowGPR) {
+ assert(LowGPR != HighGPR && "Should be saving %r15 and something else");
+
+ // Build an STMG instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::STMG));
+
+ // Add the explicit register operands.
+ addSavedGPR(MBB, MIB, TM, LowGPR, false);
+ addSavedGPR(MBB, MIB, TM, HighGPR, false);
+
+ // Add the address.
+ MIB.addReg(SystemZ::R15D).addImm(StartOffset);
+
+ // Make sure all call-saved GPRs are included as operands and are
+ // marked as live on entry.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg))
+ addSavedGPR(MBB, MIB, TM, Reg, true);
+ }
+
+ // ...likewise GPR varargs.
+ if (IsVarArg)
+ for (unsigned I = ZFI->getVarArgsFirstGPR(); I < SystemZ::NumArgGPRs; ++I)
+ addSavedGPR(MBB, MIB, TM, SystemZ::ArgGPRs[I], true);
+ }
+
+ // Save FPRs in the normal TargetInstrInfo way.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg)) {
+ MBB.addLiveIn(Reg);
+ TII->storeRegToStackSlot(MBB, MBBI, Reg, true, CSI[I].getFrameIdx(),
+ &SystemZ::FP64BitRegClass, TRI);
+ }
+ }
+
+ return true;
+}
+
+bool SystemZFrameLowering::
+restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ bool HasFP = hasFP(MF);
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Restore FPRs in the normal TargetInstrInfo way.
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg))
+ TII->loadRegFromStackSlot(MBB, MBBI, Reg, CSI[I].getFrameIdx(),
+ &SystemZ::FP64BitRegClass, TRI);
+ }
+
+ // Restore call-saved GPRs (but not call-clobbered varargs, which at
+ // this point might hold return values).
+ unsigned LowGPR = ZFI->getLowSavedGPR();
+ unsigned HighGPR = ZFI->getHighSavedGPR();
+ unsigned StartOffset = RegSpillOffsets[LowGPR];
+ if (LowGPR) {
+ // If we saved any of %r2-%r5 as varargs, we should also be saving
+ // and restoring %r6. If we're saving %r6 or above, we should be
+ // restoring it too.
+ assert(LowGPR != HighGPR && "Should be loading %r15 and something else");
+
+ // Build an LMG instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::LMG));
+
+ // Add the explicit register operands.
+ MIB.addReg(LowGPR, RegState::Define);
+ MIB.addReg(HighGPR, RegState::Define);
+
+ // Add the address.
+ MIB.addReg(HasFP ? SystemZ::R11D : SystemZ::R15D);
+ MIB.addImm(StartOffset);
+
+ // Do a second scan adding regs as being defined by instruction
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (Reg != LowGPR && Reg != HighGPR)
+ MIB.addReg(Reg, RegState::ImplicitDefine);
+ }
+ }
+
+ return true;
+}
+
+// Emit instructions before MBBI (in MBB) to add NumBytes to Reg.
+static void emitIncrement(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const DebugLoc &DL,
+ unsigned Reg, int64_t NumBytes,
+ const TargetInstrInfo *TII) {
+ while (NumBytes) {
+ unsigned Opcode;
+ int64_t ThisVal = NumBytes;
+ if (isInt<16>(NumBytes))
+ Opcode = SystemZ::AGHI;
+ else {
+ Opcode = SystemZ::AGFI;
+ // Make sure we maintain 8-byte stack alignment.
+ int64_t MinVal = -int64_t(1) << 31;
+ int64_t MaxVal = (int64_t(1) << 31) - 8;
+ if (ThisVal < MinVal)
+ ThisVal = MinVal;
+ else if (ThisVal > MaxVal)
+ ThisVal = MaxVal;
+ }
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII->get(Opcode), Reg)
+ .addReg(Reg).addImm(ThisVal);
+ // The PSW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ NumBytes -= ThisVal;
+ }
+}
+
+void SystemZFrameLowering::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ const SystemZInstrInfo *ZII =
+ static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineModuleInfo &MMI = MF.getMMI();
+ std::vector<MachineMove> &Moves = MMI.getFrameMoves();
+ const std::vector<CalleeSavedInfo> &CSI = MFFrame->getCalleeSavedInfo();
+ bool HasFP = hasFP(MF);
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // The current offset of the stack pointer from the CFA.
+ int64_t SPOffsetFromCFA = -SystemZMC::CFAOffsetFromInitialSP;
+
+ if (ZFI->getLowSavedGPR()) {
+ // Skip over the GPR saves.
+ if (MBBI != MBB.end() && MBBI->getOpcode() == SystemZ::STMG)
+ ++MBBI;
+ else
+ llvm_unreachable("Couldn't skip over GPR saves");
+
+ // Add CFI for the GPR saves.
+ MCSymbol *GPRSaveLabel = MMI.getContext().CreateTempSymbol();
+ BuildMI(MBB, MBBI, DL,
+ ZII->get(TargetOpcode::PROLOG_LABEL)).addSym(GPRSaveLabel);
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ unsigned Reg = I->getReg();
+ if (SystemZ::GR64BitRegClass.contains(Reg)) {
+ int64_t Offset = SPOffsetFromCFA + RegSpillOffsets[Reg];
+ MachineLocation StackSlot(MachineLocation::VirtualFP, Offset);
+ MachineLocation RegValue(Reg);
+ Moves.push_back(MachineMove(GPRSaveLabel, StackSlot, RegValue));
+ }
+ }
+ }
+
+ uint64_t StackSize = getAllocatedStackSize(MF);
+ if (StackSize) {
+ // Allocate StackSize bytes.
+ int64_t Delta = -int64_t(StackSize);
+ emitIncrement(MBB, MBBI, DL, SystemZ::R15D, Delta, ZII);
+
+ // Add CFI for the allocation.
+ MCSymbol *AdjustSPLabel = MMI.getContext().CreateTempSymbol();
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::PROLOG_LABEL))
+ .addSym(AdjustSPLabel);
+ MachineLocation FPDest(MachineLocation::VirtualFP);
+ MachineLocation FPSrc(MachineLocation::VirtualFP, SPOffsetFromCFA + Delta);
+ Moves.push_back(MachineMove(AdjustSPLabel, FPDest, FPSrc));
+ SPOffsetFromCFA += Delta;
+ }
+
+ if (HasFP) {
+ // Copy the base of the frame to R11.
+ BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::LGR), SystemZ::R11D)
+ .addReg(SystemZ::R15D);
+
+ // Add CFI for the new frame location.
+ MCSymbol *SetFPLabel = MMI.getContext().CreateTempSymbol();
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::PROLOG_LABEL))
+ .addSym(SetFPLabel);
+ MachineLocation HardFP(SystemZ::R11D);
+ MachineLocation VirtualFP(MachineLocation::VirtualFP);
+ Moves.push_back(MachineMove(SetFPLabel, HardFP, VirtualFP));
+
+ // Mark the FramePtr as live at the beginning of every block except
+ // the entry block. (We'll have marked R11 as live on entry when
+ // saving the GPRs.)
+ for (MachineFunction::iterator
+ I = llvm::next(MF.begin()), E = MF.end(); I != E; ++I)
+ I->addLiveIn(SystemZ::R11D);
+ }
+
+ // Skip over the FPR saves.
+ MCSymbol *FPRSaveLabel = 0;
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ unsigned Reg = I->getReg();
+ if (SystemZ::FP64BitRegClass.contains(Reg)) {
+ if (MBBI != MBB.end() &&
+ (MBBI->getOpcode() == SystemZ::STD ||
+ MBBI->getOpcode() == SystemZ::STDY))
+ ++MBBI;
+ else
+ llvm_unreachable("Couldn't skip over FPR save");
+
+ // Add CFI for the this save.
+ if (!FPRSaveLabel)
+ FPRSaveLabel = MMI.getContext().CreateTempSymbol();
+ unsigned Reg = I->getReg();
+ int64_t Offset = getFrameIndexOffset(MF, I->getFrameIdx());
+ MachineLocation Slot(MachineLocation::VirtualFP,
+ SPOffsetFromCFA + Offset);
+ MachineLocation RegValue(Reg);
+ Moves.push_back(MachineMove(FPRSaveLabel, Slot, RegValue));
+ }
+ }
+ // Complete the CFI for the FPR saves, modelling them as taking effect
+ // after the last save.
+ if (FPRSaveLabel)
+ BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::PROLOG_LABEL))
+ .addSym(FPRSaveLabel);
+}
+
+void SystemZFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
+ const SystemZInstrInfo *ZII =
+ static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
+ SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
+
+ // Skip the return instruction.
+ assert(MBBI->getOpcode() == SystemZ::RET &&
+ "Can only insert epilogue into returning blocks");
+
+ uint64_t StackSize = getAllocatedStackSize(MF);
+ if (ZFI->getLowSavedGPR()) {
+ --MBBI;
+ unsigned Opcode = MBBI->getOpcode();
+ if (Opcode != SystemZ::LMG)
+ llvm_unreachable("Expected to see callee-save register restore code");
+
+ unsigned AddrOpNo = 2;
+ DebugLoc DL = MBBI->getDebugLoc();
+ uint64_t Offset = StackSize + MBBI->getOperand(AddrOpNo + 1).getImm();
+ unsigned NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
+
+ // If the offset is too large, use the largest stack-aligned offset
+ // and add the rest to the base register (the stack or frame pointer).
+ if (!NewOpcode) {
+ uint64_t NumBytes = Offset - 0x7fff8;
+ emitIncrement(MBB, MBBI, DL, MBBI->getOperand(AddrOpNo).getReg(),
+ NumBytes, ZII);
+ Offset -= NumBytes;
+ NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
+ assert(NewOpcode && "No restore instruction available");
+ }
+
+ MBBI->setDesc(ZII->get(NewOpcode));
+ MBBI->getOperand(AddrOpNo + 1).ChangeToImmediate(Offset);
+ } else if (StackSize) {
+ DebugLoc DL = MBBI->getDebugLoc();
+ emitIncrement(MBB, MBBI, DL, SystemZ::R15D, StackSize, ZII);
+ }
+}
+
+bool SystemZFrameLowering::hasFP(const MachineFunction &MF) const {
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MF.getFrameInfo()->hasVarSizedObjects() ||
+ MF.getInfo<SystemZMachineFunctionInfo>()->getManipulatesSP());
+}
+
+int SystemZFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const {
+ const MachineFrameInfo *MFFrame = MF.getFrameInfo();
+
+ // Start with the offset of FI from the top of the caller-allocated frame
+ // (i.e. the top of the 160 bytes allocated by the caller). This initial
+ // offset is therefore negative.
+ int64_t Offset = (MFFrame->getObjectOffset(FI) +
+ MFFrame->getOffsetAdjustment());
+ if (FI >= 0)
+ // Non-fixed objects are allocated below the incoming stack pointer.
+ // Account for the space at the top of the frame that we choose not
+ // to allocate.
+ Offset += getUnallocatedTopBytes(MF);
+
+ // Make the offset relative to the incoming stack pointer.
+ Offset -= getOffsetOfLocalArea();
+
+ // Make the offset relative to the bottom of the frame.
+ Offset += getAllocatedStackSize(MF);
+
+ return Offset;
+}
+
+uint64_t SystemZFrameLowering::
+getUnallocatedTopBytes(const MachineFunction &MF) const {
+ return MF.getInfo<SystemZMachineFunctionInfo>()->getSavedGPRFrameSize();
+}
+
+uint64_t SystemZFrameLowering::
+getAllocatedStackSize(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFFrame = MF.getFrameInfo();
+
+ // Start with the size of the local variables and spill slots.
+ uint64_t StackSize = MFFrame->getStackSize();
+
+ // Remove any bytes that we choose not to allocate.
+ StackSize -= getUnallocatedTopBytes(MF);
+
+ // Include space for an emergency spill slot, if one might be needed.
+ StackSize += getEmergencySpillSlotSize(MF);
+
+ // We need to allocate the ABI-defined 160-byte base area whenever
+ // we allocate stack space for our own use and whenever we call another
+ // function.
+ if (StackSize || MFFrame->hasVarSizedObjects() || MFFrame->hasCalls())
+ StackSize += SystemZMC::CallFrameSize;
+
+ return StackSize;
+}
+
+unsigned SystemZFrameLowering::
+getEmergencySpillSlotSize(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ uint64_t MaxReach = MFFrame->getStackSize() + SystemZMC::CallFrameSize * 2;
+ return isUInt<12>(MaxReach) ? 0 : 8;
+}
+
+unsigned SystemZFrameLowering::
+getEmergencySpillSlotOffset(const MachineFunction &MF) const {
+ assert(getEmergencySpillSlotSize(MF) && "No emergency spill slot");
+ return SystemZMC::CallFrameSize;
+}
+
+bool
+SystemZFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ // The ABI requires us to allocate 160 bytes of stack space for the callee,
+ // with any outgoing stack arguments being placed above that. It seems
+ // better to make that area a permanent feature of the frame even if
+ // we're using a frame pointer.
+ return true;
+}
+
+void SystemZFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::ADJCALLSTACKDOWN:
+ case SystemZ::ADJCALLSTACKUP:
+ assert(hasReservedCallFrame(MF) &&
+ "ADJSTACKDOWN and ADJSTACKUP should be no-ops");
+ MBB.erase(MI);
+ break;
+
+ default:
+ llvm_unreachable("Unexpected call frame instruction");
+ }
+}
diff --git a/lib/Target/SystemZ/SystemZFrameLowering.h b/lib/Target/SystemZ/SystemZFrameLowering.h
new file mode 100644
index 0000000000..5ca049c486
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZFrameLowering.h
@@ -0,0 +1,93 @@
+//===-- SystemZFrameLowering.h - Frame lowering for SystemZ -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZFRAMELOWERING_H
+#define SYSTEMZFRAMELOWERING_H
+
+#include "SystemZSubtarget.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/Target/TargetFrameLowering.h"
+
+namespace llvm {
+class SystemZTargetMachine;
+class SystemZSubtarget;
+
+class SystemZFrameLowering : public TargetFrameLowering {
+ IndexedMap<unsigned> RegSpillOffsets;
+
+protected:
+ const SystemZTargetMachine &TM;
+ const SystemZSubtarget &STI;
+
+public:
+ SystemZFrameLowering(const SystemZTargetMachine &tm,
+ const SystemZSubtarget &sti);
+
+ // Override FrameLowering.
+ virtual void
+ processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const LLVM_OVERRIDE;
+ virtual bool
+ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const
+ LLVM_OVERRIDE;
+ virtual bool
+ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBII,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const
+ LLVM_OVERRIDE;
+ virtual void emitPrologue(MachineFunction &MF) const LLVM_OVERRIDE;
+ virtual void emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const LLVM_OVERRIDE;
+ virtual bool hasFP(const MachineFunction &MF) const LLVM_OVERRIDE;
+ virtual int getFrameIndexOffset(const MachineFunction &MF,
+ int FI) const LLVM_OVERRIDE;
+ virtual bool hasReservedCallFrame(const MachineFunction &MF) const
+ LLVM_OVERRIDE;
+ virtual void
+ eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const
+ LLVM_OVERRIDE;
+
+ // The target-independent code automatically allocates save slots for
+ // call-saved GPRs. However, we don't need those slots for SystemZ,
+ // because the ABI sets aside GPR save slots in the caller-allocated part
+ // of the frame. Since the target-independent code puts this unneeded
+ // area at the top of the callee-allocated part of frame, we choose not
+ // to allocate it and adjust the offsets accordingly. Return the
+ // size of this unallocated area.
+ // FIXME: seems a bit hackish.
+ uint64_t getUnallocatedTopBytes(const MachineFunction &MF) const;
+
+ // Return the number of bytes in the callee-allocated part of the frame.
+ uint64_t getAllocatedStackSize(const MachineFunction &MF) const;
+
+ // Return the number of frame bytes that should be reserved for
+ // an emergency spill slot, for use by the register scaveneger.
+ // Return 0 if register scaveging won't be needed.
+ unsigned getEmergencySpillSlotSize(const MachineFunction &MF) const;
+
+ // Return the offset from the frame pointer of the emergency spill slot,
+ // which always fits within a 12-bit unsigned displacement field.
+ // Only valid if getEmergencySpillSlotSize(MF) returns nonzero.
+ unsigned getEmergencySpillSlotOffset(const MachineFunction &MF) const;
+
+ // Return the byte offset from the incoming stack pointer of Reg's
+ // ABI-defined save slot. Return 0 if no slot is defined for Reg.
+ unsigned getRegSpillOffset(unsigned Reg) const {
+ return RegSpillOffsets[Reg];
+ }
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
new file mode 100644
index 0000000000..d436ba9dd0
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -0,0 +1,616 @@
+//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SystemZ target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+namespace {
+// Used to build addressing modes.
+struct SystemZAddressingMode {
+ // The shape of the address.
+ enum AddrForm {
+ // base+displacement
+ FormBD,
+
+ // base+displacement+index for load and store operands
+ FormBDXNormal,
+
+ // base+displacement+index for load address operands
+ FormBDXLA,
+
+ // base+displacement+index+ADJDYNALLOC
+ FormBDXDynAlloc
+ };
+ AddrForm Form;
+
+ // The type of displacement. The enum names here correspond directly
+ // to the definitions in SystemZOperand.td. We could split them into
+ // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
+ enum DispRange {
+ Disp12Only,
+ Disp12Pair,
+ Disp20Only,
+ Disp20Only128,
+ Disp20Pair
+ };
+ DispRange DR;
+
+ // The parts of the address. The address is equivalent to:
+ //
+ // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
+ SDValue Base;
+ int64_t Disp;
+ SDValue Index;
+ bool IncludesDynAlloc;
+
+ SystemZAddressingMode(AddrForm form, DispRange dr)
+ : Form(form), DR(dr), Base(), Disp(0), Index(),
+ IncludesDynAlloc(false) {}
+
+ // True if the address can have an index register.
+ bool hasIndexField() { return Form != FormBD; }
+
+ // True if the address can (and must) include ADJDYNALLOC.
+ bool isDynAlloc() { return Form == FormBDXDynAlloc; }
+
+ void dump() {
+ errs() << "SystemZAddressingMode " << this << '\n';
+
+ errs() << " Base ";
+ if (Base.getNode() != 0)
+ Base.getNode()->dump();
+ else
+ errs() << "null\n";
+
+ if (hasIndexField()) {
+ errs() << " Index ";
+ if (Index.getNode() != 0)
+ Index.getNode()->dump();
+ else
+ errs() << "null\n";
+ }
+
+ errs() << " Disp " << Disp;
+ if (IncludesDynAlloc)
+ errs() << " + ADJDYNALLOC";
+ errs() << '\n';
+ }
+};
+
+class SystemZDAGToDAGISel : public SelectionDAGISel {
+ const SystemZTargetLowering &Lowering;
+ const SystemZSubtarget &Subtarget;
+
+ // Used by SystemZOperands.td to create integer constants.
+ inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
+ }
+
+ // Try to fold more of the base or index of AM into AM, where IsBase
+ // selects between the base and index.
+ bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
+
+ // Try to describe N in AM, returning true on success.
+ bool selectAddress(SDValue N, SystemZAddressingMode &AM);
+
+ // Extract individual target operands from matched address AM.
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp);
+ void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ // Try to match Addr as a FormBD address with displacement type DR.
+ // Return true on success, storing the base and displacement in
+ // Base and Disp respectively.
+ bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp);
+
+ // Try to match Addr as a FormBDX* address of form Form with
+ // displacement type DR. Return true on success, storing the base,
+ // displacement and index in Base, Disp and Index respectively.
+ bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ // PC-relative address matching routines used by SystemZOperands.td.
+ bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
+ if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
+ Target = Addr.getOperand(0);
+ return true;
+ }
+ return false;
+ }
+
+ // BD matching routines used by SystemZOperands.td.
+ bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
+ return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
+ return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
+ return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
+ }
+ bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
+ return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
+ }
+
+ // BDX matching routines used by SystemZOperands.td.
+ bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
+ SystemZAddressingMode::Disp12Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Only128,
+ Addr, Base, Disp, Index);
+ }
+ bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp12Pair,
+ Addr, Base, Disp, Index);
+ }
+ bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
+ SystemZAddressingMode::Disp20Pair,
+ Addr, Base, Disp, Index);
+ }
+
+ // If Op0 is null, then Node is a constant that can be loaded using:
+ //
+ // (Opcode UpperVal LowerVal)
+ //
+ // If Op0 is nonnull, then Node can be implemented using:
+ //
+ // (Opcode (Opcode Op0 UpperVal) LowerVal)
+ SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
+ uint64_t UpperVal, uint64_t LowerVal);
+
+public:
+ SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ // Override MachineFunctionPass.
+ virtual const char *getPassName() const LLVM_OVERRIDE {
+ return "SystemZ DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Override SelectionDAGISel.
+ virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps)
+ LLVM_OVERRIDE;
+
+ // Include the pieces autogenerated from the target description.
+ #include "SystemZGenDAGISel.inc"
+};
+} // end anonymous namespace
+
+FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new SystemZDAGToDAGISel(TM, OptLevel);
+}
+
+// Return true if Val should be selected as a displacement for an address
+// with range DR. Here we're interested in the range of both the instruction
+// described by DR and of any pairing instruction.
+static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp12Pair:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Pair:
+ return isInt<20>(Val);
+
+ case SystemZAddressingMode::Disp20Only128:
+ return isInt<20>(Val) && isInt<20>(Val + 8);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Change the base or index in AM to Value, where IsBase selects
+// between the base and index.
+static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (IsBase)
+ AM.Base = Value;
+ else
+ AM.Index = Value;
+}
+
+// The base or index of AM is equivalent to Value + ADJDYNALLOC,
+// where IsBase selects between the base and index. Try to fold the
+// ADJDYNALLOC into AM.
+static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Value) {
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
+ changeComponent(AM, IsBase, Value);
+ AM.IncludesDynAlloc = true;
+ return true;
+ }
+ return false;
+}
+
+// The base of AM is equivalent to Base + Index. Try to use Index as
+// the index register.
+static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
+ SDValue Index) {
+ if (AM.hasIndexField() && !AM.Index.getNode()) {
+ AM.Base = Base;
+ AM.Index = Index;
+ return true;
+ }
+ return false;
+}
+
+// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
+// between the base and index. Try to fold Op1 into AM's displacement.
+static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
+ SDValue Op0, ConstantSDNode *Op1) {
+ // First try adjusting the displacement.
+ int64_t TestDisp = AM.Disp + Op1->getSExtValue();
+ if (selectDisp(AM.DR, TestDisp)) {
+ changeComponent(AM, IsBase, Op0);
+ AM.Disp = TestDisp;
+ return true;
+ }
+
+ // We could consider forcing the displacement into a register and
+ // using it as an index, but it would need to be carefully tuned.
+ return false;
+}
+
+bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
+ bool IsBase) {
+ SDValue N = IsBase ? AM.Base : AM.Index;
+ unsigned Opcode = N.getOpcode();
+ if (Opcode == ISD::TRUNCATE) {
+ N = N.getOperand(0);
+ Opcode = N.getOpcode();
+ }
+ if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
+ SDValue Op0 = N.getOperand(0);
+ SDValue Op1 = N.getOperand(1);
+
+ unsigned Op0Code = Op0->getOpcode();
+ unsigned Op1Code = Op1->getOpcode();
+
+ if (Op0Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op1);
+ if (Op1Code == SystemZISD::ADJDYNALLOC)
+ return expandAdjDynAlloc(AM, IsBase, Op0);
+
+ if (Op0Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
+ if (Op1Code == ISD::Constant)
+ return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
+
+ if (IsBase && expandIndex(AM, Op0, Op1))
+ return true;
+ }
+ return false;
+}
+
+// Return true if an instruction with displacement range DR should be
+// used for displacement value Val. selectDisp(DR, Val) must already hold.
+static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
+ assert(selectDisp(DR, Val) && "Invalid displacement");
+ switch (DR) {
+ case SystemZAddressingMode::Disp12Only:
+ case SystemZAddressingMode::Disp20Only:
+ case SystemZAddressingMode::Disp20Only128:
+ return true;
+
+ case SystemZAddressingMode::Disp12Pair:
+ // Use the other instruction if the displacement is too large.
+ return isUInt<12>(Val);
+
+ case SystemZAddressingMode::Disp20Pair:
+ // Use the other instruction if the displacement is small enough.
+ return !isUInt<12>(Val);
+ }
+ llvm_unreachable("Unhandled displacement range");
+}
+
+// Return true if Base + Disp + Index should be performed by LA(Y).
+static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
+ // Don't use LA(Y) for constants.
+ if (!Base)
+ return false;
+
+ // Always use LA(Y) for frame addresses, since we know that the destination
+ // register is almost always (perhaps always) going to be different from
+ // the frame register.
+ if (Base->getOpcode() == ISD::FrameIndex)
+ return true;
+
+ if (Disp) {
+ // Always use LA(Y) if there is a base, displacement and index.
+ if (Index)
+ return true;
+
+ // Always use LA if the displacement is small enough. It should always
+ // be no worse than AGHI (and better if it avoids a move).
+ if (isUInt<12>(Disp))
+ return true;
+
+ // For similar reasons, always use LAY if the constant is too big for AGHI.
+ // LAY should be no worse than AGFI.
+ if (!isInt<16>(Disp))
+ return true;
+ } else {
+ // Don't use LA for plain registers.
+ if (!Index)
+ return false;
+
+ // Don't use LA for plain addition if the index operand is only used
+ // once. It should be a natural two-operand addition in that case.
+ if (Index->hasOneUse())
+ return false;
+
+ // Prefer addition if the second operation is sign-extended, in the
+ // hope of using AGF.
+ unsigned IndexOpcode = Index->getOpcode();
+ if (IndexOpcode == ISD::SIGN_EXTEND ||
+ IndexOpcode == ISD::SIGN_EXTEND_INREG)
+ return false;
+ }
+
+ // Don't use LA for two-operand addition if either operand is only
+ // used once. The addition instructions are better in that case.
+ if (Base->hasOneUse())
+ return false;
+
+ return true;
+}
+
+// Return true if Addr is suitable for AM, updating AM if so.
+bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
+ SystemZAddressingMode &AM) {
+ // Start out assuming that the address will need to be loaded separately,
+ // then try to extend it as much as we can.
+ AM.Base = Addr;
+
+ // First try treating the address as a constant.
+ if (Addr.getOpcode() == ISD::Constant &&
+ expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
+ ;
+ else
+ // Otherwise try expanding each component.
+ while (expandAddress(AM, true) ||
+ (AM.Index.getNode() && expandAddress(AM, false)))
+ continue;
+
+ // Reject cases where it isn't profitable to use LA(Y).
+ if (AM.Form == SystemZAddressingMode::FormBDXLA &&
+ !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
+ return false;
+
+ // Reject cases where the other instruction in a pair should be used.
+ if (!isValidDisp(AM.DR, AM.Disp))
+ return false;
+
+ // Make sure that ADJDYNALLOC is included where necessary.
+ if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
+ return false;
+
+ DEBUG(AM.dump());
+ return true;
+}
+
+// Insert a node into the DAG at least before Pos. This will reposition
+// the node as needed, and will assign it a node ID that is <= Pos's ID.
+// Note that this does *not* preserve the uniqueness of node IDs!
+// The selection DAG must no longer depend on their uniqueness when this
+// function is used.
+static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
+ if (N.getNode()->getNodeId() == -1 ||
+ N.getNode()->getNodeId() > Pos->getNodeId()) {
+ DAG->RepositionNode(Pos, N.getNode());
+ N.getNode()->setNodeId(Pos->getNodeId());
+ }
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp) {
+ Base = AM.Base;
+ if (!Base.getNode())
+ // Register 0 means "no base". This is mostly useful for shifts.
+ Base = CurDAG->getRegister(0, VT);
+ else if (Base.getOpcode() == ISD::FrameIndex) {
+ // Lower a FrameIndex to a TargetFrameIndex.
+ int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
+ } else if (Base.getValueType() != VT) {
+ // Truncate values from i64 to i32, for shifts.
+ assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
+ "Unexpected truncation");
+ DebugLoc DL = Base.getDebugLoc();
+ SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
+ insertDAGNode(CurDAG, Base.getNode(), Trunc);
+ Base = Trunc;
+ }
+
+ // Lower the displacement to a TargetConstant.
+ Disp = CurDAG->getTargetConstant(AM.Disp, VT);
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
+ EVT VT, SDValue &Base,
+ SDValue &Disp, SDValue &Index) {
+ getAddressOperands(AM, VT, Base, Disp);
+
+ Index = AM.Index;
+ if (!Index.getNode())
+ // Register 0 means "no index".
+ Index = CurDAG->getRegister(0, VT);
+}
+
+bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp) {
+ SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp);
+ return true;
+}
+
+bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
+ SystemZAddressingMode::DispRange DR,
+ SDValue Addr, SDValue &Base,
+ SDValue &Disp, SDValue &Index) {
+ SystemZAddressingMode AM(Form, DR);
+ if (!selectAddress(Addr, AM))
+ return false;
+
+ getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
+ return true;
+}
+
+SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
+ SDValue Op0, uint64_t UpperVal,
+ uint64_t LowerVal) {
+ EVT VT = Node->getValueType(0);
+ DebugLoc DL = Node->getDebugLoc();
+ SDValue Upper = CurDAG->getConstant(UpperVal, VT);
+ if (Op0.getNode())
+ Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
+ Upper = SDValue(Select(Upper.getNode()), 0);
+
+ SDValue Lower = CurDAG->getConstant(LowerVal, VT);
+ SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
+ return Or.getNode();
+}
+
+SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
+ // Dump information about the Node being selected
+ DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
+ return 0;
+ }
+
+ unsigned Opcode = Node->getOpcode();
+ switch (Opcode) {
+ case ISD::OR:
+ case ISD::XOR:
+ // If this is a 64-bit operation in which both 32-bit halves are nonzero,
+ // split the operation into two.
+ if (Node->getValueType(0) == MVT::i64)
+ if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
+ uint64_t Val = Op1->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
+ Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
+ Val - uint32_t(Val), uint32_t(Val));
+ }
+ break;
+
+ case ISD::Constant:
+ // If this is a 64-bit constant that is out of the range of LLILF,
+ // LLIHF and LGFI, split it into two 32-bit pieces.
+ if (Node->getValueType(0) == MVT::i64) {
+ uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
+ if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
+ Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
+ Val - uint32_t(Val), uint32_t(Val));
+ }
+ break;
+
+ case ISD::ATOMIC_LOAD_SUB:
+ // Try to convert subtractions of constants to additions.
+ if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
+ uint64_t Value = -Op2->getZExtValue();
+ EVT VT = Node->getValueType(0);
+ if (VT == MVT::i32 || isInt<32>(Value)) {
+ SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
+ CurDAG->getConstant(int32_t(Value), VT) };
+ Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
+ Node->getVTList(), Ops, array_lengthof(Ops));
+ }
+ }
+ break;
+ }
+
+ // Select the default instruction
+ SDNode *ResNode = SelectCode(Node);
+
+ DEBUG(errs() << "=> ";
+ if (ResNode == NULL || ResNode == Node)
+ Node->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ errs() << "\n";
+ );
+ return ResNode;
+}
+
+bool SystemZDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "Unexpected constraint code");
+ // Accept addresses with short displacements, which are compatible
+ // with Q, R, S and T. But keep the index operand for future expansion.
+ SDValue Base, Disp, Index;
+ if (!selectBDXAddr(SystemZAddressingMode::FormBD,
+ SystemZAddressingMode::Disp12Only,
+ Op, Base, Disp, Index))
+ return true;
+ OutOps.push_back(Base);
+ OutOps.push_back(Disp);
+ OutOps.push_back(Index);
+ return false;
+}
diff --git a/lib/Target/SystemZ/SystemZISelLowering.cpp b/lib/Target/SystemZ/SystemZISelLowering.cpp
new file mode 100644
index 0000000000..eb21b31da8
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelLowering.cpp
@@ -0,0 +1,2233 @@
+//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZTargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "systemz-lower"
+
+#include "SystemZISelLowering.h"
+#include "SystemZCallingConv.h"
+#include "SystemZConstantPoolValue.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+
+using namespace llvm;
+
+// Classify VT as either 32 or 64 bit.
+static bool is32Bit(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::i32:
+ return true;
+ case MVT::i64:
+ return false;
+ default:
+ llvm_unreachable("Unsupported type");
+ }
+}
+
+// Return a version of MachineOperand that can be safely used before the
+// final use.
+static MachineOperand earlyUseOperand(MachineOperand Op) {
+ if (Op.isReg())
+ Op.setIsKill(false);
+ return Op;
+}
+
+SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
+ : TargetLowering(tm, new TargetLoweringObjectFileELF()),
+ Subtarget(*tm.getSubtargetImpl()), TM(tm) {
+ MVT PtrVT = getPointerTy();
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
+ addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
+ addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
+ addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
+ addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Set up special registers.
+ setExceptionPointerRegister(SystemZ::R6D);
+ setExceptionSelectorRegister(SystemZ::R7D);
+ setStackPointerRegisterToSaveRestore(SystemZ::R15D);
+
+ // TODO: It may be better to default to latency-oriented scheduling, however
+ // LLVM's current latency-oriented scheduler can't handle physreg definitions
+ // such as SystemZ has with PSW, so set this to the register-pressure
+ // scheduler, because it can.
+ setSchedulingPreference(Sched::RegPressure);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
+
+ // Instructions are strings of 2-byte aligned 2-byte values.
+ setMinFunctionAlignment(2);
+
+ // Handle operations that are handled in a similar way for all types.
+ for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
+ I <= MVT::LAST_FP_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
+ setOperationAction(ISD::SETCC, VT, Expand);
+
+ // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
+ setOperationAction(ISD::SELECT, VT, Expand);
+
+ // Lower SELECT_CC and BR_CC into separate comparisons and branches.
+ setOperationAction(ISD::SELECT_CC, VT, Custom);
+ setOperationAction(ISD::BR_CC, VT, Custom);
+ }
+ }
+
+ // Expand jump table branches as address arithmetic followed by an
+ // indirect jump.
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // Expand BRCOND into a BR_CC (see above).
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+
+ // Handle integer types.
+ for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
+ I <= MVT::LAST_INTEGER_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // Expand individual DIV and REMs into DIVREMs.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+
+ // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
+ // FIXME: probably much too conservative.
+ setOperationAction(ISD::ATOMIC_LOAD, VT, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
+
+ // No special instructions for these.
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+
+ // Use *MUL_LOHI where possible and a wider multiplication otherwise.
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+
+ // We have instructions for signed but not unsigned FP conversion.
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ }
+ }
+
+ // Type legalization will convert 8- and 16-bit atomic operations into
+ // forms that operate on i32s (but still keeping the original memory VT).
+ // Lower them into full i32 operations.
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
+
+ // We have instructions for signed but not unsigned FP conversion.
+ // Handle unsigned 32-bit types as signed 64-bit types.
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+
+ // We have native support for a 64-bit CTLZ, via FLOGR.
+ setOperationAction(ISD::CTLZ, MVT::i32, Promote);
+ setOperationAction(ISD::CTLZ, MVT::i64, Legal);
+
+ // Give LowerOperation the chance to replace 64-bit ORs with subregs.
+ setOperationAction(ISD::OR, MVT::i64, Custom);
+
+ // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR),
+ // but they aren't really worth using. There is no 64-bit SMUL_LOHI,
+ // but there is a 64-bit UMUL_LOHI: MLGR.
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
+
+ // FIXME: Can we support these natively?
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+
+ // We have native instructions for i8, i16 and i32 extensions, but not i1.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // Handle the various types of symbolic address.
+ setOperationAction(ISD::ConstantPool, PtrVT, Custom);
+ setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
+ setOperationAction(ISD::BlockAddress, PtrVT, Custom);
+ setOperationAction(ISD::JumpTable, PtrVT, Custom);
+
+ // We need to handle dynamic allocations specially because of the
+ // 160-byte area at the bottom of the stack.
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
+
+ // Use custom expanders so that we can force the function to use
+ // a frame pointer.
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
+
+ // Expand these using getExceptionSelectorRegister() and
+ // getExceptionPointerRegister().
+ setOperationAction(ISD::EXCEPTIONADDR, PtrVT, Expand);
+ setOperationAction(ISD::EHSELECTION, PtrVT, Expand);
+
+ // Handle floating-point types.
+ for (unsigned I = MVT::FIRST_FP_VALUETYPE;
+ I <= MVT::LAST_FP_VALUETYPE;
+ ++I) {
+ MVT VT = MVT::SimpleValueType(I);
+ if (isTypeLegal(VT)) {
+ // We can use FI for FRINT.
+ setOperationAction(ISD::FRINT, VT, Legal);
+
+ // No special instructions for these.
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ }
+ }
+
+ // We have fused multiply-addition for f32 and f64 but not f128.
+ setOperationAction(ISD::FMA, MVT::f32, Legal);
+ setOperationAction(ISD::FMA, MVT::f64, Legal);
+ setOperationAction(ISD::FMA, MVT::f128, Expand);
+
+ // Needed so that we don't try to implement f128 constant loads using
+ // a load-and-extend of a f80 constant (in cases where the constant
+ // would fit in an f80).
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
+
+ // Floating-point truncation and stores need to be done separately.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+
+ // We have 64-bit FPR<->GPR moves, but need special handling for
+ // 32-bit forms.
+ setOperationAction(ISD::BITCAST, MVT::i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::f32, Custom);
+
+ // VASTART and VACOPY need to deal with the SystemZ-specific varargs
+ // structure, but VAEND is a no-op.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+}
+
+bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
+ return Imm.isZero() || Imm.isNegZero();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline asm support
+//===----------------------------------------------------------------------===//
+
+TargetLowering::ConstraintType
+SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'a': // Address register
+ case 'd': // Data register (equivalent to 'r')
+ case 'f': // Floating-point register
+ case 'r': // General-purpose register
+ return C_RegisterClass;
+
+ case 'Q': // Memory with base and unsigned 12-bit displacement
+ case 'R': // Likewise, plus an index
+ case 'S': // Memory with base and signed 20-bit displacement
+ case 'T': // Likewise, plus an index
+ case 'm': // Equivalent to 'T'.
+ return C_Memory;
+
+ case 'I': // Unsigned 8-bit constant
+ case 'J': // Unsigned 12-bit constant
+ case 'K': // Signed 16-bit constant
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ case 'M': // 0x7fffffff
+ return C_Other;
+
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+TargetLowering::ConstraintWeight SystemZTargetLowering::
+getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+
+ case 'a': // Address register
+ case 'd': // Data register (equivalent to 'r')
+ case 'r': // General-purpose register
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+
+ case 'f': // Floating-point register
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+
+ case 'I': // Unsigned 8-bit constant
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isUInt<8>(C->getZExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'J': // Unsigned 12-bit constant
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isUInt<12>(C->getZExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'K': // Signed 16-bit constant
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isInt<16>(C->getSExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (isInt<20>(C->getSExtValue()))
+ weight = CW_Constant;
+ break;
+
+ case 'M': // 0x7fffffff
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
+ if (C->getZExtValue() == 0x7fffffff)
+ weight = CW_Constant;
+ break;
+ }
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'd': // Data register (equivalent to 'r')
+ case 'r': // General-purpose register
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &SystemZ::GR64BitRegClass);
+ else if (VT == MVT::i128)
+ return std::make_pair(0U, &SystemZ::GR128BitRegClass);
+ return std::make_pair(0U, &SystemZ::GR32BitRegClass);
+
+ case 'a': // Address register
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
+ else if (VT == MVT::i128)
+ return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
+ return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
+
+ case 'f': // Floating-point register
+ if (VT == MVT::f64)
+ return std::make_pair(0U, &SystemZ::FP64BitRegClass);
+ else if (VT == MVT::f128)
+ return std::make_pair(0U, &SystemZ::FP128BitRegClass);
+ return std::make_pair(0U, &SystemZ::FP32BitRegClass);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+void SystemZTargetLowering::
+LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ // Only support length 1 constraints for now.
+ if (Constraint.length() == 1) {
+ switch (Constraint[0]) {
+ case 'I': // Unsigned 8-bit constant
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (isUInt<8>(C->getZExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'J': // Unsigned 12-bit constant
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (isUInt<12>(C->getZExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'K': // Signed 16-bit constant
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (isInt<16>(C->getSExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'L': // Signed 20-bit displacement (on all targets we support)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (isInt<20>(C->getSExtValue()))
+ Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
+ Op.getValueType()));
+ return;
+
+ case 'M': // 0x7fffffff
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->getZExtValue() == 0x7fffffff)
+ Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
+ Op.getValueType()));
+ return;
+ }
+ }
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling conventions
+//===----------------------------------------------------------------------===//
+
+#include "SystemZGenCallingConv.inc"
+
+// Value is a value that has been passed to us in the location described by VA
+// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
+// any loads onto Chain.
+static SDValue convertLocVTToValVT(SelectionDAG &DAG, DebugLoc DL,
+ CCValAssign &VA, SDValue Chain,
+ SDValue Value) {
+ // If the argument has been promoted from a smaller type, insert an
+ // assertion to capture this.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.isExtInLoc())
+ Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
+ else if (VA.getLocInfo() == CCValAssign::Indirect)
+ Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
+ MachinePointerInfo(), false, false, false, 0);
+ else
+ assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
+ return Value;
+}
+
+// Value is a value of type VA.getValVT() that we need to copy into
+// the location described by VA. Return a copy of Value converted to
+// VA.getValVT(). The caller is responsible for handling indirect values.
+static SDValue convertValVTToLocVT(SelectionDAG &DAG, DebugLoc DL,
+ CCValAssign &VA, SDValue Value) {
+ switch (VA.getLocInfo()) {
+ case CCValAssign::SExt:
+ return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::ZExt:
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::AExt:
+ return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
+ case CCValAssign::Full:
+ return Value;
+ default:
+ llvm_unreachable("Unhandled getLocInfo()");
+ }
+}
+
+SDValue SystemZTargetLowering::
+LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SystemZMachineFunctionInfo *FuncInfo =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ const SystemZFrameLowering *TFL =
+ static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
+
+ unsigned NumFixedGPRs = 0;
+ unsigned NumFixedFPRs = 0;
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ SDValue ArgValue;
+ CCValAssign &VA = ArgLocs[I];
+ EVT LocVT = VA.getLocVT();
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ const TargetRegisterClass *RC;
+ switch (LocVT.getSimpleVT().SimpleTy) {
+ default:
+ // Integers smaller than i64 should be promoted to i64.
+ llvm_unreachable("Unexpected argument type");
+ case MVT::i32:
+ NumFixedGPRs += 1;
+ RC = &SystemZ::GR32BitRegClass;
+ break;
+ case MVT::i64:
+ NumFixedGPRs += 1;
+ RC = &SystemZ::GR64BitRegClass;
+ break;
+ case MVT::f32:
+ NumFixedFPRs += 1;
+ RC = &SystemZ::FP32BitRegClass;
+ break;
+ case MVT::f64:
+ NumFixedFPRs += 1;
+ RC = &SystemZ::FP64BitRegClass;
+ break;
+ }
+
+ unsigned VReg = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(VA.getLocReg(), VReg);
+ ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
+ } else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+
+ // Create the frame index object for this incoming parameter.
+ int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), true);
+
+ // Create the SelectionDAG nodes corresponding to a load
+ // from this parameter. Unpromoted ints and floats are
+ // passed as right-justified 8-byte values.
+ EVT PtrVT = getPointerTy();
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
+ ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+ }
+
+ // Convert the value of the argument register into the value that's
+ // being passed.
+ InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
+ }
+
+ if (IsVarArg) {
+ // Save the number of non-varargs registers for later use by va_start, etc.
+ FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
+ FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
+
+ // Likewise the address (in the form of a frame index) of where the
+ // first stack vararg would be. The 1-byte size here is arbitrary.
+ int64_t StackSize = CCInfo.getNextStackOffset();
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
+
+ // ...and a similar frame index for the caller-allocated save area
+ // that will be used to store the incoming registers.
+ int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
+ unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
+ FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
+
+ // Store the FPR varargs in the reserved frame slots. (We store the
+ // GPRs as part of the prologue.)
+ if (NumFixedFPRs < SystemZ::NumArgFPRs) {
+ SDValue MemOps[SystemZ::NumArgFPRs];
+ for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
+ unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
+ int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
+ &SystemZ::FP64BitRegClass);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
+ MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0);
+
+ }
+ // Join the stores, which are independent of one another.
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ &MemOps[NumFixedFPRs],
+ SystemZ::NumArgFPRs - NumFixedFPRs);
+ }
+ }
+
+ return Chain;
+}
+
+SDValue
+SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ DebugLoc &DL = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+ MachineFunction &MF = DAG.getMachineFunction();
+ EVT PtrVT = getPointerTy();
+
+ // SystemZ target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // Analyze the operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
+ ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = ArgCCInfo.getNextStackOffset();
+
+ // Mark the start of the call.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true));
+
+ // Copy argument values to their designated locations.
+ SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ CCValAssign &VA = ArgLocs[I];
+ SDValue ArgValue = OutVals[I];
+
+ if (VA.getLocInfo() == CCValAssign::Indirect) {
+ // Store the argument in a stack slot and pass its address.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, 0));
+ ArgValue = SpillSlot;
+ } else
+ ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
+
+ if (VA.isRegLoc())
+ // Queue up the argument copies and emit them at the end.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
+ else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+
+ // Work out the address of the stack slot. Unpromoted ints and
+ // floats are passed as right-justified 8-byte values.
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
+ unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
+ if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
+ Offset += 4;
+ SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
+ DAG.getIntPtrConstant(Offset));
+
+ // Emit the store.
+ MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
+ MachinePointerInfo(),
+ false, false, 0));
+ }
+ }
+
+ // Join the stores, which are independent of one another.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes, chained and glued together.
+ SDValue Glue;
+ for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
+ Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
+ RegsToPass[I].second, Glue);
+ Glue = Chain.getValue(1);
+ }
+
+ // Accept direct calls by converting symbolic call addresses to the
+ // associated Target* opcodes.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
+ Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
+ } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
+ Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
+ }
+
+ // The first call operand is the chain and the second is the target address.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
+ Ops.push_back(DAG.getRegister(RegsToPass[I].first,
+ RegsToPass[I].second.getValueType()));
+
+ // Glue the call to the argument copies, if any.
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Emit the call.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
+ Glue = Chain.getValue(1);
+
+ // Mark the end of the call, which is glued to the call itself.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, PtrVT, true),
+ DAG.getConstant(0, PtrVT, true),
+ Glue);
+ Glue = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RetLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
+ RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
+ CCValAssign &VA = RetLocs[I];
+
+ // Copy the value out, gluing the copy to the end of the call sequence.
+ SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
+ VA.getLocVT(), Glue);
+ Chain = RetValue.getValue(1);
+ Glue = RetValue.getValue(2);
+
+ // Convert the value of the return register into the value that's
+ // being returned.
+ InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
+ }
+
+ return Chain;
+}
+
+SDValue
+SystemZTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ DebugLoc DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Assign locations to each returned value.
+ SmallVector<CCValAssign, 16> RetLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
+ RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
+
+ // Quick exit for void returns
+ if (RetLocs.empty())
+ return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
+
+ // Copy the result values into the output registers.
+ SDValue Glue;
+ SmallVector<SDValue, 4> RetOps;
+ RetOps.push_back(Chain);
+ for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
+ CCValAssign &VA = RetLocs[I];
+ SDValue RetValue = OutVals[I];
+
+ // Make the return register live on exit.
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ // Promote the value as required.
+ RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
+
+ // Chain and glue the copies together.
+ unsigned Reg = VA.getLocReg();
+ Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
+ Glue = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Glue.getNode())
+ RetOps.push_back(Glue);
+
+ return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
+ RetOps.data(), RetOps.size());
+}
+
+// CC is a comparison that will be implemented using an integer or
+// floating-point comparison. Return the condition code mask for
+// a branch on true. In the integer case, CCMASK_CMP_UO is set for
+// unsigned comparisons and clear for signed ones. In the floating-point
+// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
+static unsigned CCMaskForCondCode(ISD::CondCode CC) {
+#define CONV(X) \
+ case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
+ case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
+ case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Invalid integer condition!");
+
+ CONV(EQ);
+ CONV(NE);
+ CONV(GT);
+ CONV(GE);
+ CONV(LT);
+ CONV(LE);
+
+ case ISD::SETO: return SystemZ::CCMASK_CMP_O;
+ case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
+ }
+#undef CONV
+}
+
+// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
+// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
+static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
+ SDValue &CmpOp0, SDValue &CmpOp1,
+ unsigned &CCMask) {
+ // For us to make any changes, it must a comparison between a single-use
+ // load and a constant.
+ if (!CmpOp0.hasOneUse() ||
+ CmpOp0.getOpcode() != ISD::LOAD ||
+ CmpOp1.getOpcode() != ISD::Constant)
+ return;
+
+ // We must have an 8- or 16-bit load.
+ LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
+ unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
+ if (NumBits != 8 && NumBits != 16)
+ return;
+
+ // The load must be an extending one and the constant must be within the
+ // range of the unextended value.
+ ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
+ uint64_t Value = Constant->getZExtValue();
+ uint64_t Mask = (1 << NumBits) - 1;
+ if (Load->getExtensionType() == ISD::SEXTLOAD) {
+ int64_t SignedValue = Constant->getSExtValue();
+ if (uint64_t(SignedValue) + (1 << (NumBits - 1)) > Mask)
+ return;
+ // Unsigned comparison between two sign-extended values is equivalent
+ // to unsigned comparison between two zero-extended values.
+ if (IsUnsigned)
+ Value &= Mask;
+ else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
+ CCMask == SystemZ::CCMASK_CMP_NE)
+ // Any choice of IsUnsigned is OK for equality comparisons.
+ // We could use either CHHSI or CLHHSI for 16-bit comparisons,
+ // but since we use CLHHSI for zero extensions, it seems better
+ // to be consistent and do the same here.
+ Value &= Mask, IsUnsigned = true;
+ else if (NumBits == 8) {
+ // Try to treat the comparison as unsigned, so that we can use CLI.
+ // Adjust CCMask and Value as necessary.
+ if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
+ // Test whether the high bit of the byte is set.
+ Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
+ else if (SignedValue == -1 && CCMask == SystemZ::CCMASK_CMP_GT)
+ // Test whether the high bit of the byte is clear.
+ Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
+ else
+ // No instruction exists for this combination.
+ return;
+ }
+ } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
+ if (Value > Mask)
+ return;
+ // Signed comparison between two zero-extended values is equivalent
+ // to unsigned comparison.
+ IsUnsigned = true;
+ } else
+ return;
+
+ // Make sure that the first operand is an i32 of the right extension type.
+ ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
+ if (CmpOp0.getValueType() != MVT::i32 ||
+ Load->getExtensionType() != ExtType)
+ CmpOp0 = DAG.getExtLoad(ExtType, Load->getDebugLoc(), MVT::i32,
+ Load->getChain(), Load->getBasePtr(),
+ Load->getPointerInfo(), Load->getMemoryVT(),
+ Load->isVolatile(), Load->isNonTemporal(),
+ Load->getAlignment());
+
+ // Make sure that the second operand is an i32 with the right value.
+ if (CmpOp1.getValueType() != MVT::i32 ||
+ Value != Constant->getZExtValue())
+ CmpOp1 = DAG.getConstant(Value, MVT::i32);
+}
+
+// Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
+// is an equality comparison that is better implemented using unsigned
+// rather than signed comparison instructions.
+static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0,
+ SDValue CmpOp1, unsigned CCMask) {
+ // The test must be for equality or inequality.
+ if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
+ return false;
+
+ if (CmpOp1.getOpcode() == ISD::Constant) {
+ uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
+
+ // If we're comparing with memory, prefer unsigned comparisons for
+ // values that are in the unsigned 16-bit range but not the signed
+ // 16-bit range. We want to use CLFHSI and CLGHSI.
+ if (CmpOp0.hasOneUse() &&
+ ISD::isNormalLoad(CmpOp0.getNode()) &&
+ (Value >= 32768 && Value < 65536))
+ return true;
+
+ // Use unsigned comparisons for values that are in the CLGFI range
+ // but not in the CGFI range.
+ if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
+ return true;
+
+ return false;
+ }
+
+ // Prefer CL for zero-extended loads.
+ if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
+ ISD::isZEXTLoad(CmpOp1.getNode()))
+ return true;
+
+ // ...and for "in-register" zero extensions.
+ if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
+ SDValue Mask = CmpOp1.getOperand(1);
+ if (Mask.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
+ return true;
+ }
+
+ return false;
+}
+
+// Return a target node that compares CmpOp0 and CmpOp1. Set CCMask to the
+// 4-bit condition-code mask for CC.
+static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
+ ISD::CondCode CC, unsigned &CCMask) {
+ bool IsUnsigned = false;
+ CCMask = CCMaskForCondCode(CC);
+ if (!CmpOp0.getValueType().isFloatingPoint()) {
+ IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
+ CCMask &= ~SystemZ::CCMASK_CMP_UO;
+ adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
+ if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask))
+ IsUnsigned = true;
+ }
+
+ DebugLoc DL = CmpOp0.getDebugLoc();
+ return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
+ DL, MVT::Glue, CmpOp0, CmpOp1);
+}
+
+// Lower a binary operation that produces two VT results, one in each
+// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
+// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
+// on the extended Op0 and (unextended) Op1. Store the even register result
+// in Even and the odd register result in Odd.
+static void lowerGR128Binary(SelectionDAG &DAG, DebugLoc DL, EVT VT,
+ unsigned Extend, unsigned Opcode,
+ SDValue Op0, SDValue Op1,
+ SDValue &Even, SDValue &Odd) {
+ SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
+ SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
+ SDValue(In128, 0), Op1);
+ bool Is32Bit = is32Bit(VT);
+ SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
+ SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
+ SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+ VT, Result, SubReg0);
+ SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+ VT, Result, SubReg1);
+ Even = SDValue(Reg0, 0);
+ Odd = SDValue(Reg1, 0);
+}
+
+SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue CmpOp0 = Op.getOperand(2);
+ SDValue CmpOp1 = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ DebugLoc DL = Op.getDebugLoc();
+
+ unsigned CCMask;
+ SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask);
+ return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
+ Chain, DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
+}
+
+SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue CmpOp0 = Op.getOperand(0);
+ SDValue CmpOp1 = Op.getOperand(1);
+ SDValue TrueOp = Op.getOperand(2);
+ SDValue FalseOp = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ DebugLoc DL = Op.getDebugLoc();
+
+ unsigned CCMask;
+ SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask);
+
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(TrueOp);
+ Ops.push_back(FalseOp);
+ Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
+ Ops.push_back(Flags);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
+}
+
+SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = Node->getDebugLoc();
+ const GlobalValue *GV = Node->getGlobal();
+ int64_t Offset = Node->getOffset();
+ EVT PtrVT = getPointerTy();
+ Reloc::Model RM = TM.getRelocationModel();
+ CodeModel::Model CM = TM.getCodeModel();
+
+ SDValue Result;
+ if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
+ // Make sure that the offset is aligned to a halfword. If it isn't,
+ // create an "anchor" at the previous 12-bit boundary.
+ // FIXME check whether there is a better way of handling this.
+ if (Offset & 1) {
+ Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
+ Offset & ~uint64_t(0xfff));
+ Offset &= 0xfff;
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
+ Offset = 0;
+ }
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, false, 0);
+ }
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
+ DAG.getConstant(Offset, PtrVT));
+
+ return Result;
+}
+
+SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = Node->getDebugLoc();
+ const GlobalValue *GV = Node->getGlobal();
+ EVT PtrVT = getPointerTy();
+ TLSModel::Model model = TM.getTLSModel(GV);
+
+ if (model != TLSModel::LocalExec)
+ llvm_unreachable("only local-exec TLS mode supported");
+
+ // The high part of the thread pointer is in access register 0.
+ SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
+ DAG.getConstant(0, MVT::i32));
+ TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
+
+ // The low part of the thread pointer is in access register 1.
+ SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
+ DAG.getConstant(1, MVT::i32));
+ TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
+
+ // Merge them into a single 64-bit address.
+ SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
+ DAG.getConstant(32, PtrVT));
+ SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
+
+ // Get the offset of GA from the thread pointer.
+ SystemZConstantPoolValue *CPV =
+ SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
+
+ // Force the offset into the constant pool and load it from there.
+ SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
+ SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
+ CPAddr, MachinePointerInfo::getConstantPool(),
+ false, false, false, 0);
+
+ // Add the base and offset together.
+ return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
+}
+
+SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = Node->getDebugLoc();
+ const BlockAddress *BA = Node->getBlockAddress();
+ int64_t Offset = Node->getOffset();
+ EVT PtrVT = getPointerTy();
+
+ SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
+ Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+ return Result;
+}
+
+SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = JT->getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
+
+ // Use LARL to load the address of the table.
+ return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+}
+
+SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = CP->getDebugLoc();
+ EVT PtrVT = getPointerTy();
+
+ SDValue Result;
+ if (CP->isMachineConstantPoolEntry())
+ Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment(), CP->getOffset());
+
+ // Use LARL to load the address of the constant pool entry.
+ return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
+}
+
+SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
+ SelectionDAG &DAG) const {
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue In = Op.getOperand(0);
+ EVT InVT = In.getValueType();
+ EVT ResVT = Op.getValueType();
+
+ SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
+ SDValue Shift32 = DAG.getConstant(32, MVT::i64);
+ if (InVT == MVT::i32 && ResVT == MVT::f32) {
+ SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
+ SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
+ SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
+ SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+ MVT::f32, Out64, SubReg32);
+ return SDValue(Out, 0);
+ }
+ if (InVT == MVT::f32 && ResVT == MVT::i32) {
+ SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
+ SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
+ MVT::f64, SDValue(U64, 0), In, SubReg32);
+ SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
+ SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
+ SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
+ return Out;
+ }
+ llvm_unreachable("Unexpected bitcast combination");
+}
+
+SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SystemZMachineFunctionInfo *FuncInfo =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ EVT PtrVT = getPointerTy();
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue Addr = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ DebugLoc DL = Op.getDebugLoc();
+
+ // The initial values of each field.
+ const unsigned NumFields = 4;
+ SDValue Fields[NumFields] = {
+ DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
+ DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
+ DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
+ DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
+ };
+
+ // Store each field into its respective slot.
+ SDValue MemOps[NumFields];
+ unsigned Offset = 0;
+ for (unsigned I = 0; I < NumFields; ++I) {
+ SDValue FieldAddr = Addr;
+ if (Offset != 0)
+ FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
+ DAG.getIntPtrConstant(Offset));
+ MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
+ MachinePointerInfo(SV, Offset),
+ false, false, 0);
+ Offset += 8;
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
+}
+
+SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ DebugLoc DL = Op.getDebugLoc();
+
+ return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
+ /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
+ MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
+}
+
+SDValue SystemZTargetLowering::
+lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ DebugLoc DL = Op.getDebugLoc();
+
+ unsigned SPReg = getStackPointerRegisterToSaveRestore();
+
+ // Get a reference to the stack pointer.
+ SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
+
+ // Get the new stack pointer value.
+ SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
+
+ // Copy the new stack pointer back.
+ Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
+
+ // The allocated data lives above the 160 bytes allocated for the standard
+ // frame, plus any outgoing stack arguments. We don't know how much that
+ // amounts to yet, so emit a special ADJDYNALLOC placeholder.
+ SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
+ SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
+
+ SDValue Ops[2] = { Result, Chain };
+ return DAG.getMergeValues(Ops, 2, DL);
+}
+
+SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ DebugLoc DL = Op.getDebugLoc();
+ assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI");
+
+ // UMUL_LOHI64 returns the low result in the odd register and the high
+ // result in the even register. UMUL_LOHI is defined to return the
+ // low half first, so the results are in reverse order.
+ SDValue Ops[2];
+ lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, 2, DL);
+}
+
+SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ DebugLoc DL = Op.getDebugLoc();
+
+ // We use DSGF for 32-bit division.
+ if (is32Bit(VT)) {
+ Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
+ Op1 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op1);
+ }
+
+ // DSG(F) takes a 64-bit dividend, so the even register in the GR128
+ // input is "don't care". The instruction returns the remainder in
+ // the even register and the quotient in the odd register.
+ SDValue Ops[2];
+ lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::SDIVREM64,
+ Op0, Op1, Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, 2, DL);
+}
+
+SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ DebugLoc DL = Op.getDebugLoc();
+
+ // DL(G) uses a double-width dividend, so we need to clear the even
+ // register in the GR128 input. The instruction returns the remainder
+ // in the even register and the quotient in the odd register.
+ SDValue Ops[2];
+ if (is32Bit(VT))
+ lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ else
+ lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
+ Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
+ return DAG.getMergeValues(Ops, 2, DL);
+}
+
+SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
+
+ // Get the known-zero masks for each operand.
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
+ APInt KnownZero[2], KnownOne[2];
+ DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
+ DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
+
+ // See if the upper 32 bits of one operand and the lower 32 bits of the
+ // other are known zero. They are the low and high operands respectively.
+ uint64_t Masks[] = { KnownZero[0].getZExtValue(),
+ KnownZero[1].getZExtValue() };
+ unsigned High, Low;
+ if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
+ High = 1, Low = 0;
+ else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
+ High = 0, Low = 1;
+ else
+ return Op;
+
+ SDValue LowOp = Ops[Low];
+ SDValue HighOp = Ops[High];
+
+ // If the high part is a constant, we're better off using IILH.
+ if (HighOp.getOpcode() == ISD::Constant)
+ return Op;
+
+ // If the low part is a constant that is outside the range of LHI,
+ // then we're better off using IILF.
+ if (LowOp.getOpcode() == ISD::Constant) {
+ int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
+ if (!isInt<16>(Value))
+ return Op;
+ }
+
+ // Check whether the high part is an AND that doesn't change the
+ // high 32 bits and just masks out low bits. We can skip it if so.
+ if (HighOp.getOpcode() == ISD::AND &&
+ HighOp.getOperand(1).getOpcode() == ISD::Constant) {
+ ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
+ uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
+ if ((Mask >> 32) == 0xffffffff)
+ HighOp = HighOp.getOperand(0);
+ }
+
+ // Take advantage of the fact that all GR32 operations only change the
+ // low 32 bits by truncating Low to an i32 and inserting it directly
+ // using a subreg. The interesting cases are those where the truncation
+ // can be folded.
+ DebugLoc DL = Op.getDebugLoc();
+ SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
+ SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
+ SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
+ MVT::i64, HighOp, Low32, SubReg32);
+ return SDValue(Result, 0);
+}
+
+// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
+// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
+SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
+ SelectionDAG &DAG,
+ unsigned Opcode) const {
+ AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
+
+ // 32-bit operations need no code outside the main loop.
+ EVT NarrowVT = Node->getMemoryVT();
+ EVT WideVT = MVT::i32;
+ if (NarrowVT == WideVT)
+ return Op;
+
+ int64_t BitSize = NarrowVT.getSizeInBits();
+ SDValue ChainIn = Node->getChain();
+ SDValue Addr = Node->getBasePtr();
+ SDValue Src2 = Node->getVal();
+ MachineMemOperand *MMO = Node->getMemOperand();
+ DebugLoc DL = Node->getDebugLoc();
+ EVT PtrVT = Addr.getValueType();
+
+ // Convert atomic subtracts of constants into additions.
+ if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
+ Opcode = SystemZISD::ATOMIC_LOADW_ADD;
+ Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
+ }
+
+ // Get the address of the containing word.
+ SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
+ DAG.getConstant(-4, PtrVT));
+
+ // Get the number of bits that the word must be rotated left in order
+ // to bring the field to the top bits of a GR32.
+ SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
+ DAG.getConstant(3, PtrVT));
+ BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
+
+ // Get the complementing shift amount, for rotating a field in the top
+ // bits back to its proper position.
+ SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
+ DAG.getConstant(0, WideVT), BitShift);
+
+ // Extend the source operand to 32 bits and prepare it for the inner loop.
+ // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
+ // operations require the source to be shifted in advance. (This shift
+ // can be folded if the source is constant.) For AND and NAND, the lower
+ // bits must be set, while for other opcodes they should be left clear.
+ if (Opcode != SystemZISD::ATOMIC_SWAPW)
+ Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
+ DAG.getConstant(32 - BitSize, WideVT));
+ if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
+ Opcode == SystemZISD::ATOMIC_LOADW_NAND)
+ Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
+ DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
+
+ // Construct the ATOMIC_LOADW_* node.
+ SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
+ SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
+ DAG.getConstant(BitSize, WideVT) };
+ SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
+ array_lengthof(Ops),
+ NarrowVT, MMO);
+
+ // Rotate the result of the final CS so that the field is in the lower
+ // bits of a GR32, then truncate it.
+ SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
+ DAG.getConstant(BitSize, WideVT));
+ SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
+
+ SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
+ return DAG.getMergeValues(RetOps, 2, DL);
+}
+
+// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
+// into a fullword ATOMIC_CMP_SWAPW operation.
+SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
+ SelectionDAG &DAG) const {
+ AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
+
+ // We have native support for 32-bit compare and swap.
+ EVT NarrowVT = Node->getMemoryVT();
+ EVT WideVT = MVT::i32;
+ if (NarrowVT == WideVT)
+ return Op;
+
+ int64_t BitSize = NarrowVT.getSizeInBits();
+ SDValue ChainIn = Node->getOperand(0);
+ SDValue Addr = Node->getOperand(1);
+ SDValue CmpVal = Node->getOperand(2);
+ SDValue SwapVal = Node->getOperand(3);
+ MachineMemOperand *MMO = Node->getMemOperand();
+ DebugLoc DL = Node->getDebugLoc();
+ EVT PtrVT = Addr.getValueType();
+
+ // Get the address of the containing word.
+ SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
+ DAG.getConstant(-4, PtrVT));
+
+ // Get the number of bits that the word must be rotated left in order
+ // to bring the field to the top bits of a GR32.
+ SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
+ DAG.getConstant(3, PtrVT));
+ BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
+
+ // Get the complementing shift amount, for rotating a field in the top
+ // bits back to its proper position.
+ SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
+ DAG.getConstant(0, WideVT), BitShift);
+
+ // Construct the ATOMIC_CMP_SWAPW node.
+ SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
+ SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
+ NegBitShift, DAG.getConstant(BitSize, WideVT) };
+ SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
+ VTList, Ops, array_lengthof(Ops),
+ NarrowVT, MMO);
+ return AtomicOp;
+}
+
+SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
+ return DAG.getCopyFromReg(Op.getOperand(0), Op.getDebugLoc(),
+ SystemZ::R15D, Op.getValueType());
+}
+
+SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
+ return DAG.getCopyToReg(Op.getOperand(0), Op.getDebugLoc(),
+ SystemZ::R15D, Op.getOperand(1));
+}
+
+SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ case ISD::BR_CC:
+ return lowerBR_CC(Op, DAG);
+ case ISD::SELECT_CC:
+ return lowerSELECT_CC(Op, DAG);
+ case ISD::GlobalAddress:
+ return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
+ case ISD::GlobalTLSAddress:
+ return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
+ case ISD::BlockAddress:
+ return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
+ case ISD::JumpTable:
+ return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
+ case ISD::ConstantPool:
+ return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
+ case ISD::BITCAST:
+ return lowerBITCAST(Op, DAG);
+ case ISD::VASTART:
+ return lowerVASTART(Op, DAG);
+ case ISD::VACOPY:
+ return lowerVACOPY(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC:
+ return lowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::UMUL_LOHI:
+ return lowerUMUL_LOHI(Op, DAG);
+ case ISD::SDIVREM:
+ return lowerSDIVREM(Op, DAG);
+ case ISD::UDIVREM:
+ return lowerUDIVREM(Op, DAG);
+ case ISD::OR:
+ return lowerOR(Op, DAG);
+ case ISD::ATOMIC_SWAP:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
+ case ISD::ATOMIC_LOAD_ADD:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
+ case ISD::ATOMIC_LOAD_SUB:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
+ case ISD::ATOMIC_LOAD_AND:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
+ case ISD::ATOMIC_LOAD_OR:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
+ case ISD::ATOMIC_LOAD_XOR:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
+ case ISD::ATOMIC_LOAD_NAND:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
+ case ISD::ATOMIC_LOAD_MIN:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
+ case ISD::ATOMIC_LOAD_MAX:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
+ case ISD::ATOMIC_LOAD_UMIN:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
+ case ISD::ATOMIC_LOAD_UMAX:
+ return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
+ case ISD::ATOMIC_CMP_SWAP:
+ return lowerATOMIC_CMP_SWAP(Op, DAG);
+ case ISD::STACKSAVE:
+ return lowerSTACKSAVE(Op, DAG);
+ case ISD::STACKRESTORE:
+ return lowerSTACKRESTORE(Op, DAG);
+ default:
+ llvm_unreachable("Unexpected node to lower");
+ }
+}
+
+const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
+#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
+ switch (Opcode) {
+ OPCODE(RET_FLAG);
+ OPCODE(CALL);
+ OPCODE(PCREL_WRAPPER);
+ OPCODE(CMP);
+ OPCODE(UCMP);
+ OPCODE(BR_CCMASK);
+ OPCODE(SELECT_CCMASK);
+ OPCODE(ADJDYNALLOC);
+ OPCODE(EXTRACT_ACCESS);
+ OPCODE(UMUL_LOHI64);
+ OPCODE(SDIVREM64);
+ OPCODE(UDIVREM32);
+ OPCODE(UDIVREM64);
+ OPCODE(ATOMIC_SWAPW);
+ OPCODE(ATOMIC_LOADW_ADD);
+ OPCODE(ATOMIC_LOADW_SUB);
+ OPCODE(ATOMIC_LOADW_AND);
+ OPCODE(ATOMIC_LOADW_OR);
+ OPCODE(ATOMIC_LOADW_XOR);
+ OPCODE(ATOMIC_LOADW_NAND);
+ OPCODE(ATOMIC_LOADW_MIN);
+ OPCODE(ATOMIC_LOADW_MAX);
+ OPCODE(ATOMIC_LOADW_UMIN);
+ OPCODE(ATOMIC_LOADW_UMAX);
+ OPCODE(ATOMIC_CMP_SWAPW);
+ }
+ return NULL;
+#undef OPCODE
+}
+
+//===----------------------------------------------------------------------===//
+// Custom insertion
+//===----------------------------------------------------------------------===//
+
+// Create a new basic block after MBB.
+static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
+ MachineFunction &MF = *MBB->getParent();
+ MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
+ MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
+ return NewMBB;
+}
+
+// Split MBB after MI and return the new block (the one that contains
+// instructions after MI).
+static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
+ NewMBB->splice(NewMBB->begin(), MBB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ MBB->end());
+ NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
+ return NewMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
+MachineBasicBlock *
+SystemZTargetLowering::emitSelect(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const SystemZInstrInfo *TII = TM.getInstrInfo();
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned TrueReg = MI->getOperand(1).getReg();
+ unsigned FalseReg = MI->getOperand(2).getReg();
+ unsigned CCMask = MI->getOperand(3).getImm();
+ DebugLoc DL = MI->getDebugLoc();
+
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *JoinMBB = splitBlockAfter(MI, MBB);
+ MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // jCC JoinMBB
+ // # fallthrough to FalseMBB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(CCMask).addMBB(JoinMBB);
+ MBB->addSuccessor(JoinMBB);
+ MBB->addSuccessor(FalseMBB);
+
+ // FalseMBB:
+ // # fallthrough to JoinMBB
+ MBB = FalseMBB;
+ MBB->addSuccessor(JoinMBB);
+
+ // JoinMBB:
+ // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
+ // ...
+ MBB = JoinMBB;
+ BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg)
+ .addReg(TrueReg).addMBB(StartMBB)
+ .addReg(FalseReg).addMBB(FalseMBB);
+
+ MI->eraseFromParent();
+ return JoinMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
+// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
+// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
+// BitSize is the width of the field in bits, or 0 if this is a partword
+// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
+// is one of the operands. Invert says whether the field should be
+// inverted after performing BinOpcode (e.g. for NAND).
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned BinOpcode,
+ unsigned BitSize,
+ bool Invert) const {
+ const SystemZInstrInfo *TII = TM.getInstrInfo();
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned MaskNE = CCMaskForCondCode(ISD::SETNE);
+ bool IsSubWord = (BitSize < 32);
+
+ // Extract the operands. Base can be a register or a frame index.
+ // Src2 can be a register or immediate.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
+ unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
+ unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsSubWord)
+ BitSize = MI->getOperand(6).getImm();
+
+ // Subword operations use 32-bit registers.
+ const TargetRegisterClass *RC = (BitSize <= 32 ?
+ &SystemZ::GR32BitRegClass :
+ &SystemZ::GR64BitRegClass);
+ unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
+ unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
+
+ // Get the right opcodes for the displacement.
+ LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
+ CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned NewVal = (BinOpcode || IsSubWord ?
+ MRI.createVirtualRegister(RC) : Src2.getReg());
+ unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
+ unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
+
+ // Insert a basic block for the main loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
+ // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
+ // %RotatedNewVal = OP %RotatedOldVal, %Src2
+ // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
+ // %Dest = CS %OldVal, %NewVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to DoneMMB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigVal).addMBB(StartMBB)
+ .addReg(Dest).addMBB(LoopMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
+ .addReg(OldVal).addReg(BitShift).addImm(0);
+ if (Invert) {
+ // Perform the operation normally and then invert every bit of the field.
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
+ .addReg(RotatedOldVal).addOperand(Src2);
+ if (BitSize < 32)
+ // XILF with the upper BitSize bits set.
+ BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
+ .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
+ else if (BitSize == 32)
+ // XILF with every bit set.
+ BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
+ .addReg(Tmp).addImm(~uint32_t(0));
+ else {
+ // Use LCGR and add -1 to the result, which is more compact than
+ // an XILF, XILH pair.
+ unsigned Tmp2 = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
+ BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
+ .addReg(Tmp2).addImm(-1);
+ }
+ } else if (BinOpcode)
+ // A simply binary operation.
+ BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
+ .addReg(RotatedOldVal).addOperand(Src2);
+ else if (IsSubWord)
+ // Use RISBG to rotate Src2 into position and use it to replace the
+ // field in RotatedOldVal.
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
+ .addReg(RotatedOldVal).addReg(Src2.getReg())
+ .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
+ .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
+ .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo
+// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
+// instruction that should be used to compare the current field with the
+// minimum or maximum value. KeepOldMask is the BRC condition-code mask
+// for when the current field should be kept. BitSize is the width of
+// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned CompareOpcode,
+ unsigned KeepOldMask,
+ unsigned BitSize) const {
+ const SystemZInstrInfo *TII = TM.getInstrInfo();
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned MaskNE = CCMaskForCondCode(ISD::SETNE);
+ bool IsSubWord = (BitSize < 32);
+
+ // Extract the operands. Base can be a register or a frame index.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ unsigned Src2 = MI->getOperand(3).getReg();
+ unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
+ unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsSubWord)
+ BitSize = MI->getOperand(6).getImm();
+
+ // Subword operations use 32-bit registers.
+ const TargetRegisterClass *RC = (BitSize <= 32 ?
+ &SystemZ::GR32BitRegClass :
+ &SystemZ::GR64BitRegClass);
+ unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
+ unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
+
+ // Get the right opcodes for the displacement.
+ LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
+ CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned NewVal = MRI.createVirtualRegister(RC);
+ unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
+ unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
+ unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
+
+ // Insert 3 basic blocks for the loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+ MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
+ MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
+ // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
+ // CompareOpcode %RotatedOldVal, %Src2
+ // BRCL KeepOldMask, UpdateMBB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigVal).addMBB(StartMBB)
+ .addReg(Dest).addMBB(UpdateMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
+ .addReg(OldVal).addReg(BitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CompareOpcode))
+ .addReg(RotatedOldVal).addReg(Src2);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL))
+ .addImm(KeepOldMask).addMBB(UpdateMBB);
+ MBB->addSuccessor(UpdateMBB);
+ MBB->addSuccessor(UseAltMBB);
+
+ // UseAltMBB:
+ // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
+ // # fall through to UpdateMMB
+ MBB = UseAltMBB;
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
+ .addReg(RotatedOldVal).addReg(Src2)
+ .addImm(32).addImm(31 + BitSize).addImm(0);
+ MBB->addSuccessor(UpdateMBB);
+
+ // UpdateMBB:
+ // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
+ // [ %RotatedAltVal, UseAltMBB ]
+ // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
+ // %Dest = CS %OldVal, %NewVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to DoneMMB
+ MBB = UpdateMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
+ .addReg(RotatedOldVal).addMBB(LoopMBB)
+ .addReg(RotatedAltVal).addMBB(UseAltMBB);
+ if (IsSubWord)
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
+ .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
+ BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
+ .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
+// instruction MI.
+MachineBasicBlock *
+SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const SystemZInstrInfo *TII = TM.getInstrInfo();
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned MaskNE = CCMaskForCondCode(ISD::SETNE);
+
+ // Extract the operands. Base can be a register or a frame index.
+ unsigned Dest = MI->getOperand(0).getReg();
+ MachineOperand Base = earlyUseOperand(MI->getOperand(1));
+ int64_t Disp = MI->getOperand(2).getImm();
+ unsigned OrigCmpVal = MI->getOperand(3).getReg();
+ unsigned OrigSwapVal = MI->getOperand(4).getReg();
+ unsigned BitShift = MI->getOperand(5).getReg();
+ unsigned NegBitShift = MI->getOperand(6).getReg();
+ int64_t BitSize = MI->getOperand(7).getImm();
+ DebugLoc DL = MI->getDebugLoc();
+
+ const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
+
+ // Get the right opcodes for the displacement.
+ unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
+ unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
+ assert(LOpcode && CSOpcode && "Displacement out of range");
+
+ // Create virtual registers for temporary results.
+ unsigned OrigOldVal = MRI.createVirtualRegister(RC);
+ unsigned OldVal = MRI.createVirtualRegister(RC);
+ unsigned CmpVal = MRI.createVirtualRegister(RC);
+ unsigned SwapVal = MRI.createVirtualRegister(RC);
+ unsigned StoreVal = MRI.createVirtualRegister(RC);
+ unsigned RetryOldVal = MRI.createVirtualRegister(RC);
+ unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
+ unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
+
+ // Insert 2 basic blocks for the loop.
+ MachineBasicBlock *StartMBB = MBB;
+ MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB);
+ MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
+ MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
+
+ // StartMBB:
+ // ...
+ // %OrigOldVal = L Disp(%Base)
+ // # fall through to LoopMMB
+ MBB = StartMBB;
+ BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
+ .addOperand(Base).addImm(Disp).addReg(0);
+ MBB->addSuccessor(LoopMBB);
+
+ // LoopMBB:
+ // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
+ // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
+ // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
+ // %Dest = RLL %OldVal, BitSize(%BitShift)
+ // ^^ The low BitSize bits contain the field
+ // of interest.
+ // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
+ // ^^ Replace the upper 32-BitSize bits of the
+ // comparison value with those that we loaded,
+ // so that we can use a full word comparison.
+ // CR %Dest, %RetryCmpVal
+ // JNE DoneMBB
+ // # Fall through to SetMBB
+ MBB = LoopMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
+ .addReg(OrigOldVal).addMBB(StartMBB)
+ .addReg(RetryOldVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
+ .addReg(OrigCmpVal).addMBB(StartMBB)
+ .addReg(RetryCmpVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
+ .addReg(OrigSwapVal).addMBB(StartMBB)
+ .addReg(RetrySwapVal).addMBB(SetMBB);
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
+ .addReg(OldVal).addReg(BitShift).addImm(BitSize);
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
+ .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::CR))
+ .addReg(Dest).addReg(RetryCmpVal);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(DoneMBB);
+ MBB->addSuccessor(DoneMBB);
+ MBB->addSuccessor(SetMBB);
+
+ // SetMBB:
+ // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
+ // ^^ Replace the upper 32-BitSize bits of the new
+ // value with those that we loaded.
+ // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
+ // ^^ Rotate the new field to its proper position.
+ // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
+ // JNE LoopMBB
+ // # fall through to ExitMMB
+ MBB = SetMBB;
+ BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
+ .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
+ BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
+ .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
+ BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
+ .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
+ BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB);
+ MBB->addSuccessor(LoopMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ MI->eraseFromParent();
+ return DoneMBB;
+}
+
+// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
+// if the high register of the GR128 value must be cleared or false if
+// it's "don't care". SubReg is subreg_odd32 when extending a GR32
+// and subreg_odd when extending a GR64.
+MachineBasicBlock *
+SystemZTargetLowering::emitExt128(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool ClearEven, unsigned SubReg) const {
+ const SystemZInstrInfo *TII = TM.getInstrInfo();
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
+
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
+ if (ClearEven) {
+ unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
+ unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
+
+ BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
+ .addImm(0);
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
+ .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
+ In128 = NewIn128;
+ }
+ BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
+ .addReg(In128).addReg(Src).addImm(SubReg);
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *SystemZTargetLowering::
+EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::Select32:
+ case SystemZ::SelectF32:
+ case SystemZ::Select64:
+ case SystemZ::SelectF64:
+ case SystemZ::SelectF128:
+ return emitSelect(MI, MBB);
+
+ case SystemZ::AEXT128_64:
+ return emitExt128(MI, MBB, false, SystemZ::subreg_low);
+ case SystemZ::ZEXT128_32:
+ return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
+ case SystemZ::ZEXT128_64:
+ return emitExt128(MI, MBB, true, SystemZ::subreg_low);
+
+ case SystemZ::ATOMIC_SWAPW:
+ return emitAtomicLoadBinary(MI, MBB, 0, 0);
+ case SystemZ::ATOMIC_SWAP_32:
+ return emitAtomicLoadBinary(MI, MBB, 0, 32);
+ case SystemZ::ATOMIC_SWAP_64:
+ return emitAtomicLoadBinary(MI, MBB, 0, 64);
+
+ case SystemZ::ATOMIC_LOADW_AR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
+ case SystemZ::ATOMIC_LOADW_AFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
+ case SystemZ::ATOMIC_LOAD_AR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
+ case SystemZ::ATOMIC_LOAD_AHI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
+ case SystemZ::ATOMIC_LOAD_AFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
+ case SystemZ::ATOMIC_LOAD_AGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
+ case SystemZ::ATOMIC_LOAD_AGHI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
+ case SystemZ::ATOMIC_LOAD_AGFI:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
+
+ case SystemZ::ATOMIC_LOADW_SR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
+ case SystemZ::ATOMIC_LOAD_SR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
+ case SystemZ::ATOMIC_LOAD_SGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
+
+ case SystemZ::ATOMIC_LOADW_NR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
+ case SystemZ::ATOMIC_LOADW_NILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
+ case SystemZ::ATOMIC_LOAD_NR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
+ case SystemZ::ATOMIC_LOAD_NILL32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
+ case SystemZ::ATOMIC_LOAD_NILH32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
+ case SystemZ::ATOMIC_LOAD_NILF32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
+ case SystemZ::ATOMIC_LOAD_NGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
+ case SystemZ::ATOMIC_LOAD_NILL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
+ case SystemZ::ATOMIC_LOAD_NILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
+ case SystemZ::ATOMIC_LOAD_NIHL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
+ case SystemZ::ATOMIC_LOAD_NIHH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
+ case SystemZ::ATOMIC_LOAD_NILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
+ case SystemZ::ATOMIC_LOAD_NIHF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
+
+ case SystemZ::ATOMIC_LOADW_OR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
+ case SystemZ::ATOMIC_LOADW_OILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
+ case SystemZ::ATOMIC_LOAD_OR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
+ case SystemZ::ATOMIC_LOAD_OILL32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
+ case SystemZ::ATOMIC_LOAD_OILH32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
+ case SystemZ::ATOMIC_LOAD_OILF32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
+ case SystemZ::ATOMIC_LOAD_OGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
+ case SystemZ::ATOMIC_LOAD_OILL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
+ case SystemZ::ATOMIC_LOAD_OILH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
+ case SystemZ::ATOMIC_LOAD_OIHL:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
+ case SystemZ::ATOMIC_LOAD_OIHH:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
+ case SystemZ::ATOMIC_LOAD_OILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
+ case SystemZ::ATOMIC_LOAD_OIHF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
+
+ case SystemZ::ATOMIC_LOADW_XR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
+ case SystemZ::ATOMIC_LOADW_XILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
+ case SystemZ::ATOMIC_LOAD_XR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
+ case SystemZ::ATOMIC_LOAD_XILF32:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
+ case SystemZ::ATOMIC_LOAD_XGR:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
+ case SystemZ::ATOMIC_LOAD_XILF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
+ case SystemZ::ATOMIC_LOAD_XIHF:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
+
+ case SystemZ::ATOMIC_LOADW_NRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
+ case SystemZ::ATOMIC_LOADW_NILHi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
+ case SystemZ::ATOMIC_LOAD_NRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILL32i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILH32i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
+ case SystemZ::ATOMIC_LOAD_NILF32i:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
+ case SystemZ::ATOMIC_LOAD_NGRi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILLi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILHi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHLi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHHi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
+ case SystemZ::ATOMIC_LOAD_NILFi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
+ case SystemZ::ATOMIC_LOAD_NIHFi:
+ return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
+
+ case SystemZ::ATOMIC_LOADW_MIN:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_LE, 0);
+ case SystemZ::ATOMIC_LOAD_MIN_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_LE, 32);
+ case SystemZ::ATOMIC_LOAD_MIN_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
+ SystemZ::CCMASK_CMP_LE, 64);
+
+ case SystemZ::ATOMIC_LOADW_MAX:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_GE, 0);
+ case SystemZ::ATOMIC_LOAD_MAX_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
+ SystemZ::CCMASK_CMP_GE, 32);
+ case SystemZ::ATOMIC_LOAD_MAX_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
+ SystemZ::CCMASK_CMP_GE, 64);
+
+ case SystemZ::ATOMIC_LOADW_UMIN:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_LE, 0);
+ case SystemZ::ATOMIC_LOAD_UMIN_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_LE, 32);
+ case SystemZ::ATOMIC_LOAD_UMIN_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
+ SystemZ::CCMASK_CMP_LE, 64);
+
+ case SystemZ::ATOMIC_LOADW_UMAX:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_GE, 0);
+ case SystemZ::ATOMIC_LOAD_UMAX_32:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
+ SystemZ::CCMASK_CMP_GE, 32);
+ case SystemZ::ATOMIC_LOAD_UMAX_64:
+ return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
+ SystemZ::CCMASK_CMP_GE, 64);
+
+ case SystemZ::ATOMIC_CMP_SWAPW:
+ return emitAtomicCmpSwapW(MI, MBB);
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+}
diff --git a/lib/Target/SystemZ/SystemZISelLowering.h b/lib/Target/SystemZ/SystemZISelLowering.h
new file mode 100644
index 0000000000..eea820c8e5
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelLowering.h
@@ -0,0 +1,212 @@
+//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that SystemZ uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
+#define LLVM_TARGET_SystemZ_ISELLOWERING_H
+
+#include "SystemZ.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+namespace SystemZISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ // Return with a flag operand. Operand 0 is the chain operand.
+ RET_FLAG,
+
+ // Calls a function. Operand 0 is the chain operand and operand 1
+ // is the target address. The arguments start at operand 2.
+ // There is an optional glue operand at the end.
+ CALL,
+
+ // Wraps a TargetGlobalAddress that should be loaded using PC-relative
+ // accesses (LARL). Operand 0 is the address.
+ PCREL_WRAPPER,
+
+ // Signed integer and floating-point comparisons. The operands are the
+ // two values to compare.
+ CMP,
+
+ // Likewise unsigned integer comparison.
+ UCMP,
+
+ // Branches if a condition is true. Operand 0 is the chain operand;
+ // operand 1 is the 4-bit condition-code mask, with bit N in
+ // big-endian order meaning "branch if CC=N"; operand 2 is the
+ // target block and operand 3 is the flag operand.
+ BR_CCMASK,
+
+ // Selects between operand 0 and operand 1. Operand 2 is the
+ // mask of condition-code values for which operand 0 should be
+ // chosen over operand 1; it has the same form as BR_CCMASK.
+ // Operand 3 is the flag operand.
+ SELECT_CCMASK,
+
+ // Evaluates to the gap between the stack pointer and the
+ // base of the dynamically-allocatable area.
+ ADJDYNALLOC,
+
+ // Extracts the value of a 32-bit access register. Operand 0 is
+ // the number of the register.
+ EXTRACT_ACCESS,
+
+ // Wrappers around the ISD opcodes of the same name. The output and
+ // first input operands are GR128s. The trailing numbers are the
+ // widths of the second operand in bits.
+ UMUL_LOHI64,
+ SDIVREM64,
+ UDIVREM32,
+ UDIVREM64,
+
+ // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
+ // ATOMIC_LOAD_<op>.
+ //
+ // Operand 0: the address of the containing 32-bit-aligned field
+ // Operand 1: the second operand of <op>, in the high bits of an i32
+ // for everything except ATOMIC_SWAPW
+ // Operand 2: how many bits to rotate the i32 left to bring the first
+ // operand into the high bits
+ // Operand 3: the negative of operand 2, for rotating the other way
+ // Operand 4: the width of the field in bits (8 or 16)
+ ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ ATOMIC_LOADW_ADD,
+ ATOMIC_LOADW_SUB,
+ ATOMIC_LOADW_AND,
+ ATOMIC_LOADW_OR,
+ ATOMIC_LOADW_XOR,
+ ATOMIC_LOADW_NAND,
+ ATOMIC_LOADW_MIN,
+ ATOMIC_LOADW_MAX,
+ ATOMIC_LOADW_UMIN,
+ ATOMIC_LOADW_UMAX,
+
+ // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
+ //
+ // Operand 0: the address of the containing 32-bit-aligned field
+ // Operand 1: the compare value, in the low bits of an i32
+ // Operand 2: the swap value, in the low bits of an i32
+ // Operand 3: how many bits to rotate the i32 left to bring the first
+ // operand into the high bits
+ // Operand 4: the negative of operand 2, for rotating the other way
+ // Operand 5: the width of the field in bits (8 or 16)
+ ATOMIC_CMP_SWAPW
+ };
+}
+
+class SystemZSubtarget;
+class SystemZTargetMachine;
+
+class SystemZTargetLowering : public TargetLowering {
+public:
+ explicit SystemZTargetLowering(SystemZTargetMachine &TM);
+
+ // Override TargetLowering.
+ virtual MVT getScalarShiftAmountTy(EVT LHSTy) const LLVM_OVERRIDE {
+ return MVT::i32;
+ }
+ virtual EVT getSetCCResultType(EVT VT) const {
+ return MVT::i32;
+ }
+ virtual bool isFMAFasterThanMulAndAdd(EVT) const LLVM_OVERRIDE {
+ return true;
+ }
+ virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
+ virtual const char *getTargetNodeName(unsigned Opcode) const LLVM_OVERRIDE;
+ virtual std::pair<unsigned, const TargetRegisterClass *>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const LLVM_OVERRIDE;
+ virtual TargetLowering::ConstraintType
+ getConstraintType(const std::string &Constraint) const LLVM_OVERRIDE;
+ virtual TargetLowering::ConstraintWeight
+ getSingleConstraintMatchWeight(AsmOperandInfo &info,
+ const char *constraint) const LLVM_OVERRIDE;
+ virtual void
+ LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const LLVM_OVERRIDE;
+ virtual MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const LLVM_OVERRIDE;
+ virtual SDValue LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const LLVM_OVERRIDE;
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const LLVM_OVERRIDE;
+ virtual SDValue
+ LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const LLVM_OVERRIDE;
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ DebugLoc DL, SelectionDAG &DAG) const LLVM_OVERRIDE;
+
+private:
+ const SystemZSubtarget &Subtarget;
+ const SystemZTargetMachine &TM;
+
+ // Implement LowerOperation for individual opcodes.
+ SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerBlockAddress(BlockAddressSDNode *Node,
+ SelectionDAG &DAG) const;
+ SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
+ SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
+ SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG,
+ unsigned Opcode) const;
+ SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
+
+ // Implement EmitInstrWithCustomInserter for individual operation types.
+ MachineBasicBlock *emitSelect(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+ MachineBasicBlock *emitExt128(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ bool ClearEven, unsigned SubReg) const;
+ MachineBasicBlock *emitAtomicLoadBinary(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned BinOpcode, unsigned BitSize,
+ bool Invert = false) const;
+ MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ unsigned CompareOpcode,
+ unsigned KeepOldMask,
+ unsigned BitSize) const;
+ MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+};
+} // end namespace llvm
+
+#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H
diff --git a/lib/Target/SystemZ/SystemZInstrBuilder.h b/lib/Target/SystemZ/SystemZInstrBuilder.h
new file mode 100644
index 0000000000..fb699b9ab8
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrBuilder.h
@@ -0,0 +1,48 @@
+//===-- SystemZInstrBuilder.h - Functions to aid building insts -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to handle SystemZ'isms in a clean way.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZINSTRBUILDER_H
+#define SYSTEMZINSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+
+namespace llvm {
+
+/// Add a BDX memory reference for frame object FI to MIB.
+static inline const MachineInstrBuilder &
+addFrameReference(const MachineInstrBuilder &MIB, int FI) {
+ MachineInstr *MI = MIB;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned Flags = 0;
+ if (MCID.mayLoad())
+ Flags |= MachineMemOperand::MOLoad;
+ if (MCID.mayStore())
+ Flags |= MachineMemOperand::MOStore;
+ int64_t Offset = 0;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo(
+ PseudoSourceValue::getFixedStack(FI), Offset),
+ Flags, MFFrame->getObjectSize(FI),
+ MFFrame->getObjectAlignment(FI));
+ return MIB.addFrameIndex(FI).addImm(Offset).addReg(0).addMemOperand(MMO);
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZInstrFP.td b/lib/Target/SystemZ/SystemZInstrFP.td
new file mode 100644
index 0000000000..7c9f0e668b
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrFP.td
@@ -0,0 +1,318 @@
+//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Control-flow instructions
+//===----------------------------------------------------------------------===//
+
+// C's ?: operator for floating-point operands.
+def SelectF32 : SelectWrapper<FP32>;
+def SelectF64 : SelectWrapper<FP64>;
+def SelectF128 : SelectWrapper<FP128>;
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Load zero.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+ def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>;
+ def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>;
+ def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
+}
+
+// Moves between two floating-point registers.
+let neverHasSideEffects = 1 in {
+ def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>;
+ def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>;
+ def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
+}
+
+// Moves between 64-bit integer and floating-point registers.
+def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
+def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
+
+// fcopysign with an FP32 result.
+let isCodeGenOnly = 1 in {
+ def CPSDRss : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>;
+ def CPSDRsd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>;
+}
+
+// The sign of an FP128 is in the high register. Give the CPSDRsd
+// operands in R1, R2, R3 order.
+def : Pat<(fcopysign FP32:$src1, FP128:$src2),
+ (CPSDRsd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP32:$src1)>;
+
+// fcopysign with an FP64 result.
+let isCodeGenOnly = 1 in
+ def CPSDRds : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>;
+def CPSDRdd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>;
+
+// The sign of an FP128 is in the high register. Give the CPSDRdd
+// operands in R1, R2, R3 order.
+def : Pat<(fcopysign FP64:$src1, FP128:$src2),
+ (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP64:$src1)>;
+
+// fcopysign with an FP128 result. Use "upper" as the high half and leave
+// the low half as-is.
+class CopySign128<RegisterOperand cls, dag upper>
+ : Pat<(fcopysign FP128:$src1, cls:$src2),
+ (INSERT_SUBREG FP128:$src1, upper, subreg_high)>;
+
+// Give the CPSDR* operands in R1, R2, R3 order.
+def : CopySign128<FP32, (CPSDRds FP32:$src2,
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+def : CopySign128<FP64, (CPSDRdd FP64:$src2,
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high),
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+
+//===----------------------------------------------------------------------===//
+// Load instructions
+//===----------------------------------------------------------------------===//
+
+let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
+ defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>;
+ defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
+ [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Store instructions
+//===----------------------------------------------------------------------===//
+
+let SimpleBDXStore = 1 in {
+ defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>;
+ defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
+ [(store FP128:$src, bdxaddr20only128:$dst)]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Conversion instructions
+//===----------------------------------------------------------------------===//
+
+// Convert floating-point values to narrower representations, rounding
+// according to the current mode. The destination of LEXBR and LDXBR
+// is a 128-bit value, but only the first register of the pair is used.
+def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>;
+def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
+def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
+
+def : Pat<(f32 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>;
+def : Pat<(f64 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>;
+
+// Extend register floating-point values to wider representations.
+def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>;
+def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>;
+def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>;
+
+// Extend memory floating-point values to wider representations.
+def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>;
+def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>;
+def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>;
+
+// Convert a signed integer register value to a floating-point one.
+let Defs = [PSW] in {
+ def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>;
+ def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>;
+ def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
+
+ def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>;
+ def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>;
+ def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
+}
+
+// Convert a floating-point register value to a signed integer value,
+// with the second operand (modifier M3) specifying the rounding mode.
+let Defs = [PSW] in {
+ def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>;
+ def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>;
+ def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>;
+
+ def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>;
+ def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>;
+ def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>;
+}
+
+// fp_to_sint always rounds towards zero, which is modifier value 5.
+def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR FP32:$src, 5)>;
+def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR FP64:$src, 5)>;
+def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR FP128:$src, 5)>;
+
+def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR FP32:$src, 5)>;
+def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR FP64:$src, 5)>;
+def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR FP128:$src, 5)>;
+
+//===----------------------------------------------------------------------===//
+// Unary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Negation (Load Complement).
+let Defs = [PSW] in {
+ def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>;
+ def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>;
+ def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
+}
+
+// Absolute value (Load Positive).
+let Defs = [PSW] in {
+ def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>;
+ def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>;
+ def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
+}
+
+// Negative absolute value (Load Negative).
+let Defs = [PSW] in {
+ def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>;
+ def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>;
+ def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
+}
+
+// Square root.
+def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>;
+def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>;
+def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
+
+def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>;
+def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>;
+
+// Round to an integer, with the second operand (modifier M3) specifying
+// the rounding mode.
+//
+// These forms always check for inexact conditions. z196 added versions
+// that allow this to suppressed (as for fnearbyint), but we don't yet
+// support -march=z196.
+let Defs = [PSW] in {
+ def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>;
+ def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>;
+ def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>;
+}
+
+// frint rounds according to the current mode (modifier 0) and detects
+// inexact conditions.
+def : Pat<(frint FP32:$src), (FIEBR FP32:$src, 0)>;
+def : Pat<(frint FP64:$src), (FIDBR FP64:$src, 0)>;
+def : Pat<(frint FP128:$src), (FIXBR FP128:$src, 0)>;
+
+//===----------------------------------------------------------------------===//
+// Binary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Addition.
+let Defs = [PSW] in {
+ let isCommutable = 1 in {
+ def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>;
+ def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>;
+ def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
+ }
+ def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>;
+ def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>;
+}
+
+// Subtraction.
+let Defs = [PSW] in {
+ def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>;
+ def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>;
+ def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
+
+ def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>;
+ def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>;
+}
+
+// Multiplication.
+let isCommutable = 1 in {
+ def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>;
+ def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>;
+ def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>;
+}
+def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>;
+def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>;
+
+// f64 multiplication of two FP32 registers.
+def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
+ (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ FP32:$src1, subreg_32bit), FP32:$src2)>;
+
+// f64 multiplication of an FP32 register and an f32 memory.
+def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)),
+ (f64 (extloadf32 bdxaddr12only:$addr))),
+ (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit),
+ bdxaddr12only:$addr)>;
+
+// f128 multiplication of two FP64 registers.
+def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
+ (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
+ FP64:$src1, subreg_high), FP64:$src2)>;
+
+// f128 multiplication of an FP64 register and an f64 memory.
+def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)),
+ (f128 (extloadf64 bdxaddr12only:$addr))),
+ (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high),
+ bdxaddr12only:$addr)>;
+
+// Fused multiply-add.
+def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>;
+def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>;
+
+def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>;
+def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>;
+
+// Fused multiply-subtract.
+def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>;
+def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>;
+
+def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>;
+def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>;
+
+// Division.
+def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>;
+def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>;
+def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
+
+def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>;
+def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>;
+
+//===----------------------------------------------------------------------===//
+// Comparisons
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>;
+ def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>;
+ def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>;
+
+ def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>;
+ def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>;
+}
+
+//===----------------------------------------------------------------------===//
+// Peepholes
+//===----------------------------------------------------------------------===//
+
+def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>;
+def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>;
+def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
diff --git a/lib/Target/SystemZ/SystemZInstrFormats.td b/lib/Target/SystemZ/SystemZInstrFormats.td
new file mode 100644
index 0000000000..b32b7eb0fc
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrFormats.td
@@ -0,0 +1,987 @@
+//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Basic SystemZ instruction definition
+//===----------------------------------------------------------------------===//
+
+class InstSystemZ<int size, dag outs, dag ins, string asmstr,
+ list<dag> pattern> : Instruction {
+ let Namespace = "SystemZ";
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let Size = size;
+ let Pattern = pattern;
+ let AsmString = asmstr;
+
+ // Used to identify a group of related instructions, such as ST and STY.
+ string Function = "";
+
+ // "12" for an instruction that has a ...Y equivalent, "20" for that
+ // ...Y equivalent.
+ string PairType = "none";
+
+ // True if this instruction is a simple D(X,B) load of a register
+ // (with no sign or zero extension).
+ bit SimpleBDXLoad = 0;
+
+ // True if this instruction is a simple D(X,B) store of a register
+ // (with no truncation).
+ bit SimpleBDXStore = 0;
+
+ // True if this instruction has a 20-bit displacement field.
+ bit Has20BitOffset = 0;
+
+ // True if addresses in this instruction have an index register.
+ bit HasIndex = 0;
+
+ // True if this is a 128-bit pseudo instruction that combines two 64-bit
+ // operations.
+ bit Is128Bit = 0;
+
+ let TSFlags{0} = SimpleBDXLoad;
+ let TSFlags{1} = SimpleBDXStore;
+ let TSFlags{2} = Has20BitOffset;
+ let TSFlags{3} = HasIndex;
+ let TSFlags{4} = Is128Bit;
+}
+
+//===----------------------------------------------------------------------===//
+// Mappings between instructions
+//===----------------------------------------------------------------------===//
+
+// Return the version of an instruction that has an unsigned 12-bit
+// displacement.
+def getDisp12Opcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["Function"];
+ let ColFields = ["PairType"];
+ let KeyCol = ["20"];
+ let ValueCols = [["12"]];
+}
+
+// Return the version of an instruction that has a signed 20-bit displacement.
+def getDisp20Opcode : InstrMapping {
+ let FilterClass = "InstSystemZ";
+ let RowFields = ["Function"];
+ let ColFields = ["PairType"];
+ let KeyCol = ["12"];
+ let ValueCols = [["20"]];
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction formats
+//===----------------------------------------------------------------------===//
+//
+// Formats are specified using operand field declarations of the form:
+//
+// bits<4> Rn : register input or output for operand n
+// bits<m> In : immediate value of width m for operand n
+// bits<4> Bn : base register for address operand n
+// bits<m> Dn : displacement value of width m for address operand n
+// bits<4> Xn : index register for address operand n
+// bits<4> Mn : mode value for operand n
+//
+// The operand numbers ("n" in the list above) follow the architecture manual,
+// but the fields are always declared in assembly order, so there are some
+// cases where operand "2" comes after operand "3". For address operands,
+// the base register field is declared first, followed by the displacement,
+// followed by the index (if any). This matches the bdaddr* and bdxaddr*
+// orders.
+//
+//===----------------------------------------------------------------------===//
+
+class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<16> I2;
+
+ let Inst{31-24} = op{11-4};
+ let Inst{23-20} = R1;
+ let Inst{19-16} = op{3-0};
+ let Inst{15-0} = I2;
+}
+
+class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<4> R2;
+ bits<8> I3;
+ bits<8> I4;
+ bits<8> I5;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R2;
+ let Inst{31-24} = I3;
+ let Inst{23-16} = I4;
+ let Inst{15-8} = I5;
+ let Inst{7-0} = op{7-0};
+}
+
+class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<32> I2;
+
+ let Inst{47-40} = op{11-4};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = op{3-0};
+ let Inst{31-0} = I2;
+}
+
+class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<2, outs, ins, asmstr, pattern> {
+ field bits<16> Inst;
+
+ bits<4> R1;
+ bits<4> R2;
+
+ let Inst{15-8} = op;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<4> R2;
+
+ let Inst{31-16} = op;
+ let Inst{15-12} = R1;
+ let Inst{11-8} = 0;
+ let Inst{7-4} = R3;
+ let Inst{3-0} = R2;
+}
+
+class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<4> R2;
+
+ let Inst{31-16} = op;
+ let Inst{15-8} = 0;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<4> R2;
+ bits<4> R3;
+
+ let Inst{31-16} = op;
+ let Inst{15-12} = R3;
+ let Inst{11-8} = 0;
+ let Inst{7-4} = R1;
+ let Inst{3-0} = R2;
+}
+
+class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<4> B2;
+ bits<12> D2;
+ bits<4> X2;
+
+ let Inst{31-24} = op;
+ let Inst{23-20} = R1;
+ let Inst{19-16} = X2;
+ let Inst{15-12} = B2;
+ let Inst{11-0} = D2;
+
+ let HasIndex = 1;
+}
+
+class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<4> B2;
+ bits<12> D2;
+ bits<4> X2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = X2;
+ let Inst{31-28} = B2;
+ let Inst{27-16} = D2;
+ let Inst{15-8} = 0;
+ let Inst{7-0} = op{7-0};
+
+ let HasIndex = 1;
+}
+
+class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<4> B2;
+ bits<12> D2;
+ bits<4> X2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R3;
+ let Inst{35-32} = X2;
+ let Inst{31-28} = B2;
+ let Inst{27-16} = D2;
+ let Inst{15-12} = R1;
+ let Inst{11-8} = 0;
+ let Inst{7-0} = op{7-0};
+
+ let HasIndex = 1;
+}
+
+class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<4> B2;
+ bits<20> D2;
+ bits<4> X2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = X2;
+ let Inst{31-28} = B2;
+ let Inst{27-16} = D2{11-0};
+ let Inst{15-8} = D2{19-12};
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+ let HasIndex = 1;
+}
+
+class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<4> B2;
+ bits<12> D2;
+
+ let Inst{31-24} = op;
+ let Inst{23-20} = R1;
+ let Inst{19-16} = R3;
+ let Inst{15-12} = B2;
+ let Inst{11-0} = D2;
+}
+
+class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> R1;
+ bits<4> R3;
+ bits<4> B2;
+ bits<20> D2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-36} = R1;
+ let Inst{35-32} = R3;
+ let Inst{31-28} = B2;
+ let Inst{27-16} = D2{11-0};
+ let Inst{15-8} = D2{19-12};
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+}
+
+class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<4, outs, ins, asmstr, pattern> {
+ field bits<32> Inst;
+
+ bits<4> B1;
+ bits<12> D1;
+ bits<8> I2;
+
+ let Inst{31-24} = op;
+ let Inst{23-16} = I2;
+ let Inst{15-12} = B1;
+ let Inst{11-0} = D1;
+}
+
+class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> B1;
+ bits<12> D1;
+ bits<16> I2;
+
+ let Inst{47-32} = op;
+ let Inst{31-28} = B1;
+ let Inst{27-16} = D1;
+ let Inst{15-0} = I2;
+}
+
+class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<6, outs, ins, asmstr, pattern> {
+ field bits<48> Inst;
+
+ bits<4> B1;
+ bits<20> D1;
+ bits<8> I2;
+
+ let Inst{47-40} = op{15-8};
+ let Inst{39-32} = I2;
+ let Inst{31-28} = B1;
+ let Inst{27-16} = D1{11-0};
+ let Inst{15-8} = D1{19-12};
+ let Inst{7-0} = op{7-0};
+
+ let Has20BitOffset = 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction definitions with semantics
+//===----------------------------------------------------------------------===//
+//
+// These classes have the form <Category><Format>, where <Format> is one
+// of the formats defined above and where <Category> describes the inputs
+// and outputs. <Category> can be one of:
+//
+// Inherent:
+// One register output operand and no input operands.
+//
+// Store:
+// One register or immediate input operand and one address input operand.
+// The instruction stores the first operand to the address.
+//
+// This category is used for both pure and truncating stores.
+//
+// LoadMultiple:
+// One address input operand and two explicit output operands.
+// The instruction loads a range of registers from the address,
+// with the explicit operands giving the first and last register
+// to load. Other loaded registers are added as implicit definitions.
+//
+// StoreMultiple:
+// Two explicit input register operands and an address operand.
+// The instruction stores a range of registers to the address,
+// with the explicit operands giving the first and last register
+// to store. Other stored registers are added as implicit uses.
+//
+// Unary:
+// One register output operand and one input operand. The input
+// operand may be a register, immediate or memory.
+//
+// Binary:
+// One register output operand and two input operands. The first
+// input operand is always a register and he second may be a register,
+// immediate or memory.
+//
+// Shift:
+// One register output operand and two input operands. The first
+// input operand is a register and the second has the same form as
+// an address (although it isn't actually used to address memory).
+//
+// Compare:
+// Two input operands. The first operand is always a register,
+// the second may be a register, immediate or memory.
+//
+// Ternary:
+// One register output operand and three register input operands.
+//
+// CmpSwap:
+// One output operand and three input operands. The first two
+// operands are registers and the third is an address. The instruction
+// both reads from and writes to the address.
+//
+// RotateSelect:
+// One output operand and five input operands. The first two operands
+// are registers and the other three are immediates.
+//
+// The format determines which input operands are tied to output operands,
+// and also determines the shape of any address operand.
+//
+// Multiclasses of the form <Category><Format>Pair define two instructions,
+// one with <Category><Format> and one with <Category><Format>Y. The name
+// of the first instruction has no suffix, the name of the second has
+// an extra "y".
+//
+//===----------------------------------------------------------------------===//
+
+class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
+ dag src>
+ : InstRRE<opcode, (outs cls:$dst), (ins),
+ mnemonic#"\t$dst",
+ [(set cls:$dst, src)]> {
+ let R2 = 0;
+}
+
+class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
+ : InstRSY<opcode, (outs cls:$dst1, cls:$dst2), (ins bdaddr20only:$addr),
+ mnemonic#"\t$dst1, $dst2, $addr", []> {
+ let mayLoad = 1;
+}
+
+class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRIL<opcode, (outs), (ins cls:$src, pcrel32:$addr),
+ mnemonic#"\t$src, $addr",
+ [(operator cls:$src, pcrel32:$addr)]> {
+ let mayStore = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs), (ins cls:$src, mode:$addr),
+ mnemonic#"\t$src, $addr",
+ [(operator cls:$src, mode:$addr)]> {
+ let mayStore = 1;
+}
+
+class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs), (ins cls:$src, mode:$addr),
+ mnemonic#"\t$src, $addr",
+ [(operator cls:$src, mode:$addr)]> {
+ let mayStore = 1;
+}
+
+multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
+ let PairType = "20" in
+ def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
+ }
+}
+
+class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
+ : InstRSY<opcode, (outs), (ins cls:$from, cls:$to, bdaddr20only:$addr),
+ mnemonic#"\t$from, $to, $addr", []> {
+ let mayStore = 1;
+}
+
+class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ Immediate imm, AddressingMode mode = bdaddr12only>
+ : InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator imm:$src, mode:$addr)]> {
+ let mayStore = 1;
+}
+
+class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Immediate imm, AddressingMode mode = bdaddr20only>
+ : InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator imm:$src, mode:$addr)]> {
+ let mayStore = 1;
+}
+
+class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Immediate imm>
+ : InstSIL<opcode, (outs), (ins bdaddr12only:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator imm:$src, bdaddr12only:$addr)]> {
+ let mayStore = 1;
+}
+
+multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
+ SDPatternOperator operator, Immediate imm> {
+ let Function = mnemonic in {
+ let PairType = "12" in
+ def "" : StoreSI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
+ let PairType = "20" in
+ def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
+ }
+}
+
+class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs cls1:$dst), (ins cls2:$src),
+ mnemonic#"\t$dst, $src",
+ [(set cls1:$dst, (operator cls2:$src))]>;
+
+class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs cls1:$dst), (ins cls2:$src),
+ mnemonic#"\t$dst, $src",
+ [(set cls1:$dst, (operator cls2:$src))]>;
+
+class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$dst), (ins cls2:$src, uimm8zx4:$mode),
+ mnemonic#"\t$dst, $mode, $src", []>;
+
+class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs cls:$dst), (ins imm:$src),
+ mnemonic#"\t$dst, $src",
+ [(set cls:$dst, (operator imm:$src))]>;
+
+class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs cls:$dst), (ins imm:$src),
+ mnemonic#"\t$dst, $src",
+ [(set cls:$dst, (operator imm:$src))]>;
+
+class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRIL<opcode, (outs cls:$dst), (ins pcrel32:$addr),
+ mnemonic#"\t$dst, $addr",
+ [(set cls:$dst, (operator pcrel32:$addr))]> {
+ let mayLoad = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs cls:$dst), (ins mode:$addr),
+ mnemonic#"\t$dst, $addr",
+ [(set cls:$dst, (operator mode:$addr))]> {
+ let mayLoad = 1;
+}
+
+class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls>
+ : InstRXE<opcode, (outs cls:$dst), (ins bdxaddr12only:$addr),
+ mnemonic#"\t$dst, $addr",
+ [(set cls:$dst, (operator bdxaddr12only:$addr))]> {
+ let mayLoad = 1;
+}
+
+class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs cls:$dst), (ins mode:$addr),
+ mnemonic#"\t$dst, $addr",
+ [(set cls:$dst, (operator mode:$addr))]> {
+ let mayLoad = 1;
+}
+
+multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bdxaddr12pair>;
+ let PairType = "20" in
+ def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bdxaddr20pair>;
+ }
+}
+
+class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs cls1:$dst), (ins cls1:$src1, cls2:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs cls1:$dst), (ins cls1:$src1, cls2:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+// Here the assembly and dag operands are in natural order,
+// but the first input operand maps to R3 and the second to R2.
+// This is used for "CPSDR R1, R3, R2", which is equivalent to
+// R1 = copysign (R3, R2).
+//
+// Direct uses of the instruction must pass operands in encoding order --
+// R1, R2, R3 -- so they must pass the source operands in reverse order.
+class BinaryRevRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRF<opcode, (outs cls1:$dst), (ins cls2:$src2, cls1:$src1),
+ mnemonic#"\t$dst, $src1, $src2",
+ [(set cls1:$dst, (operator cls1:$src1, cls2:$src2))]>;
+
+class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs cls:$dst), (ins cls:$src1, imm:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1, imm:$src2))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs cls:$dst), (ins cls:$src1, imm:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1, imm:$src2))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1, (load mode:$src2)))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+ let mayLoad = 1;
+}
+
+class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load>
+ : InstRXE<opcode, (outs cls:$dst), (ins cls:$src1, bdxaddr12only:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1,
+ (load bdxaddr12only:$src2)))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+ let mayLoad = 1;
+}
+
+class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1, (load mode:$src2)))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+ let mayLoad = 1;
+}
+
+multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ SDPatternOperator load> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bdxaddr12pair>;
+ let PairType = "20" in
+ def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load,
+ bdxaddr20pair>;
+ }
+}
+
+class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ Operand imm, AddressingMode mode = bdaddr12only>
+ : InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(store (operator (load mode:$addr), imm:$src), mode:$addr)]> {
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ Operand imm, AddressingMode mode = bdaddr20only>
+ : InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(store (operator (load mode:$addr), imm:$src), mode:$addr)]> {
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
+ bits<16> siyOpcode, SDPatternOperator operator,
+ Operand imm> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
+ let PairType = "20" in
+ def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
+ }
+}
+
+class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode>
+ : InstRS<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$dst, $src2",
+ [(set cls:$dst, (operator cls:$src1, mode:$src2))]> {
+ let R3 = 0;
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode>
+ : InstRSY<opcode, (outs cls:$dst), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$dst, $src1, $src2",
+ [(set cls:$dst, (operator cls:$src1, mode:$src2))]>;
+
+class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRR<opcode, (outs), (ins cls1:$src1, cls2:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls1:$src1, cls2:$src2)]>;
+
+class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls1, RegisterOperand cls2>
+ : InstRRE<opcode, (outs), (ins cls1:$src1, cls2:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls1:$src1, cls2:$src2)]>;
+
+class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRI<opcode, (outs), (ins cls:$src1, imm:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, imm:$src2)]>;
+
+class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, Immediate imm>
+ : InstRIL<opcode, (outs), (ins cls:$src1, imm:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, imm:$src2)]>;
+
+class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load>
+ : InstRIL<opcode, (outs), (ins cls:$src1, pcrel32:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, (load pcrel32:$src2))]> {
+ let mayLoad = 1;
+ // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
+ // However, BDXs have two extra operands and are therefore 6 units more
+ // complex.
+ let AddedComplexity = 7;
+}
+
+class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load,
+ AddressingMode mode = bdxaddr12only>
+ : InstRX<opcode, (outs), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, (load mode:$src2))]> {
+ let mayLoad = 1;
+}
+
+class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load>
+ : InstRXE<opcode, (outs), (ins cls:$src1, bdxaddr12only:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, (load bdxaddr12only:$src2))]> {
+ let mayLoad = 1;
+}
+
+class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load,
+ AddressingMode mode = bdxaddr20only>
+ : InstRXY<opcode, (outs), (ins cls:$src1, mode:$src2),
+ mnemonic#"\t$src1, $src2",
+ [(operator cls:$src1, (load mode:$src2))]> {
+ let mayLoad = 1;
+}
+
+multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
+ SDPatternOperator operator, RegisterOperand cls,
+ SDPatternOperator load> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
+ load, bdxaddr12pair>;
+ let PairType = "20" in
+ def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
+ load, bdxaddr20pair>;
+ }
+}
+
+class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm,
+ AddressingMode mode = bdaddr12only>
+ : InstSI<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator (load mode:$addr), imm:$src)]> {
+ let mayLoad = 1;
+}
+
+class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm>
+ : InstSIL<opcode, (outs), (ins bdaddr12only:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator (load bdaddr12only:$addr), imm:$src)]> {
+ let mayLoad = 1;
+}
+
+class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ SDPatternOperator load, Immediate imm,
+ AddressingMode mode = bdaddr20only>
+ : InstSIY<opcode, (outs), (ins mode:$addr, imm:$src),
+ mnemonic#"\t$addr, $src",
+ [(operator (load mode:$addr), imm:$src)]> {
+ let mayLoad = 1;
+}
+
+multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
+ SDPatternOperator operator, SDPatternOperator load,
+ Immediate imm> {
+ let Function = mnemonic in {
+ let PairType = "12" in
+ def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
+ let PairType = "20" in
+ def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
+ bdaddr20pair>;
+ }
+}
+
+class TernaryRRD<string mnemonic, bits<16> opcode,
+ SDPatternOperator operator, RegisterOperand cls>
+ : InstRRD<opcode, (outs cls:$dst), (ins cls:$src1, cls:$src2, cls:$src3),
+ mnemonic#"\t$dst, $src2, $src3",
+ [(set cls:$dst, (operator cls:$src1, cls:$src2, cls:$src3))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, SDPatternOperator load>
+ : InstRXF<opcode, (outs cls:$dst),
+ (ins cls:$src1, cls:$src2, bdxaddr12only:$src3),
+ mnemonic#"\t$dst, $src2, $src3",
+ [(set cls:$dst, (operator cls:$src1, cls:$src2,
+ (load bdxaddr12only:$src3)))]> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+ let mayLoad = 1;
+}
+
+class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdaddr12only>
+ : InstRS<opcode, (outs cls:$dst), (ins cls:$old, cls:$new, mode:$ptr),
+ mnemonic#"\t$dst, $new, $ptr",
+ [(set cls:$dst, (operator mode:$ptr, cls:$old, cls:$new))]> {
+ let Constraints = "$old = $dst";
+ let DisableEncoding = "$old";
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
+ RegisterOperand cls, AddressingMode mode = bdaddr20only>
+ : InstRSY<opcode, (outs cls:$dst), (ins cls:$old, cls:$new, mode:$ptr),
+ mnemonic#"\t$dst, $new, $ptr",
+ [(set cls:$dst, (operator mode:$ptr, cls:$old, cls:$new))]> {
+ let Constraints = "$old = $dst";
+ let DisableEncoding = "$old";
+ let mayLoad = 1;
+ let mayStore = 1;
+}
+
+multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
+ SDPatternOperator operator, RegisterOperand cls> {
+ let Function = mnemonic ## #cls in {
+ let PairType = "12" in
+ def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
+ let PairType = "20" in
+ def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
+ }
+}
+
+class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
+ RegisterOperand cls2>
+ : InstRIEf<opcode, (outs cls1:$dst),
+ (ins cls1:$src1, cls2:$src2,
+ uimm8zx6:$imm1, uimm8zx6:$imm2, uimm8zx6:$imm3),
+ mnemonic#"\t$dst, $src2, $imm1, $imm2, $imm3", []> {
+ let Constraints = "$src1 = $dst";
+ let DisableEncoding = "$src1";
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions
+//===----------------------------------------------------------------------===//
+//
+// Convenience instructions that get lowered to real instructions
+// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
+// or SystemZInstrInfo::expandPostRAPseudo().
+//
+//===----------------------------------------------------------------------===//
+
+class Pseudo<dag outs, dag ins, list<dag> pattern>
+ : InstSystemZ<0, outs, ins, "", pattern> {
+ let isPseudo = 1;
+ let isCodeGenOnly = 1;
+}
+
+// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
+// the value of the PSW's 2-bit condition code field.
+class SelectWrapper<RegisterOperand cls>
+ : Pseudo<(outs cls:$dst), (ins cls:$src1, cls:$src2, i8imm:$cc),
+ [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2, imm:$cc))]> {
+ let usesCustomInserter = 1;
+ // Although the instructions used by these nodes do not in themselves
+ // change the PSW, the insertion requires new blocks, and the PSW cannot
+ // be live across them.
+ let Defs = [PSW];
+ let Uses = [PSW];
+}
+
+// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
+// describe the second (non-memory) operand.
+class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
+ dag pat, DAGOperand operand>
+ : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
+ [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
+ let Defs = [PSW];
+ let Has20BitOffset = 1;
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+// Specializations of AtomicLoadWBinary.
+class AtomicLoadBinaryReg32<SDPatternOperator operator>
+ : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
+class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
+class AtomicLoadBinaryReg64<SDPatternOperator operator>
+ : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
+class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
+
+// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
+// describe the second (non-memory) operand.
+class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
+ DAGOperand operand>
+ : Pseudo<(outs GR32:$dst),
+ (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
+ ADDR32:$negbitshift, uimm32:$bitsize),
+ [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
+ ADDR32:$negbitshift, uimm32:$bitsize))]> {
+ let Defs = [PSW];
+ let Has20BitOffset = 1;
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+// Specializations of AtomicLoadWBinary.
+class AtomicLoadWBinaryReg<SDPatternOperator operator>
+ : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
+class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
+ : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.cpp b/lib/Target/SystemZ/SystemZInstrInfo.cpp
new file mode 100644
index 0000000000..0718c83fc7
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.cpp
@@ -0,0 +1,444 @@
+//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZInstrInfo.h"
+#include "SystemZInstrBuilder.h"
+
+#define GET_INSTRINFO_CTOR
+#define GET_INSTRMAP_INFO
+#include "SystemZGenInstrInfo.inc"
+
+using namespace llvm;
+
+SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
+ : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
+ RI(tm, *this) {
+}
+
+// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
+// each having the opcode given by NewOpcode.
+void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
+ unsigned NewOpcode) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+
+ // Get two load or store instructions. Use the original instruction for one
+ // of them (arbitarily the second here) and create a clone for the other.
+ MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
+ MBB->insert(MI, EarlierMI);
+
+ // Set up the two 64-bit registers.
+ MachineOperand &HighRegOp = EarlierMI->getOperand(0);
+ MachineOperand &LowRegOp = MI->getOperand(0);
+ HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high));
+ LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low));
+
+ // The address in the first (high) instruction is already correct.
+ // Adjust the offset in the second (low) instruction.
+ MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
+ MachineOperand &LowOffsetOp = MI->getOperand(2);
+ LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
+
+ // Set the opcodes.
+ unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
+ unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
+ assert(HighOpcode && LowOpcode && "Both offsets should be in range");
+
+ EarlierMI->setDesc(get(HighOpcode));
+ MI->setDesc(get(LowOpcode));
+}
+
+// Split ADJDYNALLOC instruction MI.
+void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ MachineOperand &OffsetMO = MI->getOperand(2);
+
+ uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
+ SystemZMC::CallFrameSize +
+ OffsetMO.getImm());
+ unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
+ assert(NewOpcode && "No support for huge argument lists yet");
+ MI->setDesc(get(NewOpcode));
+ OffsetMO.setImm(Offset);
+}
+
+// If MI is a simple load or store for a frame object, return the register
+// it loads or stores and set FrameIndex to the index of the frame object.
+// Return 0 otherwise.
+//
+// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
+static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, int Flag) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if ((MCID.TSFlags & Flag) &&
+ MI->getOperand(1).isFI() &&
+ MI->getOperand(2).getImm() == 0 &&
+ MI->getOperand(3).getReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
+}
+
+unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
+}
+
+bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Most of the code and comments here are boilerplate.
+
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ unsigned ThisCond;
+ const MachineOperand *ThisTarget;
+ if (!isBranch(I, ThisCond, ThisTarget))
+ return true;
+
+ // Can't handle indirect branches.
+ if (!ThisTarget->isMBB())
+ return true;
+
+ if (ThisCond == SystemZ::CCMASK_ANY) {
+ // Handle unconditional branches.
+ if (!AllowModify) {
+ TBB = ThisTarget->getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (llvm::next(I) != MBB.end())
+ llvm::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = 0;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(ThisTarget->getMBB())) {
+ TBB = 0;
+ I->eraseFromParent();
+ I = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditinal destination.
+ TBB = ThisTarget->getMBB();
+ continue;
+ }
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ // FIXME: add X86-style branch swap
+ FBB = TBB;
+ TBB = ThisTarget->getMBB();
+ Cond.push_back(MachineOperand::CreateImm(ThisCond));
+ continue;
+ }
+
+ // Handle subsequent conditional branches.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != ThisTarget->getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ unsigned OldCond = Cond[0].getImm();
+ if (OldCond == ThisCond)
+ continue;
+
+ // FIXME: Try combining conditions like X86 does. Should be easy on Z!
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ // Most of the code and comments here are boilerplate.
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ unsigned Cond;
+ const MachineOperand *Target;
+ if (!isBranch(I, Cond, Target))
+ break;
+ if (!Target->isMBB())
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+unsigned
+SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // In this function we output 32-bit branches, which should always
+ // have enough range. They can be shortened and relaxed by later code
+ // in the pipeline, if desired.
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "SystemZ branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ unsigned CC = Cond[0].getImm();
+ BuildMI(&MBB, DL, get(SystemZ::BRCL)).addImm(CC).addMBB(TBB);
+ ++Count;
+
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+void
+SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too.
+ if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high),
+ RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc);
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low),
+ RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc);
+ return;
+ }
+
+ // Everything else needs only one instruction.
+ unsigned Opcode;
+ if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LR;
+ else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LGR;
+ else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LER;
+ else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LDR;
+ else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LXR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+void
+SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
+ .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
+}
+
+void
+SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
+ FrameIdx);
+}
+
+bool
+SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::L128:
+ splitMove(MI, SystemZ::LG);
+ return true;
+
+ case SystemZ::ST128:
+ splitMove(MI, SystemZ::STG);
+ return true;
+
+ case SystemZ::LX:
+ splitMove(MI, SystemZ::LD);
+ return true;
+
+ case SystemZ::STX:
+ splitMove(MI, SystemZ::STD);
+ return true;
+
+ case SystemZ::ADJDYNALLOC:
+ splitAdjDynAlloc(MI);
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+bool SystemZInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid branch condition!");
+ Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY);
+ return false;
+}
+
+bool SystemZInstrInfo::isBranch(const MachineInstr *MI, unsigned &Cond,
+ const MachineOperand *&Target) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::BR:
+ case SystemZ::J:
+ case SystemZ::JG:
+ Cond = SystemZ::CCMASK_ANY;
+ Target = &MI->getOperand(0);
+ return true;
+
+ case SystemZ::BRC:
+ case SystemZ::BRCL:
+ Cond = MI->getOperand(0).getImm();
+ Target = &MI->getOperand(1);
+ return true;
+
+ default:
+ assert(!MI->getDesc().isBranch() && "Unknown branch opcode");
+ return false;
+ }
+}
+
+void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
+ unsigned &LoadOpcode,
+ unsigned &StoreOpcode) const {
+ if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
+ LoadOpcode = SystemZ::L;
+ StoreOpcode = SystemZ::ST32;
+ } else if (RC == &SystemZ::GR64BitRegClass ||
+ RC == &SystemZ::ADDR64BitRegClass) {
+ LoadOpcode = SystemZ::LG;
+ StoreOpcode = SystemZ::STG;
+ } else if (RC == &SystemZ::GR128BitRegClass ||
+ RC == &SystemZ::ADDR128BitRegClass) {
+ LoadOpcode = SystemZ::L128;
+ StoreOpcode = SystemZ::ST128;
+ } else if (RC == &SystemZ::FP32BitRegClass) {
+ LoadOpcode = SystemZ::LE;
+ StoreOpcode = SystemZ::STE;
+ } else if (RC == &SystemZ::FP64BitRegClass) {
+ LoadOpcode = SystemZ::LD;
+ StoreOpcode = SystemZ::STD;
+ } else if (RC == &SystemZ::FP128BitRegClass) {
+ LoadOpcode = SystemZ::LX;
+ StoreOpcode = SystemZ::STX;
+ } else
+ llvm_unreachable("Unsupported regclass to load or store");
+}
+
+unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
+ int64_t Offset) const {
+ const MCInstrDesc &MCID = get(Opcode);
+ int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
+ if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
+ // Get the instruction to use for unsigned 12-bit displacements.
+ int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
+ if (Disp12Opcode >= 0)
+ return Disp12Opcode;
+
+ // All address-related instructions can use unsigned 12-bit
+ // displacements.
+ return Opcode;
+ }
+ if (isInt<20>(Offset) && isInt<20>(Offset2)) {
+ // Get the instruction to use for signed 20-bit displacements.
+ int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
+ if (Disp20Opcode >= 0)
+ return Disp20Opcode;
+
+ // Check whether Opcode allows signed 20-bit displacements.
+ if (MCID.TSFlags & SystemZII::Has20BitOffset)
+ return Opcode;
+ }
+ return 0;
+}
+
+void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned Reg, uint64_t Value) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned Opcode;
+ if (isInt<16>(Value))
+ Opcode = SystemZ::LGHI;
+ else if (SystemZ::isImmLL(Value))
+ Opcode = SystemZ::LLILL;
+ else if (SystemZ::isImmLH(Value)) {
+ Opcode = SystemZ::LLILH;
+ Value >>= 16;
+ } else {
+ assert(isInt<32>(Value) && "Huge values not handled yet");
+ Opcode = SystemZ::LGFI;
+ }
+ BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
+}
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.h b/lib/Target/SystemZ/SystemZInstrInfo.h
new file mode 100644
index 0000000000..0fc47617f0
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.h
@@ -0,0 +1,123 @@
+//===-- SystemZInstrInfo.h - SystemZ instruction information ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
+#define LLVM_TARGET_SYSTEMZINSTRINFO_H
+
+#include "SystemZ.h"
+#include "SystemZRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "SystemZGenInstrInfo.inc"
+
+namespace llvm {
+
+class SystemZTargetMachine;
+
+namespace SystemZII {
+ enum {
+ // See comments in SystemZInstrFormats.td.
+ SimpleBDXLoad = (1 << 0),
+ SimpleBDXStore = (1 << 1),
+ Has20BitOffset = (1 << 2),
+ HasIndex = (1 << 3),
+ Is128Bit = (1 << 4)
+ };
+ // SystemZ MachineOperand target flags.
+ enum {
+ // Masks out the bits for the access model.
+ MO_SYMBOL_MODIFIER = (1 << 0),
+
+ // @GOT (aka @GOTENT)
+ MO_GOT = (1 << 0)
+ };
+}
+
+class SystemZInstrInfo : public SystemZGenInstrInfo {
+ const SystemZRegisterInfo RI;
+
+ void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const;
+ void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const;
+
+public:
+ explicit SystemZInstrInfo(SystemZTargetMachine &TM);
+
+ // Override TargetInstrInfo.
+ virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const LLVM_OVERRIDE;
+ virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const LLVM_OVERRIDE;
+ virtual bool AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const LLVM_OVERRIDE;
+ virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const LLVM_OVERRIDE;
+ virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const LLVM_OVERRIDE;
+ virtual void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const LLVM_OVERRIDE;
+ virtual void
+ storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const LLVM_OVERRIDE;
+ virtual void
+ loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const LLVM_OVERRIDE;
+ virtual bool
+ expandPostRAPseudo(MachineBasicBlock::iterator MBBI) const LLVM_OVERRIDE;
+ virtual bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
+ LLVM_OVERRIDE;
+
+ // Return the SystemZRegisterInfo, which this class owns.
+ const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
+
+ // Return true if MI is a conditional or unconditional branch.
+ // When returning true, set Cond to the mask of condition-code
+ // values on which the instruction will branch, and set Target
+ // to the operand that contains the branch target. This target
+ // can be a register or a basic block.
+ bool isBranch(const MachineInstr *MI, unsigned &Cond,
+ const MachineOperand *&Target) const;
+
+ // Get the load and store opcodes for a given register class.
+ void getLoadStoreOpcodes(const TargetRegisterClass *RC,
+ unsigned &LoadOpcode, unsigned &StoreOpcode) const;
+
+ // Opcode is the opcode of an instruction that has an address operand,
+ // and the caller wants to perform that instruction's operation on an
+ // address that has displacement Offset. Return the opcode of a suitable
+ // instruction (which might be Opcode itself) or 0 if no such instruction
+ // exists.
+ unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset) const;
+
+ // Emit code before MBBI in MI to move immediate value Value into
+ // physical register Reg.
+ void loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned Reg, uint64_t Value) const;
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.td b/lib/Target/SystemZ/SystemZInstrInfo.td
new file mode 100644
index 0000000000..7ffa382d36
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.td
@@ -0,0 +1,955 @@
+//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Stack allocation
+//===----------------------------------------------------------------------===//
+
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+
+let neverHasSideEffects = 1 in {
+ // Takes as input the value of the stack pointer after a dynamic allocation
+ // has been made. Sets the output to the address of the dynamically-
+ // allocated area itself, skipping the outgoing arguments.
+ //
+ // This expands to an LA or LAY instruction. We restrict the offset
+ // to the range of LA and keep the LAY range in reserve for when
+ // the size of the outgoing arguments is added.
+ def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
+ [(set GR64:$dst, dynalloc12only:$src)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Control flow instructions
+//===----------------------------------------------------------------------===//
+
+// A return instruction. R1 is the condition-code mask (all 1s)
+// and R2 is the target address, which is always stored in %r14.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
+ R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
+ def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
+}
+
+// Unconditional branches. R1 is the condition-code mask (all 1s).
+let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
+ let isIndirectBranch = 1 in
+ def BR : InstRR<0x07, (outs), (ins ADDR64:$dst),
+ "br\t$dst", [(brind ADDR64:$dst)]>;
+
+ // An assembler extended mnemonic for BRC. Use a separate instruction for
+ // the asm parser, so that we don't relax Js to external symbols into JGs.
+ let isCodeGenOnly = 1 in
+ def J : InstRI<0xA74, (outs), (ins brtarget16:$dst), "j\t$dst", []>;
+ let isAsmParserOnly = 1 in
+ def AsmJ : InstRI<0xA74, (outs), (ins brtarget16:$dst), "j\t$dst", []>;
+
+ // An assembler extended mnemonic for BRCL. (The extension is "G"
+ // rather than "L" because "JL" is "Jump if Less".)
+ def JG : InstRIL<0xC04, (outs), (ins brtarget32:$dst),
+ "jg\t$dst", [(br bb:$dst)]>;
+}
+
+// Conditional branches. It's easier for LLVM to handle these branches
+// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
+// the first operand. It seems friendlier to use mnemonic forms like
+// JE and JLH when writing out the assembly though.
+multiclass CondBranches<Operand imm, string short, string long> {
+ let isBranch = 1, isTerminator = 1, Uses = [PSW] in {
+ def "" : InstRI<0xA74, (outs), (ins imm:$cond, brtarget16:$dst), short, []>;
+ def L : InstRIL<0xC04, (outs), (ins imm:$cond, brtarget32:$dst), long, []>;
+ }
+}
+let isCodeGenOnly = 1 in
+ defm BRC : CondBranches<cond4, "j$cond\t$dst", "jg$cond\t$dst">;
+let isAsmParserOnly = 1 in
+ defm AsmBRC : CondBranches<uimm8zx4, "brc\t$cond, $dst", "brcl\t$cond, $dst">;
+
+def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRCL cond4:$cond, bb:$dst)>;
+
+// Define AsmParser mnemonics for each condition code.
+multiclass CondExtendedMnemonic<bits<4> Cond, string name> {
+ let R1 = Cond in {
+ def "" : InstRI<0xA74, (outs), (ins brtarget16:$dst),
+ "j"##name##"\t$dst", []>;
+ def L : InstRIL<0xC04, (outs), (ins brtarget32:$dst),
+ "jg"##name##"\t$dst", []>;
+ }
+}
+let isAsmParserOnly = 1 in {
+ defm AsmJO : CondExtendedMnemonic<1, "o">;
+ defm AsmJH : CondExtendedMnemonic<2, "h">;
+ defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
+ defm AsmJL : CondExtendedMnemonic<4, "l">;
+ defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
+ defm AsmJLH : CondExtendedMnemonic<6, "lh">;
+ defm AsmJNE : CondExtendedMnemonic<7, "ne">;
+ defm AsmJE : CondExtendedMnemonic<8, "e">;
+ defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
+ defm AsmJHE : CondExtendedMnemonic<10, "he">;
+ defm AsmJNL : CondExtendedMnemonic<11, "nl">;
+ defm AsmJLE : CondExtendedMnemonic<12, "le">;
+ defm AsmJNH : CondExtendedMnemonic<13, "nh">;
+ defm AsmJNO : CondExtendedMnemonic<14, "no">;
+}
+
+def Select32 : SelectWrapper<GR32>;
+def Select64 : SelectWrapper<GR64>;
+
+//===----------------------------------------------------------------------===//
+// Call instructions
+//===----------------------------------------------------------------------===//
+
+// The definitions here are for the call-clobbered registers.
+let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
+ F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
+ R1 = 14, isCodeGenOnly = 1 in {
+ def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$dst, variable_ops),
+ "bras\t%r14, $dst", []>;
+ def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$dst, variable_ops),
+ "brasl\t%r14, $dst", [(z_call pcrel32call:$dst)]>;
+ def BASR : InstRR<0x0D, (outs), (ins ADDR64:$dst, variable_ops),
+ "basr\t%r14, $dst", [(z_call ADDR64:$dst)]>;
+}
+
+// Define the general form of the call instructions for the asm parser.
+// These instructions don't hard-code %r14 as the return address register.
+let isAsmParserOnly = 1 in {
+ def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$save, brtarget16:$dst),
+ "bras\t$save, $dst", []>;
+ def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$save, brtarget32:$dst),
+ "brasl\t$save, $dst", []>;
+ def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$save, ADDR64:$dst),
+ "basr\t$save, $dst", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Register moves.
+let neverHasSideEffects = 1 in {
+ def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
+ def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
+}
+
+// Immediate moves.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+ // 16-bit sign-extended immediates.
+ def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
+ def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
+
+ // Other 16-bit immediates.
+ def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
+ def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
+ def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
+ def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
+
+ // 32-bit immediates.
+ def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
+ def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
+ def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
+}
+
+// Register loads.
+let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
+ defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
+ def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
+
+ def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
+ def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
+ [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
+ }
+}
+
+// Register stores.
+let SimpleBDXStore = 1 in {
+ let isCodeGenOnly = 1 in {
+ defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
+ def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
+ }
+
+ def STG : StoreRXY<"stg", 0xE324, store, GR64>;
+ def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
+ [(store GR128:$src, bdxaddr20only128:$dst)]>;
+ }
+}
+
+// 8-bit immediate stores to 8-bit fields.
+defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
+
+// 16-bit immediate stores to 16-, 32- or 64-bit fields.
+def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
+def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
+def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
+
+//===----------------------------------------------------------------------===//
+// Sign extensions
+//===----------------------------------------------------------------------===//
+
+// 32-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
+ def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
+}
+
+// 64-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
+ def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
+ def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
+}
+
+// Match 32-to-64-bit sign extensions in which the source is already
+// in a 64-bit register.
+def : Pat<(sext_inreg GR64:$src, i32),
+ (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
+
+// 32-bit extensions from memory.
+def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
+defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
+def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
+
+// 64-bit extensions from memory.
+def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
+def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
+def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
+def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
+def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
+
+// If the sign of a load-extend operation doesn't matter, use the signed ones.
+// There's not really much to choose between the sign and zero extensions,
+// but LH is more compact than LLH for small offsets.
+def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
+def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
+def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
+
+def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
+def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
+def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
+
+//===----------------------------------------------------------------------===//
+// Zero extensions
+//===----------------------------------------------------------------------===//
+
+// 32-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
+ def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
+}
+
+// 64-bit extensions from registers.
+let neverHasSideEffects = 1 in {
+ def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
+ def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
+ def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
+}
+
+// Match 32-to-64-bit zero extensions in which the source is already
+// in a 64-bit register.
+def : Pat<(and GR64:$src, 0xffffffff),
+ (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
+
+// 32-bit extensions from memory.
+def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
+def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
+def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
+
+// 64-bit extensions from memory.
+def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
+def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
+def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
+def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
+def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Truncations
+//===----------------------------------------------------------------------===//
+
+// Truncations of 64-bit registers to 32-bit registers.
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
+
+// Truncations of 32-bit registers to memory.
+let isCodeGenOnly = 1 in {
+ defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
+ defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
+ def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
+}
+
+// Truncations of 64-bit registers to memory.
+defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
+defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
+def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
+defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
+def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Multi-register moves
+//===----------------------------------------------------------------------===//
+
+// Multi-register loads.
+def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
+
+// Multi-register stores.
+def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Byte swaps
+//===----------------------------------------------------------------------===//
+
+// Byte-swapping register moves.
+let neverHasSideEffects = 1 in {
+ def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
+ def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
+}
+
+// Byte-swapping loads.
+def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap>, GR32>;
+def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap>, GR64>;
+
+// Byte-swapping stores.
+def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap>, GR32>;
+def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap>, GR64>;
+
+//===----------------------------------------------------------------------===//
+// Load address instructions
+//===----------------------------------------------------------------------===//
+
+// Load BDX-style addresses.
+let neverHasSideEffects = 1, Function = "la" in {
+ let PairType = "12" in
+ def LA : InstRX<0x41, (outs GR64:$dst), (ins laaddr12pair:$src),
+ "la\t$dst, $src",
+ [(set GR64:$dst, laaddr12pair:$src)]>;
+ let PairType = "20" in
+ def LAY : InstRXY<0xE371, (outs GR64:$dst), (ins laaddr20pair:$src),
+ "lay\t$dst, $src",
+ [(set GR64:$dst, laaddr20pair:$src)]>;
+}
+
+// Load a PC-relative address. There's no version of this instruction
+// with a 16-bit offset, so there's no relaxation.
+let neverHasSideEffects = 1 in {
+ def LARL : InstRIL<0xC00, (outs GR64:$dst), (ins pcrel32:$src),
+ "larl\t$dst, $src",
+ [(set GR64:$dst, pcrel32:$src)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Negation
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
+ def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
+ def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
+}
+defm : SXU<ineg, LCGFR>;
+
+//===----------------------------------------------------------------------===//
+// Insertion
+//===----------------------------------------------------------------------===//
+
+let isCodeGenOnly = 1 in
+ defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
+defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
+
+defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
+defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
+
+defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
+defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
+
+// Insertions of a 16-bit immediate, leaving other bits unaffected.
+// We don't have or_as_insert equivalents of these operations because
+// OI is available instead.
+let isCodeGenOnly = 1 in {
+ def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
+ def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
+}
+def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
+def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
+def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
+def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
+
+// ...likewise for 32-bit immediates. For GR32s this is a general
+// full-width move. (We use IILF rather than something like LLILF
+// for 32-bit moves because IILF leaves the upper 32 bits of the
+// GR64 unchanged.)
+let isCodeGenOnly = 1 in {
+ def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
+}
+def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
+def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
+
+// An alternative model of inserthf, with the first operand being
+// a zero-extended value.
+def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
+ (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
+ imm64hf32:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// Addition
+//===----------------------------------------------------------------------===//
+
+// Plain addition.
+let Defs = [PSW] in {
+ // Addition of a register.
+ let isCommutable = 1 in {
+ def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
+ def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
+ }
+ def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
+
+ // Addition of signed 16-bit immediates.
+ def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
+ def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
+
+ // Addition of signed 32-bit immediates.
+ def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
+ def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
+
+ // Addition of memory.
+ defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
+ defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
+ def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
+ def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
+
+ // Addition to memory.
+ def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
+ def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
+}
+defm : SXB<add, GR64, AGFR>;
+
+// Addition producing a carry.
+let Defs = [PSW] in {
+ // Addition of a register.
+ let isCommutable = 1 in {
+ def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
+ def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
+ }
+ def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
+
+ // Addition of unsigned 32-bit immediates.
+ def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
+ def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
+
+ // Addition of memory.
+ defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
+ def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
+ def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
+}
+defm : ZXB<addc, GR64, ALGFR>;
+
+// Addition producing and using a carry.
+let Defs = [PSW], Uses = [PSW] in {
+ // Addition of a register.
+ def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
+ def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
+
+ // Addition of memory.
+ def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
+ def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
+}
+
+//===----------------------------------------------------------------------===//
+// Subtraction
+//===----------------------------------------------------------------------===//
+
+// Plain substraction. Although immediate forms exist, we use the
+// add-immediate instruction instead.
+let Defs = [PSW] in {
+ // Subtraction of a register.
+ def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
+ def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
+ def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
+
+ // Subtraction of memory.
+ defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
+ def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
+ def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
+}
+defm : SXB<sub, GR64, SGFR>;
+
+// Subtraction producing a carry.
+let Defs = [PSW] in {
+ // Subtraction of a register.
+ def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
+ def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
+ def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
+
+ // Subtraction of unsigned 32-bit immediates. These don't match
+ // subc because we prefer addc for constants.
+ def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
+ def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
+
+ // Subtraction of memory.
+ defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
+ def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
+ def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
+}
+defm : ZXB<subc, GR64, SLGFR>;
+
+// Subtraction producing and using a carry.
+let Defs = [PSW], Uses = [PSW] in {
+ // Subtraction of a register.
+ def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
+ def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
+
+ // Subtraction of memory.
+ def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
+ def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
+}
+
+//===----------------------------------------------------------------------===//
+// AND
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ // ANDs of a register.
+ let isCommutable = 1 in {
+ def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
+ def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
+ }
+
+ // ANDs of a 16-bit immediate, leaving other bits unaffected.
+ let isCodeGenOnly = 1 in {
+ def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
+ def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
+ }
+ def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
+ def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
+ def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
+ def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
+
+ // ANDs of a 32-bit immediate, leaving other bits unaffected.
+ let isCodeGenOnly = 1 in
+ def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
+ def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
+ def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
+
+ // ANDs of memory.
+ defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
+ def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
+
+ // AND to memory
+ defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
+}
+defm : RMWIByte<and, bdaddr12pair, NI>;
+defm : RMWIByte<and, bdaddr20pair, NIY>;
+
+//===----------------------------------------------------------------------===//
+// OR
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ // ORs of a register.
+ let isCommutable = 1 in {
+ def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
+ def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
+ }
+
+ // ORs of a 16-bit immediate, leaving other bits unaffected.
+ let isCodeGenOnly = 1 in {
+ def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
+ def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
+ }
+ def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
+ def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
+ def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
+ def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
+
+ // ORs of a 32-bit immediate, leaving other bits unaffected.
+ let isCodeGenOnly = 1 in
+ def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
+ def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
+ def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
+
+ // ORs of memory.
+ defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
+ def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
+
+ // OR to memory
+ defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
+}
+defm : RMWIByte<or, bdaddr12pair, OI>;
+defm : RMWIByte<or, bdaddr20pair, OIY>;
+
+//===----------------------------------------------------------------------===//
+// XOR
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ // XORs of a register.
+ let isCommutable = 1 in {
+ def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
+ def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
+ }
+
+ // XORs of a 32-bit immediate, leaving other bits unaffected.
+ let isCodeGenOnly = 1 in
+ def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
+ def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
+ def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
+
+ // XORs of memory.
+ defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
+ def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
+
+ // XOR to memory
+ defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
+}
+defm : RMWIByte<xor, bdaddr12pair, XI>;
+defm : RMWIByte<xor, bdaddr20pair, XIY>;
+
+//===----------------------------------------------------------------------===//
+// Multiplication
+//===----------------------------------------------------------------------===//
+
+// Multiplication of a register.
+let isCommutable = 1 in {
+ def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
+ def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
+}
+def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
+defm : SXB<mul, GR64, MSGFR>;
+
+// Multiplication of a signed 16-bit immediate.
+def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
+def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
+
+// Multiplication of a signed 32-bit immediate.
+def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
+def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
+
+// Multiplication of memory.
+defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
+defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
+def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
+def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
+
+// Multiplication of a register, producing two results.
+def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
+
+// Multiplication of memory, producing two results.
+def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
+
+//===----------------------------------------------------------------------===//
+// Division and remainder
+//===----------------------------------------------------------------------===//
+
+// Division and remainder, from registers.
+def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
+def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
+def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
+def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
+defm : SXB<z_sdivrem64, GR128, DSGFR>;
+
+// Division and remainder, from memory.
+def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
+def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
+def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
+def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
+
+//===----------------------------------------------------------------------===//
+// Shifts
+//===----------------------------------------------------------------------===//
+
+// Shift left.
+let neverHasSideEffects = 1 in {
+ def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
+ def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
+}
+
+// Logical shift right.
+let neverHasSideEffects = 1 in {
+ def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
+ def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
+}
+
+// Arithmetic shift right.
+let Defs = [PSW] in {
+ def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
+ def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
+}
+
+// Rotate left.
+let neverHasSideEffects = 1 in {
+ def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
+ def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
+}
+
+// Rotate second operand left and inserted selected bits into first operand.
+// These can act like 32-bit operands provided that the constant start and
+// end bits (operands 2 and 3) are in the range [32, 64)
+let Defs = [PSW] in {
+ let isCodeGenOnly = 1 in
+ def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
+ def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
+}
+
+//===----------------------------------------------------------------------===//
+// Comparison
+//===----------------------------------------------------------------------===//
+
+// Signed comparisons.
+let Defs = [PSW] in {
+ // Comparison with a register.
+ def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
+ def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
+ def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
+
+ // Comparison with a signed 16-bit immediate.
+ def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
+ def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
+
+ // Comparison with a signed 32-bit immediate.
+ def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
+ def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
+
+ // Comparison with memory.
+ defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
+ defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
+ def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
+ def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
+ def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
+ def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
+ def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
+ def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
+ def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
+ def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
+
+ // Comparison between memory and a signed 16-bit immediate.
+ def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
+ def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
+ def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
+}
+defm : SXB<z_cmp, GR64, CGFR>;
+
+// Unsigned comparisons.
+let Defs = [PSW] in {
+ // Comparison with a register.
+ def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
+ def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
+ def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
+
+ // Comparison with a signed 32-bit immediate.
+ def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
+ def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
+
+ // Comparison with memory.
+ defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
+ def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
+ def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
+ def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
+ aligned_zextloadi16>;
+ def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
+ aligned_load>;
+ def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
+ aligned_zextloadi16>;
+ def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
+ aligned_zextloadi32>;
+ def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
+ aligned_load>;
+
+ // Comparison between memory and an unsigned 8-bit immediate.
+ defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
+
+ // Comparison between memory and an unsigned 16-bit immediate.
+ def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
+ def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
+ def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
+}
+defm : ZXB<z_ucmp, GR64, CLGFR>;
+
+//===----------------------------------------------------------------------===//
+// Atomic operations
+//===----------------------------------------------------------------------===//
+
+def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
+def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
+def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
+
+def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
+def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
+def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
+def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
+def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
+def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
+def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
+def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
+
+def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
+def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
+def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
+
+def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
+def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
+def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
+def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
+def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
+def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
+def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
+def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
+def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
+def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
+def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
+def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
+def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
+
+def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
+def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
+def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
+def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
+def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
+def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
+def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
+def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
+def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
+def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
+def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
+def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
+def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
+
+def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
+def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
+def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
+def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
+def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
+def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
+def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
+
+def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
+def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
+ imm32lh16c>;
+def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
+def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
+ imm32ll16c>;
+def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
+ imm32lh16c>;
+def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
+def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
+def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64ll16c>;
+def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64lh16c>;
+def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hl16c>;
+def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hh16c>;
+def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64lf32c>;
+def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
+ imm64hf32c>;
+
+def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
+def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
+def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
+
+def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
+def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
+def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
+
+def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
+def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
+def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
+
+def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
+def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
+def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
+
+def ATOMIC_CMP_SWAPW
+ : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
+ ADDR32:$bitshift, ADDR32:$negbitshift,
+ uimm32:$bitsize),
+ [(set GR32:$dst,
+ (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
+ ADDR32:$bitshift, ADDR32:$negbitshift,
+ uimm32:$bitsize))]> {
+ let Defs = [PSW];
+ let mayLoad = 1;
+ let mayStore = 1;
+ let usesCustomInserter = 1;
+}
+
+let Defs = [PSW] in {
+ defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
+ def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//===----------------------------------------------------------------------===//
+
+// Read a 32-bit access register into a GR32. As with all GR32 operations,
+// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
+// when a 64-bit address is stored in a pair of access registers.
+def EAR : InstRRE<0xB24F, (outs GR32:$dst), (ins access_reg:$src),
+ "ear\t$dst, $src",
+ [(set GR32:$dst, (z_extract_access access_reg:$src))]>;
+
+// Find leftmost one, AKA count leading zeros. The instruction actually
+// returns a pair of GR64s, the first giving the number of leading zeros
+// and the second giving a copy of the source with the leftmost one bit
+// cleared. We only use the first result here.
+let Defs = [PSW] in {
+ def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
+}
+def : Pat<(ctlz GR64:$src),
+ (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
+
+// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
+def : Pat<(i64 (anyext GR32:$src)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
+
+// There are no 32-bit equivalents of LLILL and LLILH, so use a full
+// 64-bit move followed by a subreg. This preserves the invariant that
+// all GR32 operations only modify the low 32 bits.
+def : Pat<(i32 imm32ll16:$src),
+ (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
+def : Pat<(i32 imm32lh16:$src),
+ (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
+
+// Extend GR32s and GR64s to GR128s.
+let usesCustomInserter = 1 in {
+ def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
+ def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
+ def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Peepholes.
+//===----------------------------------------------------------------------===//
+
+// Use AL* for GR64 additions of unsigned 32-bit values.
+defm : ZXB<add, GR64, ALGFR>;
+def : Pat<(add GR64:$src1, imm64zx32:$src2),
+ (ALGFI GR64:$src1, imm64zx32:$src2)>;
+def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
+ (ALGF GR64:$src1, bdxaddr20only:$addr)>;
+
+// Use SL* for GR64 subtractions of unsigned 32-bit values.
+defm : ZXB<sub, GR64, SLGFR>;
+def : Pat<(add GR64:$src1, imm64zx32n:$src2),
+ (SLGFI GR64:$src1, imm64zx32n:$src2)>;
+def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
+ (SLGF GR64:$src1, bdxaddr20only:$addr)>;
diff --git a/lib/Target/SystemZ/SystemZMCInstLower.cpp b/lib/Target/SystemZ/SystemZMCInstLower.cpp
new file mode 100644
index 0000000000..5d833213e6
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMCInstLower.cpp
@@ -0,0 +1,116 @@
+//===-- SystemZMCInstLower.cpp - Lower MachineInstr to MCInst -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCInstLower.h"
+#include "SystemZAsmPrinter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Target/Mangler.h"
+
+using namespace llvm;
+
+// Where relaxable pairs of reloc-generating instructions exist,
+// we tend to use the longest form by default, since that produces
+// correct assembly in cases where no relaxation is performed.
+// If Opcode is one such instruction, return the opcode for the
+// shortest possible form instead, otherwise return Opcode itself.
+static unsigned getShortenedInstr(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::BRCL: return SystemZ::BRC;
+ case SystemZ::JG: return SystemZ::J;
+ case SystemZ::BRASL: return SystemZ::BRAS;
+ }
+ return Opcode;
+}
+
+// Return the VK_* enumeration for MachineOperand target flags Flags.
+static MCSymbolRefExpr::VariantKind getVariantKind(unsigned Flags) {
+ switch (Flags & SystemZII::MO_SYMBOL_MODIFIER) {
+ case 0:
+ return MCSymbolRefExpr::VK_None;
+ case SystemZII::MO_GOT:
+ return MCSymbolRefExpr::VK_GOT;
+ }
+ llvm_unreachable("Unrecognised MO_ACCESS_MODEL");
+}
+
+SystemZMCInstLower::SystemZMCInstLower(Mangler *mang, MCContext &ctx,
+ SystemZAsmPrinter &asmprinter)
+ : Mang(mang), Ctx(ctx), AsmPrinter(asmprinter) {}
+
+MCOperand SystemZMCInstLower::lowerSymbolOperand(const MachineOperand &MO,
+ const MCSymbol *Symbol,
+ int64_t Offset) const {
+ MCSymbolRefExpr::VariantKind Kind = getVariantKind(MO.getTargetFlags());
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Symbol, Kind, Ctx);
+ if (Offset) {
+ const MCExpr *OffsetExpr = MCConstantExpr::Create(Offset, Ctx);
+ Expr = MCBinaryExpr::CreateAdd(Expr, OffsetExpr, Ctx);
+ }
+ return MCOperand::CreateExpr(Expr);
+}
+
+MCOperand SystemZMCInstLower::lowerOperand(const MachineOperand &MO) const {
+ switch (MO.getType()) {
+ default:
+ llvm_unreachable("unknown operand type");
+
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit())
+ return MCOperand();
+ return MCOperand::CreateReg(MO.getReg());
+
+ case MachineOperand::MO_Immediate:
+ return MCOperand::CreateImm(MO.getImm());
+
+ case MachineOperand::MO_MachineBasicBlock:
+ return lowerSymbolOperand(MO, MO.getMBB()->getSymbol(),
+ /* MO has no offset field */0);
+
+ case MachineOperand::MO_GlobalAddress:
+ return lowerSymbolOperand(MO, Mang->getSymbol(MO.getGlobal()),
+ MO.getOffset());
+
+ case MachineOperand::MO_ExternalSymbol: {
+ StringRef Name = MO.getSymbolName();
+ return lowerSymbolOperand(MO, AsmPrinter.GetExternalSymbolSymbol(Name),
+ MO.getOffset());
+ }
+
+ case MachineOperand::MO_JumpTableIndex:
+ return lowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()),
+ /* MO has no offset field */0);
+
+ case MachineOperand::MO_ConstantPoolIndex:
+ return lowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()),
+ MO.getOffset());
+
+ case MachineOperand::MO_BlockAddress: {
+ const BlockAddress *BA = MO.getBlockAddress();
+ return lowerSymbolOperand(MO, AsmPrinter.GetBlockAddressSymbol(BA),
+ MO.getOffset());
+ }
+ }
+}
+
+void SystemZMCInstLower::lower(const MachineInstr *MI, MCInst &OutMI) const {
+ unsigned Opcode = MI->getOpcode();
+ // When emitting binary code, start with the shortest form of an instruction
+ // and then relax it where necessary.
+ if (!AsmPrinter.OutStreamer.hasRawTextSupport())
+ Opcode = getShortenedInstr(Opcode);
+ OutMI.setOpcode(Opcode);
+ for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI->getOperand(I);
+ MCOperand MCOp = lowerOperand(MO);
+ if (MCOp.isValid())
+ OutMI.addOperand(MCOp);
+ }
+}
diff --git a/lib/Target/SystemZ/SystemZMCInstLower.h b/lib/Target/SystemZ/SystemZMCInstLower.h
new file mode 100644
index 0000000000..afa72f38ad
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMCInstLower.h
@@ -0,0 +1,47 @@
+//===-- SystemZMCInstLower.h - Lower MachineInstr to MCInst ----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEMZMCINSTLOWER_H
+#define LLVM_SYSTEMZMCINSTLOWER_H
+
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+class MCContext;
+class MCInst;
+class MCOperand;
+class MCSymbol;
+class MachineInstr;
+class MachineOperand;
+class Mangler;
+class SystemZAsmPrinter;
+
+class LLVM_LIBRARY_VISIBILITY SystemZMCInstLower {
+ Mangler *Mang;
+ MCContext &Ctx;
+ SystemZAsmPrinter &AsmPrinter;
+
+public:
+ SystemZMCInstLower(Mangler *mang, MCContext &ctx,
+ SystemZAsmPrinter &asmPrinter);
+
+ // Lower MachineInstr MI to MCInst OutMI.
+ void lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ // Return an MCOperand for MO. Return an empty operand if MO is implicit.
+ MCOperand lowerOperand(const MachineOperand& MO) const;
+
+ // Return an MCOperand for MO, given that it equals Symbol + Offset.
+ MCOperand lowerSymbolOperand(const MachineOperand &MO,
+ const MCSymbol *Symbol, int64_t Offset) const;
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZMachineFunctionInfo.h b/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
new file mode 100644
index 0000000000..1dc05a7e12
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
@@ -0,0 +1,74 @@
+//==- SystemZMachineFuctionInfo.h - SystemZ machine function info -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZMACHINEFUNCTIONINFO_H
+#define SYSTEMZMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+class SystemZMachineFunctionInfo : public MachineFunctionInfo {
+ unsigned SavedGPRFrameSize;
+ unsigned LowSavedGPR;
+ unsigned HighSavedGPR;
+ unsigned VarArgsFirstGPR;
+ unsigned VarArgsFirstFPR;
+ unsigned VarArgsFrameIndex;
+ unsigned RegSaveFrameIndex;
+ bool ManipulatesSP;
+
+public:
+ explicit SystemZMachineFunctionInfo(MachineFunction &MF)
+ : SavedGPRFrameSize(0), LowSavedGPR(0), HighSavedGPR(0), VarArgsFirstGPR(0),
+ VarArgsFirstFPR(0), VarArgsFrameIndex(0), RegSaveFrameIndex(0),
+ ManipulatesSP(false) {}
+
+ // Get and set the number of bytes allocated by generic code to store
+ // call-saved GPRs.
+ unsigned getSavedGPRFrameSize() const { return SavedGPRFrameSize; }
+ void setSavedGPRFrameSize(unsigned bytes) { SavedGPRFrameSize = bytes; }
+
+ // Get and set the first call-saved GPR that should be saved and restored
+ // by this function. This is 0 if no GPRs need to be saved or restored.
+ unsigned getLowSavedGPR() const { return LowSavedGPR; }
+ void setLowSavedGPR(unsigned Reg) { LowSavedGPR = Reg; }
+
+ // Get and set the last call-saved GPR that should be saved and restored
+ // by this function.
+ unsigned getHighSavedGPR() const { return HighSavedGPR; }
+ void setHighSavedGPR(unsigned Reg) { HighSavedGPR = Reg; }
+
+ // Get and set the number of fixed (as opposed to variable) arguments
+ // that are passed in GPRs to this function.
+ unsigned getVarArgsFirstGPR() const { return VarArgsFirstGPR; }
+ void setVarArgsFirstGPR(unsigned GPR) { VarArgsFirstGPR = GPR; }
+
+ // Likewise FPRs.
+ unsigned getVarArgsFirstFPR() const { return VarArgsFirstFPR; }
+ void setVarArgsFirstFPR(unsigned FPR) { VarArgsFirstFPR = FPR; }
+
+ // Get and set the frame index of the first stack vararg.
+ unsigned getVarArgsFrameIndex() const { return VarArgsFrameIndex; }
+ void setVarArgsFrameIndex(unsigned FI) { VarArgsFrameIndex = FI; }
+
+ // Get and set the frame index of the register save area
+ // (i.e. the incoming stack pointer).
+ unsigned getRegSaveFrameIndex() const { return RegSaveFrameIndex; }
+ void setRegSaveFrameIndex(unsigned FI) { RegSaveFrameIndex = FI; }
+
+ // Get and set whether the function directly manipulates the stack pointer,
+ // e.g. through STACKSAVE or STACKRESTORE.
+ bool getManipulatesSP() const { return ManipulatesSP; }
+ void setManipulatesSP(bool MSP) { ManipulatesSP = MSP; }
+};
+
+} // end llvm namespace
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZOperands.td b/lib/Target/SystemZ/SystemZOperands.td
new file mode 100644
index 0000000000..0abc3f7517
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZOperands.td
@@ -0,0 +1,435 @@
+//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Class definitions
+//===----------------------------------------------------------------------===//
+
+class ImmediateAsmOperand<string name>
+ : AsmOperandClass {
+ let Name = name;
+ let RenderMethod = "addImmOperands";
+}
+
+// Constructs both a DAG pattern and instruction operand for an immediate
+// of type VT. PRED returns true if a node is acceptable and XFORM returns
+// the operand value associated with the node. ASMOP is the name of the
+// associated asm operand, and also forms the basis of the asm print method.
+class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
+ : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
+ let PrintMethod = "print"##asmop##"Operand";
+ let ParserMatchClass = !cast<AsmOperandClass>(asmop);
+}
+
+// Constructs both a DAG pattern and instruction operand for a PC-relative
+// address with address size VT. SELF is the name of the operand.
+class PCRelAddress<ValueType vt, string self>
+ : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
+ Operand<vt> {
+ let MIOperandInfo = (ops !cast<Operand>(self));
+}
+
+// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
+// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
+class AddressAsmOperand<string format, string bitsize, string dispsize>
+ : AsmOperandClass {
+ let Name = format##bitsize##"Disp"##dispsize;
+ let ParserMethod = "parse"##format##bitsize;
+ let RenderMethod = "add"##format##"Operands";
+}
+
+// Constructs both a DAG pattern and instruction operand for an addressing mode.
+// The mode is selected by custom code in selectTYPE...SUFFIX(). The address
+// registers have BITSIZE bits and displacements have DISPSIZE bits. NUMOPS is
+// the number of operands that make up an address and OPERANDS lists the types
+// of those operands using (ops ...). FORMAT is the type of addressing mode,
+// which needs to match the names used in AddressAsmOperand.
+class AddressingMode<string type, string bitsize, string dispsize,
+ string suffix, int numops, string format, dag operands>
+ : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
+ "select"##type##dispsize##suffix,
+ [add, sub, or, frameindex, z_adjdynalloc]>,
+ Operand<!cast<ValueType>("i"##bitsize)> {
+ let PrintMethod = "print"##format##"Operand";
+ let MIOperandInfo = operands;
+ let ParserMatchClass =
+ !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize);
+}
+
+// An addressing mode with a base and displacement but no index.
+class BDMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
+
+// An addressing mode with a base, displacement and index.
+class BDXMode<string type, string bitsize, string dispsize, string suffix>
+ : AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr",
+ (ops !cast<RegisterOperand>("ADDR"##bitsize),
+ !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
+ !cast<RegisterOperand>("ADDR"##bitsize))>;
+
+//===----------------------------------------------------------------------===//
+// Extracting immediate operands from nodes
+// These all create MVT::i64 nodes to ensure the value is not sign-extended
+// when converted from an SDNode to a MachineOperand later on.
+//===----------------------------------------------------------------------===//
+
+// Bits 0-15 (counting from the lsb).
+def LL16 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 16-31 (counting from the lsb).
+def LH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 32-47 (counting from the lsb).
+def HL16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Bits 48-63 (counting from the lsb).
+def HH16 : SDNodeXForm<imm, [{
+ uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Low 32 bits.
+def LF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// High 32 bits.
+def HF32 : SDNodeXForm<imm, [{
+ uint64_t Value = N->getZExtValue() >> 32;
+ return CurDAG->getTargetConstant(Value, MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit signed quantity.
+def SIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 8-bit unsigned quantity.
+def UIMM8 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit signed quantity.
+def SIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 16-bit unsigned quantity.
+def UIMM16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit signed quantity.
+def SIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Truncate an immediate to a 32-bit unsigned quantity.
+def UIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
+}]>;
+
+// Negate and then truncate an immediate to a 32-bit unsigned quantity.
+def NEGIMM32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Immediate asm operands.
+//===----------------------------------------------------------------------===//
+
+def U4Imm : ImmediateAsmOperand<"U4Imm">;
+def U6Imm : ImmediateAsmOperand<"U6Imm">;
+def S8Imm : ImmediateAsmOperand<"S8Imm">;
+def U8Imm : ImmediateAsmOperand<"U8Imm">;
+def S16Imm : ImmediateAsmOperand<"S16Imm">;
+def U16Imm : ImmediateAsmOperand<"U16Imm">;
+def S32Imm : ImmediateAsmOperand<"S32Imm">;
+def U32Imm : ImmediateAsmOperand<"U32Imm">;
+
+//===----------------------------------------------------------------------===//
+// 8-bit immediates
+//===----------------------------------------------------------------------===//
+
+def uimm8zx4 : Immediate<i8, [{
+ return isUInt<4>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U4Imm">;
+
+def uimm8zx6 : Immediate<i8, [{
+ return isUInt<6>(N->getZExtValue());
+}], NOOP_SDNodeXForm, "U6Imm">;
+
+def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">;
+def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">;
+
+//===----------------------------------------------------------------------===//
+// i32 immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being zero.
+def imm32ll16 : Immediate<i32, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm32lh16 : Immediate<i32, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+// Immediates for the lower and upper 16 bits of an i32, with the other
+// bits of the i32 being one.
+def imm32ll16c : Immediate<i32, [{
+ return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm32lh16c : Immediate<i32, [{
+ return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+// Short immediates
+def imm32sx8 : Immediate<i32, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm32zx8 : Immediate<i32, [{
+ return isUInt<8>(N->getZExtValue());
+}], UIMM8, "U8Imm">;
+
+def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
+
+def imm32sx16 : Immediate<i32, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm32zx16 : Immediate<i32, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
+
+// Full 32-bit immediates. we need both signed and unsigned versions
+// because the assembler is picky. E.g. AFI requires signed operands
+// while NILF requires unsigned ones.
+def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
+def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
+
+def imm32 : ImmLeaf<i32, [{}]>;
+
+//===----------------------------------------------------------------------===//
+// 64-bit immediates
+//===----------------------------------------------------------------------===//
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being zero.
+def imm64ll16 : Immediate<i64, [{
+ return SystemZ::isImmLL(N->getZExtValue());
+}], LL16, "U16Imm">;
+
+def imm64lh16 : Immediate<i64, [{
+ return SystemZ::isImmLH(N->getZExtValue());
+}], LH16, "U16Imm">;
+
+def imm64hl16 : Immediate<i64, [{
+ return SystemZ::isImmHL(N->getZExtValue());
+}], HL16, "U16Imm">;
+
+def imm64hh16 : Immediate<i64, [{
+ return SystemZ::isImmHH(N->getZExtValue());
+}], HH16, "U16Imm">;
+
+// Immediates for 16-bit chunks of an i64, with the other bits of the
+// i32 being one.
+def imm64ll16c : Immediate<i64, [{
+ return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
+}], LL16, "U16Imm">;
+
+def imm64lh16c : Immediate<i64, [{
+ return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
+}], LH16, "U16Imm">;
+
+def imm64hl16c : Immediate<i64, [{
+ return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
+}], HL16, "U16Imm">;
+
+def imm64hh16c : Immediate<i64, [{
+ return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
+}], HH16, "U16Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being zero.
+def imm64lf32 : Immediate<i64, [{
+ return SystemZ::isImmLF(N->getZExtValue());
+}], LF32, "U32Imm">;
+
+def imm64hf32 : Immediate<i64, [{
+ return SystemZ::isImmHF(N->getZExtValue());
+}], HF32, "U32Imm">;
+
+// Immediates for the lower and upper 32 bits of an i64, with the other
+// bits of the i32 being one.
+def imm64lf32c : Immediate<i64, [{
+ return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
+}], LF32, "U32Imm">;
+
+def imm64hf32c : Immediate<i64, [{
+ return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
+}], HF32, "U32Imm">;
+
+// Short immediates.
+def imm64sx8 : Immediate<i64, [{
+ return isInt<8>(N->getSExtValue());
+}], SIMM8, "S8Imm">;
+
+def imm64sx16 : Immediate<i64, [{
+ return isInt<16>(N->getSExtValue());
+}], SIMM16, "S16Imm">;
+
+def imm64zx16 : Immediate<i64, [{
+ return isUInt<16>(N->getZExtValue());
+}], UIMM16, "U16Imm">;
+
+def imm64sx32 : Immediate<i64, [{
+ return isInt<32>(N->getSExtValue());
+}], SIMM32, "S32Imm">;
+
+def imm64zx32 : Immediate<i64, [{
+ return isUInt<32>(N->getZExtValue());
+}], UIMM32, "U32Imm">;
+
+def imm64zx32n : Immediate<i64, [{
+ return isUInt<32>(-N->getSExtValue());
+}], NEGIMM32, "U32Imm">;
+
+def imm64 : ImmLeaf<i64, [{}]>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point immediates
+//===----------------------------------------------------------------------===//
+
+// Floating-point zero.
+def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
+
+// Floating point negative zero.
+def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
+
+//===----------------------------------------------------------------------===//
+// Symbolic address operands
+//===----------------------------------------------------------------------===//
+
+// PC-relative offsets of a basic block. The offset is sign-extended
+// and multiplied by 2.
+def brtarget16 : Operand<OtherVT> {
+ let EncoderMethod = "getPC16DBLEncoding";
+}
+def brtarget32 : Operand<OtherVT> {
+ let EncoderMethod = "getPC32DBLEncoding";
+}
+
+// A PC-relative offset of a global value. The offset is sign-extended
+// and multiplied by 2.
+def pcrel32 : PCRelAddress<i64, "pcrel32"> {
+ let EncoderMethod = "getPC32DBLEncoding";
+}
+
+// A PC-relative offset of a global value when the value is used as a
+// call target. The offset is sign-extended and multiplied by 2.
+def pcrel16call : PCRelAddress<i64, "pcrel16call"> {
+ let PrintMethod = "printCallOperand";
+ let EncoderMethod = "getPLT16DBLEncoding";
+}
+def pcrel32call : PCRelAddress<i64, "pcrel32call"> {
+ let PrintMethod = "printCallOperand";
+ let EncoderMethod = "getPLT32DBLEncoding";
+}
+
+//===----------------------------------------------------------------------===//
+// Addressing modes
+//===----------------------------------------------------------------------===//
+
+// 12-bit displacement operands.
+def disp12imm32 : Operand<i32>;
+def disp12imm64 : Operand<i64>;
+
+// 20-bit displacement operands.
+def disp20imm32 : Operand<i32>;
+def disp20imm64 : Operand<i64>;
+
+def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
+def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
+def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
+def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
+def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
+def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
+
+// DAG patterns and operands for addressing modes. Each mode has
+// the form <type><range><group> where:
+//
+// <type> is one of:
+// shift : base + displacement (32-bit)
+// bdaddr : base + displacement
+// bdxaddr : base + displacement + index
+// laaddr : like bdxaddr, but used for Load Address operations
+// dynalloc : base + displacement + index + ADJDYNALLOC
+//
+// <range> is one of:
+// 12 : the displacement is an unsigned 12-bit value
+// 20 : the displacement is a signed 20-bit value
+//
+// <group> is one of:
+// pair : used when there is an equivalent instruction with the opposite
+// range value (12 or 20)
+// only : used when there is no equivalent instruction with the opposite
+// range value
+def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
+def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
+def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
+def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
+def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
+def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
+def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
+def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
+def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
+def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
+def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
+def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
+def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
+def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous
+//===----------------------------------------------------------------------===//
+
+// Access registers. At present we just use them for accessing the thread
+// pointer, so we don't expose them as register to LLVM.
+def AccessReg : AsmOperandClass {
+ let Name = "AccessReg";
+ let ParserMethod = "parseAccessReg";
+}
+def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
+ NOOP_SDNodeXForm, "AccessReg"> {
+ let ParserMatchClass = AccessReg;
+}
+
+// A 4-bit condition-code mask.
+def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
+ Operand<i8> {
+ let PrintMethod = "printCond4Operand";
+}
diff --git a/lib/Target/SystemZ/SystemZOperators.td b/lib/Target/SystemZ/SystemZOperators.td
new file mode 100644
index 0000000000..8c4df56b46
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZOperators.td
@@ -0,0 +1,196 @@
+//===-- SystemZOperators.td - SystemZ-specific operators ------*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Type profiles
+//===----------------------------------------------------------------------===//
+def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i64>]>;
+def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i64>,
+ SDTCisVT<1, i64>]>;
+def SDT_ZCall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
+def SDT_ZCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+def SDT_ZBRCCMask : SDTypeProfile<0, 2,
+ [SDTCisVT<0, i8>,
+ SDTCisVT<1, OtherVT>]>;
+def SDT_ZSelectCCMask : SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<1, 2>,
+ SDTCisVT<3, i8>]>;
+def SDT_ZWrapPtr : SDTypeProfile<1, 1,
+ [SDTCisSameAs<0, 1>,
+ SDTCisPtrTy<0>]>;
+def SDT_ZAdjDynAlloc : SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
+def SDT_ZExtractAccess : SDTypeProfile<1, 1,
+ [SDTCisVT<0, i32>,
+ SDTCisVT<1, i8>]>;
+def SDT_ZGR128Binary32 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, untyped>,
+ SDTCisVT<1, untyped>,
+ SDTCisVT<2, i32>]>;
+def SDT_ZGR128Binary64 : SDTypeProfile<1, 2,
+ [SDTCisVT<0, untyped>,
+ SDTCisVT<1, untyped>,
+ SDTCisVT<2, i64>]>;
+def SDT_ZAtomicLoadBinaryW : SDTypeProfile<1, 5,
+ [SDTCisVT<0, i32>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i32>,
+ SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>,
+ SDTCisVT<5, i32>]>;
+def SDT_ZAtomicCmpSwapW : SDTypeProfile<1, 6,
+ [SDTCisVT<0, i32>,
+ SDTCisPtrTy<1>,
+ SDTCisVT<2, i32>,
+ SDTCisVT<3, i32>,
+ SDTCisVT<4, i32>,
+ SDTCisVT<5, i32>,
+ SDTCisVT<6, i32>]>;
+
+//===----------------------------------------------------------------------===//
+// Node definitions
+//===----------------------------------------------------------------------===//
+
+// These are target-independent nodes, but have target-specific formats.
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
+ [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
+ [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue,
+ SDNPOutGlue]>;
+
+// Nodes for SystemZISD::*. See SystemZISelLowering.h for more details.
+def z_retflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def z_call : SDNode<"SystemZISD::CALL", SDT_ZCall,
+ [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
+ SDNPVariadic]>;
+def z_pcrel_wrapper : SDNode<"SystemZISD::PCREL_WRAPPER", SDT_ZWrapPtr, []>;
+def z_cmp : SDNode<"SystemZISD::CMP", SDT_ZCmp, [SDNPOutGlue]>;
+def z_ucmp : SDNode<"SystemZISD::UCMP", SDT_ZCmp, [SDNPOutGlue]>;
+def z_br_ccmask : SDNode<"SystemZISD::BR_CCMASK", SDT_ZBRCCMask,
+ [SDNPHasChain, SDNPInGlue]>;
+def z_select_ccmask : SDNode<"SystemZISD::SELECT_CCMASK", SDT_ZSelectCCMask,
+ [SDNPInGlue]>;
+def z_adjdynalloc : SDNode<"SystemZISD::ADJDYNALLOC", SDT_ZAdjDynAlloc>;
+def z_extract_access : SDNode<"SystemZISD::EXTRACT_ACCESS",
+ SDT_ZExtractAccess>;
+def z_umul_lohi64 : SDNode<"SystemZISD::UMUL_LOHI64", SDT_ZGR128Binary64>;
+def z_sdivrem64 : SDNode<"SystemZISD::SDIVREM64", SDT_ZGR128Binary64>;
+def z_udivrem32 : SDNode<"SystemZISD::UDIVREM32", SDT_ZGR128Binary32>;
+def z_udivrem64 : SDNode<"SystemZISD::UDIVREM64", SDT_ZGR128Binary64>;
+
+class AtomicWOp<string name, SDTypeProfile profile = SDT_ZAtomicLoadBinaryW>
+ : SDNode<"SystemZISD::"##name, profile,
+ [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>;
+
+def z_atomic_swapw : AtomicWOp<"ATOMIC_SWAPW">;
+def z_atomic_loadw_add : AtomicWOp<"ATOMIC_LOADW_ADD">;
+def z_atomic_loadw_sub : AtomicWOp<"ATOMIC_LOADW_SUB">;
+def z_atomic_loadw_and : AtomicWOp<"ATOMIC_LOADW_AND">;
+def z_atomic_loadw_or : AtomicWOp<"ATOMIC_LOADW_OR">;
+def z_atomic_loadw_xor : AtomicWOp<"ATOMIC_LOADW_XOR">;
+def z_atomic_loadw_nand : AtomicWOp<"ATOMIC_LOADW_NAND">;
+def z_atomic_loadw_min : AtomicWOp<"ATOMIC_LOADW_MIN">;
+def z_atomic_loadw_max : AtomicWOp<"ATOMIC_LOADW_MAX">;
+def z_atomic_loadw_umin : AtomicWOp<"ATOMIC_LOADW_UMIN">;
+def z_atomic_loadw_umax : AtomicWOp<"ATOMIC_LOADW_UMAX">;
+def z_atomic_cmp_swapw : AtomicWOp<"ATOMIC_CMP_SWAPW", SDT_ZAtomicCmpSwapW>;
+
+//===----------------------------------------------------------------------===//
+// Pattern fragments
+//===----------------------------------------------------------------------===//
+
+// Register sign-extend operations. Sub-32-bit values are represented as i32s.
+def sext8 : PatFrag<(ops node:$src), (sext_inreg node:$src, i8)>;
+def sext16 : PatFrag<(ops node:$src), (sext_inreg node:$src, i16)>;
+def sext32 : PatFrag<(ops node:$src), (sext (i32 node:$src))>;
+
+// Register zero-extend operations. Sub-32-bit values are represented as i32s.
+def zext8 : PatFrag<(ops node:$src), (and node:$src, 0xff)>;
+def zext16 : PatFrag<(ops node:$src), (and node:$src, 0xffff)>;
+def zext32 : PatFrag<(ops node:$src), (zext (i32 node:$src))>;
+
+// Typed floating-point loads.
+def loadf32 : PatFrag<(ops node:$src), (f32 (load node:$src))>;
+def loadf64 : PatFrag<(ops node:$src), (f64 (load node:$src))>;
+
+// Aligned loads.
+class AlignedLoad<SDPatternOperator load>
+ : PatFrag<(ops node:$addr), (load node:$addr), [{
+ LoadSDNode *Load = cast<LoadSDNode>(N);
+ return Load->getAlignment() >= Load->getMemoryVT().getStoreSize();
+}]>;
+def aligned_load : AlignedLoad<load>;
+def aligned_sextloadi16 : AlignedLoad<sextloadi16>;
+def aligned_sextloadi32 : AlignedLoad<sextloadi32>;
+def aligned_zextloadi16 : AlignedLoad<zextloadi16>;
+def aligned_zextloadi32 : AlignedLoad<zextloadi32>;
+
+// Aligned stores.
+class AlignedStore<SDPatternOperator store>
+ : PatFrag<(ops node:$src, node:$addr), (store node:$src, node:$addr), [{
+ StoreSDNode *Store = cast<StoreSDNode>(N);
+ return Store->getAlignment() >= Store->getMemoryVT().getStoreSize();
+}]>;
+def aligned_store : AlignedStore<store>;
+def aligned_truncstorei16 : AlignedStore<truncstorei16>;
+def aligned_truncstorei32 : AlignedStore<truncstorei32>;
+
+// Insertions.
+def inserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, -256), node:$src2)>;
+def insertll : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffffffff0000), node:$src2)>;
+def insertlh : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffff0000ffff), node:$src2)>;
+def inserthl : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffff0000ffffffff), node:$src2)>;
+def inserthh : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0x0000ffffffffffff), node:$src2)>;
+def insertlf : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0xffffffff00000000), node:$src2)>;
+def inserthf : PatFrag<(ops node:$src1, node:$src2),
+ (or (and node:$src1, 0x00000000ffffffff), node:$src2)>;
+
+// ORs that can be treated as insertions.
+def or_as_inserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or node:$src1, node:$src2), [{
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ return CurDAG->MaskedValueIsZero(N->getOperand(0),
+ APInt::getLowBitsSet(BitWidth, 8));
+}]>;
+
+// ORs that can be treated as reversed insertions.
+def or_as_revinserti8 : PatFrag<(ops node:$src1, node:$src2),
+ (or node:$src1, node:$src2), [{
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ return CurDAG->MaskedValueIsZero(N->getOperand(1),
+ APInt::getLowBitsSet(BitWidth, 8));
+}]>;
+
+// Fused multiply-add and multiply-subtract, but with the order of the
+// operands matching SystemZ's MA and MS instructions.
+def z_fma : PatFrag<(ops node:$src1, node:$src2, node:$src3),
+ (fma node:$src2, node:$src3, node:$src1)>;
+def z_fms : PatFrag<(ops node:$src1, node:$src2, node:$src3),
+ (fma node:$src2, node:$src3, (fneg node:$src1))>;
+
+// Floating-point negative absolute.
+def fnabs : PatFrag<(ops node:$ptr), (fneg (fabs node:$ptr))>;
+
+// Create a unary operator that loads from memory and then performs
+// the given operation on it.
+class loadu<SDPatternOperator operator>
+ : PatFrag<(ops node:$addr), (operator (load node:$addr))>;
+
+// Create a store operator that performs the given unary operation
+// on the value before storing it.
+class storeu<SDPatternOperator operator>
+ : PatFrag<(ops node:$value, node:$addr),
+ (store (operator node:$value), node:$addr)>;
diff --git a/lib/Target/SystemZ/SystemZPatterns.td b/lib/Target/SystemZ/SystemZPatterns.td
new file mode 100644
index 0000000000..3689f74bfd
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZPatterns.td
@@ -0,0 +1,71 @@
+//===-- SystemZPatterns.td - SystemZ-specific pattern rules ---*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Record that INSN performs a 64-bit version of unary operator OPERATOR
+// in which the operand is sign-extended from 32 to 64 bits.
+multiclass SXU<SDPatternOperator operator, Instruction insn> {
+ def : Pat<(operator (sext (i32 GR32:$src))),
+ (insn GR32:$src)>;
+ def : Pat<(operator (sext_inreg GR64:$src, i32)),
+ (insn (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
+}
+
+// Record that INSN performs a 64-bit version of binary operator OPERATOR
+// in which the first operand has class CLS and which the second operand
+// is sign-extended from a 32-bit register.
+multiclass SXB<SDPatternOperator operator, RegisterOperand cls,
+ Instruction insn> {
+ def : Pat<(operator cls:$src1, (sext GR32:$src2)),
+ (insn cls:$src1, GR32:$src2)>;
+ def : Pat<(operator cls:$src1, (sext_inreg GR64:$src2, i32)),
+ (insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_32bit))>;
+}
+
+// Like SXB, but for zero extension.
+multiclass ZXB<SDPatternOperator operator, RegisterOperand cls,
+ Instruction insn> {
+ def : Pat<(operator cls:$src1, (zext GR32:$src2)),
+ (insn cls:$src1, GR32:$src2)>;
+ def : Pat<(operator cls:$src1, (and GR64:$src2, 0xffffffff)),
+ (insn cls:$src1, (EXTRACT_SUBREG GR64:$src2, subreg_32bit))>;
+}
+
+// Record that INSN performs a binary read-modify-write operation,
+// with LOAD, OPERATOR and STORE being the read, modify and write
+// respectively. MODE is the addressing mode and IMM is the type
+// of the second operand.
+class RMWI<SDPatternOperator load, SDPatternOperator operator,
+ SDPatternOperator store, AddressingMode mode,
+ PatFrag imm, Instruction insn>
+ : Pat<(store (operator (load mode:$addr), imm:$src), mode:$addr),
+ (insn mode:$addr, (UIMM8 imm:$src))>;
+
+// Record that INSN performs binary operation OPERATION on a byte
+// memory location. IMM is the type of the second operand.
+multiclass RMWIByte<SDPatternOperator operator, AddressingMode mode,
+ Instruction insn> {
+ def : RMWI<zextloadi8, operator, truncstorei8, mode, imm32, insn>;
+ def : RMWI<zextloadi8, operator, truncstorei8, mode, imm64, insn>;
+ def : RMWI<sextloadi8, operator, truncstorei8, mode, imm32, insn>;
+ def : RMWI<sextloadi8, operator, truncstorei8, mode, imm64, insn>;
+ def : RMWI<extloadi8, operator, truncstorei8, mode, imm32, insn>;
+ def : RMWI<extloadi8, operator, truncstorei8, mode, imm64, insn>;
+}
+
+// Record that INSN performs insertion TYPE into a register of class CLS.
+// The inserted operand is loaded using LOAD from an address of mode MODE.
+multiclass InsertMem<string type, Instruction insn, RegisterOperand cls,
+ SDPatternOperator load, AddressingMode mode> {
+ def : Pat<(!cast<SDPatternOperator>("or_as_"##type)
+ cls:$src1, (load mode:$src2)),
+ (insn cls:$src1, mode:$src2)>;
+ def : Pat<(!cast<SDPatternOperator>("or_as_rev"##type)
+ (load mode:$src2), cls:$src1),
+ (insn cls:$src1, mode:$src2)>;
+}
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.cpp b/lib/Target/SystemZ/SystemZRegisterInfo.cpp
new file mode 100644
index 0000000000..a0ae7ed000
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.cpp
@@ -0,0 +1,162 @@
+//===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZRegisterInfo.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+#define GET_REGINFO_TARGET_DESC
+#include "SystemZGenRegisterInfo.inc"
+
+using namespace llvm;
+
+SystemZRegisterInfo::SystemZRegisterInfo(SystemZTargetMachine &tm,
+ const SystemZInstrInfo &tii)
+ : SystemZGenRegisterInfo(SystemZ::R14D), TM(tm), TII(tii) {}
+
+const uint16_t*
+SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ static const uint16_t CalleeSavedRegs[] = {
+ SystemZ::R6D, SystemZ::R7D, SystemZ::R8D, SystemZ::R9D,
+ SystemZ::R10D, SystemZ::R11D, SystemZ::R12D, SystemZ::R13D,
+ SystemZ::R14D, SystemZ::R15D,
+ SystemZ::F8D, SystemZ::F9D, SystemZ::F10D, SystemZ::F11D,
+ SystemZ::F12D, SystemZ::F13D, SystemZ::F14D, SystemZ::F15D,
+ 0
+ };
+
+ return CalleeSavedRegs;
+}
+
+BitVector
+SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
+ if (TFI->hasFP(MF)) {
+ // R11D is the frame pointer. Reserve all aliases.
+ Reserved.set(SystemZ::R11D);
+ Reserved.set(SystemZ::R11W);
+ Reserved.set(SystemZ::R10Q);
+ }
+
+ // R15D is the stack pointer. Reserve all aliases.
+ Reserved.set(SystemZ::R15D);
+ Reserved.set(SystemZ::R15W);
+ Reserved.set(SystemZ::R14Q);
+ return Reserved;
+}
+
+bool
+SystemZRegisterInfo::saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator SaveMBBI,
+ MachineBasicBlock::iterator &UseMBBI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ MachineFunction &MF = *MBB.getParent();
+ const SystemZFrameLowering *TFI =
+ static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
+ unsigned Base = getFrameRegister(MF);
+ uint64_t Offset = TFI->getEmergencySpillSlotOffset(MF);
+ DebugLoc DL;
+
+ unsigned LoadOpcode, StoreOpcode;
+ TII.getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+
+ // The offset must always be in range of a 12-bit unsigned displacement.
+ BuildMI(MBB, SaveMBBI, DL, TII.get(StoreOpcode))
+ .addReg(Reg, RegState::Kill).addReg(Base).addImm(Offset).addReg(0);
+ BuildMI(MBB, UseMBBI, DL, TII.get(LoadOpcode), Reg)
+ .addReg(Base).addImm(Offset).addReg(0);
+ return true;
+}
+
+void
+SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Outgoing arguments should be part of the frame");
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Decompose the frame index into a base and offset.
+ int FrameIndex = MI->getOperand(FIOperandNum).getIndex();
+ unsigned BasePtr = getFrameRegister(MF);
+ int64_t Offset = (TFI->getFrameIndexOffset(MF, FrameIndex) +
+ MI->getOperand(FIOperandNum + 1).getImm());
+
+ // Special handling of dbg_value instructions.
+ if (MI->isDebugValue()) {
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false);
+ MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+ return;
+ }
+
+ // See if the offset is in range, or if an equivalent instruction that
+ // accepts the offset exists.
+ unsigned Opcode = MI->getOpcode();
+ unsigned OpcodeForOffset = TII.getOpcodeForOffset(Opcode, Offset);
+ if (OpcodeForOffset)
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+ else {
+ // Create an anchor point that is in range. Start at 0xffff so that
+ // can use LLILH to load the immediate.
+ int64_t OldOffset = Offset;
+ int64_t Mask = 0xffff;
+ do {
+ Offset = OldOffset & Mask;
+ OpcodeForOffset = TII.getOpcodeForOffset(Opcode, Offset);
+ Mask >>= 1;
+ assert(Mask && "One offset must be OK");
+ } while (!OpcodeForOffset);
+
+ unsigned ScratchReg =
+ MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass);
+ int64_t HighOffset = OldOffset - Offset;
+
+ if (MI->getDesc().TSFlags & SystemZII::HasIndex
+ && MI->getOperand(FIOperandNum + 2).getReg() == 0) {
+ // Load the offset into the scratch register and use it as an index.
+ // The scratch register then dies here.
+ TII.loadImmediate(MBB, MI, ScratchReg, HighOffset);
+ MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
+ MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg,
+ false, false, true);
+ } else {
+ // Load the anchor address into a scratch register.
+ unsigned LAOpcode = TII.getOpcodeForOffset(SystemZ::LA, HighOffset);
+ if (LAOpcode)
+ BuildMI(MBB, MI, DL, TII.get(LAOpcode),ScratchReg)
+ .addReg(BasePtr).addImm(HighOffset).addReg(0);
+ else {
+ // Load the high offset into the scratch register and use it as
+ // an index.
+ TII.loadImmediate(MBB, MI, ScratchReg, HighOffset);
+ BuildMI(MBB, MI, DL, TII.get(SystemZ::AGR),ScratchReg)
+ .addReg(ScratchReg, RegState::Kill).addReg(BasePtr);
+ }
+
+ // Use the scratch register as the base. It then dies here.
+ MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg,
+ false, false, true);
+ }
+ }
+ MI->setDesc(TII.get(OpcodeForOffset));
+ MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
+}
+
+unsigned
+SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+ return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
+}
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.h b/lib/Target/SystemZ/SystemZRegisterInfo.h
new file mode 100644
index 0000000000..91a70dea29
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.h
@@ -0,0 +1,70 @@
+//===-- SystemZRegisterInfo.h - SystemZ register information ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZREGISTERINFO_H
+#define SystemZREGISTERINFO_H
+
+#include "SystemZ.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "SystemZGenRegisterInfo.inc"
+
+namespace llvm {
+
+namespace SystemZ {
+ // Return the subreg to use for referring to the even and odd registers
+ // in a GR128 pair. Is32Bit says whether we want a GR32 or GR64.
+ inline unsigned even128(bool Is32bit) {
+ return Is32bit ? subreg_32bit : subreg_high;
+ }
+ inline unsigned odd128(bool Is32bit) {
+ return Is32bit ? subreg_low32 : subreg_low;
+ }
+}
+
+class SystemZSubtarget;
+class SystemZInstrInfo;
+
+struct SystemZRegisterInfo : public SystemZGenRegisterInfo {
+private:
+ SystemZTargetMachine &TM;
+ const SystemZInstrInfo &TII;
+
+public:
+ SystemZRegisterInfo(SystemZTargetMachine &tm, const SystemZInstrInfo &tii);
+
+ // Override TargetRegisterInfo.h.
+ virtual bool requiresRegisterScavenging(const MachineFunction &MF) const
+ LLVM_OVERRIDE {
+ return true;
+ }
+ virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const
+ LLVM_OVERRIDE {
+ return true;
+ }
+ virtual const uint16_t *getCalleeSavedRegs(const MachineFunction *MF = 0)
+ const LLVM_OVERRIDE;
+ virtual BitVector getReservedRegs(const MachineFunction &MF)
+ const LLVM_OVERRIDE;
+ virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator SaveMBBI,
+ MachineBasicBlock::iterator &UseMBBI,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const LLVM_OVERRIDE;
+ virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, unsigned FIOperandNum,
+ RegScavenger *RS) const LLVM_OVERRIDE;
+ virtual unsigned getFrameRegister(const MachineFunction &MF) const
+ LLVM_OVERRIDE;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.td b/lib/Target/SystemZ/SystemZRegisterInfo.td
new file mode 100644
index 0000000000..bd1b563b9a
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.td
@@ -0,0 +1,150 @@
+//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Class definitions.
+//===----------------------------------------------------------------------===//
+
+class SystemZReg<string n> : Register<n> {
+ let Namespace = "SystemZ";
+}
+
+class SystemZRegWithSubregs<string n, list<Register> subregs>
+ : RegisterWithSubRegs<n, subregs> {
+ let Namespace = "SystemZ";
+}
+
+let Namespace = "SystemZ" in {
+def subreg_32bit : SubRegIndex; // could also be known as "subreg_high32"
+def subreg_high : SubRegIndex;
+def subreg_low : SubRegIndex;
+def subreg_low32 : SubRegIndex<[subreg_low, subreg_32bit]>;
+}
+
+// Define a register class that contains values of type TYPE and an
+// associated operand called NAME. SIZE is the size and alignment
+// of the registers and REGLIST is the list of individual registers.
+multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
+ def AsmOperand : AsmOperandClass {
+ let Name = name;
+ let ParserMethod = "parse"##name;
+ let RenderMethod = "addRegOperands";
+ }
+ def Bit : RegisterClass<"SystemZ", [type], size, regList> {
+ let Size = size;
+ }
+ def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
+ let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// General-purpose registers
+//===----------------------------------------------------------------------===//
+
+// Lower 32 bits of one of the 16 64-bit general-purpose registers
+class GPR32<bits<16> num, string n> : SystemZReg<n> {
+ let HWEncoding = num;
+}
+
+// One of the 16 64-bit general-purpose registers.
+class GPR64<bits<16> num, string n, GPR32 low>
+ : SystemZRegWithSubregs<n, [low]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_32bit];
+}
+
+// 8 even-odd pairs of GPR64s.
+class GPR128<bits<16> num, string n, GPR64 high, GPR64 low>
+ : SystemZRegWithSubregs<n, [high, low]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_high, subreg_low];
+}
+
+// General-purpose registers
+foreach I = 0-15 in {
+ def R#I#W : GPR32<I, "r"#I>;
+ def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"W")>, DwarfRegNum<[I]>;
+}
+
+foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
+ def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#I#"D"),
+ !cast<GPR64>("R"#!add(I, 1)#"D")>;
+}
+
+/// Allocate the callee-saved R6-R13 backwards. That way they can be saved
+/// together with R14 and R15 in one prolog instruction.
+defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uW", 0, 5),
+ (sequence "R%uW", 15, 6))>;
+defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD", 0, 5),
+ (sequence "R%uD", 15, 6))>;
+
+// The architecture doesn't really have any i128 support, so model the
+// register pairs as untyped instead.
+defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
+ R12Q, R10Q, R8Q, R6Q,
+ R14Q)>;
+
+// Base and index registers. Everything except R0, which in an address
+// context evaluates as 0.
+defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0W)>;
+defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;
+
+// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
+// of a GR128.
+defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point registers
+//===----------------------------------------------------------------------===//
+
+// Lower 32 bits of one of the 16 64-bit floating-point registers
+class FPR32<bits<16> num, string n> : SystemZReg<n> {
+ let HWEncoding = num;
+}
+
+// One of the 16 64-bit floating-point registers
+class FPR64<bits<16> num, string n, FPR32 low>
+ : SystemZRegWithSubregs<n, [low]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_32bit];
+}
+
+// 8 pairs of FPR64s, with a one-register gap inbetween.
+class FPR128<bits<16> num, string n, FPR64 high, FPR64 low>
+ : SystemZRegWithSubregs<n, [high, low]> {
+ let HWEncoding = num;
+ let SubRegIndices = [subreg_high, subreg_low];
+}
+
+// Floating-point registers
+foreach I = 0-15 in {
+ def F#I#S : FPR32<I, "f"#I>;
+ def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
+ DwarfRegNum<[!add(I, 16)]>;
+}
+
+foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
+ def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#I#"D"),
+ !cast<FPR64>("F"#!add(I, 2)#"D")>;
+}
+
+// There's no store-multiple instruction for FPRs, so we're not fussy
+// about the order in which call-saved registers are allocated.
+defm FP32 : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
+defm FP64 : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
+defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
+ F8Q, F9Q, F12Q, F13Q)>;
+
+//===----------------------------------------------------------------------===//
+// Other registers
+//===----------------------------------------------------------------------===//
+
+// Status register
+def PSW : SystemZReg<"psw">;
diff --git a/lib/Target/SystemZ/SystemZSubtarget.cpp b/lib/Target/SystemZ/SystemZSubtarget.cpp
new file mode 100644
index 0000000000..cfd3324aad
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZSubtarget.cpp
@@ -0,0 +1,56 @@
+//===-- SystemZSubtarget.cpp - SystemZ subtarget information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZSubtarget.h"
+#include "llvm/IR/GlobalValue.h"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#include "SystemZGenSubtargetInfo.inc"
+
+using namespace llvm;
+
+SystemZSubtarget::SystemZSubtarget(const std::string &TT,
+ const std::string &CPU,
+ const std::string &FS)
+ : SystemZGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT) {
+ std::string CPUName = CPU;
+ if (CPUName.empty())
+ CPUName = "z10";
+
+ // Parse features string.
+ ParseSubtargetFeatures(CPUName, FS);
+}
+
+// Return true if GV binds locally under reloc model RM.
+static bool bindsLocally(const GlobalValue *GV, Reloc::Model RM) {
+ // For non-PIC, all symbols bind locally.
+ if (RM == Reloc::Static)
+ return true;
+
+ return GV->hasLocalLinkage() || !GV->hasDefaultVisibility();
+}
+
+bool SystemZSubtarget::isPC32DBLSymbol(const GlobalValue *GV,
+ Reloc::Model RM,
+ CodeModel::Model CM) const {
+ // PC32DBL accesses require the low bit to be clear. Note that a zero
+ // value selects the default alignment and is therefore OK.
+ if (GV->getAlignment() == 1)
+ return false;
+
+ // For the small model, all locally-binding symbols are in range.
+ if (CM == CodeModel::Small)
+ return bindsLocally(GV, RM);
+
+ // For Medium and above, assume that the symbol is not within the 4GB range.
+ // Taking the address of locally-defined text would be OK, but that
+ // case isn't easy to detect.
+ return false;
+}
diff --git a/lib/Target/SystemZ/SystemZSubtarget.h b/lib/Target/SystemZ/SystemZSubtarget.h
new file mode 100644
index 0000000000..8d4d450844
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZSubtarget.h
@@ -0,0 +1,48 @@
+//===-- SystemZSubtarget.h - SystemZ subtarget information -----*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZSUBTARGET_H
+#define SYSTEMZSUBTARGET_H
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <string>
+
+#define GET_SUBTARGETINFO_HEADER
+#include "SystemZGenSubtargetInfo.inc"
+
+namespace llvm {
+class GlobalValue;
+class StringRef;
+
+class SystemZSubtarget : public SystemZGenSubtargetInfo {
+private:
+ Triple TargetTriple;
+
+public:
+ SystemZSubtarget(const std::string &TT, const std::string &CPU,
+ const std::string &FS);
+
+ // Automatically generated by tblgen.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
+
+ // Return true if GV can be accessed using LARL for reloc model RM
+ // and code model CM.
+ bool isPC32DBLSymbol(const GlobalValue *GV, Reloc::Model RM,
+ CodeModel::Model CM) const;
+
+ bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
+};
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZTargetMachine.cpp b/lib/Target/SystemZ/SystemZTargetMachine.cpp
new file mode 100644
index 0000000000..8c4c456ef5
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZTargetMachine.cpp
@@ -0,0 +1,60 @@
+//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+extern "C" void LLVMInitializeSystemZTarget() {
+ // Register the target.
+ RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
+}
+
+SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Reloc::Model RM,
+ CodeModel::Model CM,
+ CodeGenOpt::Level OL)
+ : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
+ Subtarget(TT, CPU, FS),
+ // Make sure that global data has at least 16 bits of alignment by default,
+ // so that we can refer to it using LARL. We don't have any special
+ // requirements for stack variables though.
+ DL("E-p:64:64:64-i1:8:16-i8:8:16-i16:16-i32:32-i64:64"
+ "-f32:32-f64:64-f128:64-a0:8:16-n32:64"),
+ InstrInfo(*this), TLInfo(*this), TSInfo(*this),
+ FrameLowering(*this, Subtarget) {
+}
+
+namespace {
+/// SystemZ Code Generator Pass Configuration Options.
+class SystemZPassConfig : public TargetPassConfig {
+public:
+ SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ SystemZTargetMachine &getSystemZTargetMachine() const {
+ return getTM<SystemZTargetMachine>();
+ }
+
+ virtual bool addInstSelector();
+};
+} // end anonymous namespace
+
+bool SystemZPassConfig::addInstSelector() {
+ addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
+ return false;
+}
+
+TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new SystemZPassConfig(this, PM);
+}
diff --git a/lib/Target/SystemZ/SystemZTargetMachine.h b/lib/Target/SystemZ/SystemZTargetMachine.h
new file mode 100644
index 0000000000..98614e7b7e
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZTargetMachine.h
@@ -0,0 +1,74 @@
+//==- SystemZTargetMachine.h - Define TargetMachine for SystemZ ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef SYSTEMZTARGETMACHINE_H
+#define SYSTEMZTARGETMACHINE_H
+
+#include "SystemZFrameLowering.h"
+#include "SystemZISelLowering.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZRegisterInfo.h"
+#include "SystemZSubtarget.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+
+namespace llvm {
+
+class SystemZTargetMachine : public LLVMTargetMachine {
+ SystemZSubtarget Subtarget;
+ const DataLayout DL;
+ SystemZInstrInfo InstrInfo;
+ SystemZTargetLowering TLInfo;
+ TargetSelectionDAGInfo TSInfo;
+ SystemZFrameLowering FrameLowering;
+
+public:
+ SystemZTargetMachine(const Target &T, StringRef TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Reloc::Model RM, CodeModel::Model CM,
+ CodeGenOpt::Level OL);
+
+ // Override TargetMachine.
+ virtual const TargetFrameLowering *getFrameLowering() const LLVM_OVERRIDE {
+ return &FrameLowering;
+ }
+ virtual const SystemZInstrInfo *getInstrInfo() const LLVM_OVERRIDE {
+ return &InstrInfo;
+ }
+ virtual const SystemZSubtarget *getSubtargetImpl() const LLVM_OVERRIDE {
+ return &Subtarget;
+ }
+ virtual const DataLayout *getDataLayout() const LLVM_OVERRIDE {
+ return &DL;
+ }
+ virtual const SystemZRegisterInfo *getRegisterInfo() const LLVM_OVERRIDE {
+ return &InstrInfo.getRegisterInfo();
+ }
+ virtual const SystemZTargetLowering *getTargetLowering() const LLVM_OVERRIDE {
+ return &TLInfo;
+ }
+ virtual const TargetSelectionDAGInfo *getSelectionDAGInfo() const
+ LLVM_OVERRIDE {
+ return &TSInfo;
+ }
+
+ // Override LLVMTargetMachine
+ virtual TargetPassConfig *createPassConfig(PassManagerBase &PM) LLVM_OVERRIDE;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/TargetInfo/CMakeLists.txt b/lib/Target/SystemZ/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000000..b6051d3bf6
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSystemZInfo
+ SystemZTargetInfo.cpp
+ )
+
+add_dependencies(LLVMSystemZInfo SystemZCommonTableGen)
diff --git a/lib/Target/SystemZ/TargetInfo/LLVMBuild.txt b/lib/Target/SystemZ/TargetInfo/LLVMBuild.txt
new file mode 100644
index 0000000000..ea43736a68
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/LLVMBuild.txt
@@ -0,0 +1,23 @@
+;===- ./lib/Target/SystemZ/TargetInfo/LLVMBuild.txt ------------*- Conf -*--===;
+;
+; The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+; http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = SystemZInfo
+parent = SystemZ
+required_libraries = MC Support Target
+add_to_library_groups = SystemZ
diff --git a/lib/Target/SystemZ/TargetInfo/Makefile b/lib/Target/SystemZ/TargetInfo/Makefile
new file mode 100644
index 0000000000..0be80eb4e6
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/SystemZ/TargetInfo/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp b/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
new file mode 100644
index 0000000000..8f9aa2811d
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- SystemZTargetInfo.cpp - SystemZ target implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+Target llvm::TheSystemZTarget;
+
+extern "C" void LLVMInitializeSystemZTargetInfo() {
+ RegisterTarget<Triple::systemz, /*HasJIT=*/true>
+ X(TheSystemZTarget, "systemz", "SystemZ");
+}