summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/ScalarEvolution.h10
-rw-r--r--lib/Analysis/ScalarEvolution.cpp86
2 files changed, 60 insertions, 36 deletions
diff --git a/include/llvm/Analysis/ScalarEvolution.h b/include/llvm/Analysis/ScalarEvolution.h
index 306549fba4..349447fbbb 100644
--- a/include/llvm/Analysis/ScalarEvolution.h
+++ b/include/llvm/Analysis/ScalarEvolution.h
@@ -453,7 +453,8 @@ namespace llvm {
ExitLimit ComputeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
- BasicBlock *FBB);
+ BasicBlock *FBB,
+ bool IsSubExpr);
/// ComputeExitLimitFromICmp - Compute the number of times the backedge of
/// the specified loop will execute if its exit condition were a conditional
@@ -461,7 +462,8 @@ namespace llvm {
ExitLimit ComputeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
- BasicBlock *FBB);
+ BasicBlock *FBB,
+ bool IsSubExpr);
/// ComputeLoadConstantCompareExitLimit - Given an exit condition
/// of 'icmp op load X, cst', try to see if we can compute the
@@ -483,7 +485,7 @@ namespace llvm {
/// HowFarToZero - Return the number of times an exit condition comparing
/// the specified value to zero will execute. If not computable, return
/// CouldNotCompute.
- ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
+ ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
/// HowFarToNonZero - Return the number of times an exit condition checking
/// the specified value for nonzero will execute. If not computable, return
@@ -495,7 +497,7 @@ namespace llvm {
/// computable, return CouldNotCompute. isSigned specifies whether the
/// less-than is signed.
ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool isSigned);
+ const Loop *L, bool isSigned, bool IsSubExpr);
/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
/// (which may not be an immediate predecessor) which has exactly one
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 6ea915fdb0..d26ec9a25d 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -4382,26 +4382,36 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
// Proceed to the next level to examine the exit condition expression.
return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
ExitBr->getSuccessor(0),
- ExitBr->getSuccessor(1));
+ ExitBr->getSuccessor(1),
+ /*IsSubExpr=*/false);
}
/// ComputeExitLimitFromCond - Compute the number of times the
/// backedge of the specified loop will execute if its exit condition
/// were a conditional branch of ExitCond, TBB, and FBB.
+///
+/// @param IsSubExpr is true if ExitCond does not directly control the exit
+/// branch. In this case, we cannot assume that the loop only exits when the
+/// condition is true and cannot infer that failing to meet the condition prior
+/// to integer wraparound results in undefined behavior.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
- BasicBlock *FBB) {
+ BasicBlock *FBB,
+ bool IsSubExpr) {
// Check if the controlling expression for this loop is an And or Or.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
+ bool EitherMayExit = L->contains(TBB);
+ ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
+ IsSubExpr || EitherMayExit);
+ ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
+ IsSubExpr || EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
- if (L->contains(TBB)) {
+ if (EitherMayExit) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
if (EL0.Exact == getCouldNotCompute() ||
@@ -4429,11 +4439,14 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
}
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
+ bool EitherMayExit = L->contains(FBB);
+ ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
+ IsSubExpr || EitherMayExit);
+ ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
+ IsSubExpr || EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
- if (L->contains(FBB)) {
+ if (EitherMayExit) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
if (EL0.Exact == getCouldNotCompute() ||
@@ -4464,7 +4477,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
// With an icmp, it may be feasible to compute an exact backedge-taken count.
// Proceed to the next level to examine the icmp.
if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
- return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
+ return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
// Check for a constant condition. These are normally stripped out by
// SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
@@ -4490,7 +4503,8 @@ ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
- BasicBlock *FBB) {
+ BasicBlock *FBB,
+ bool IsSubExpr) {
// If the condition was exit on true, convert the condition to exit on false
ICmpInst::Predicate Cond;
@@ -4542,7 +4556,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
switch (Cond) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
+ ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
if (EL.hasAnyInfo()) return EL;
break;
}
@@ -4553,24 +4567,24 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
break;
}
case ICmpInst::ICMP_SLT: {
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
+ ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_SGT: {
ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
- getNotSCEV(RHS), L, true);
+ getNotSCEV(RHS), L, true, IsSubExpr);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_ULT: {
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
+ ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_UGT: {
ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
- getNotSCEV(RHS), L, false);
+ getNotSCEV(RHS), L, false, IsSubExpr);
if (EL.hasAnyInfo()) return EL;
break;
}
@@ -5439,7 +5453,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
/// effectively V != 0. We know and take advantage of the fact that this
/// expression only being used in a comparison by zero context.
ScalarEvolution::ExitLimit
-ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
+ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
@@ -5537,19 +5551,20 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
}
// If the recurrence is known not to wraparound, unsigned divide computes the
- // back edge count. We know that the value will either become zero (and thus
- // the loop terminates), that the loop will terminate through some other exit
- // condition first, or that the loop has undefined behavior. This means
- // we can't "miss" the exit value, even with nonunit stride.
+ // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
+ // that the value will either become zero (and thus the loop terminates), that
+ // the loop will terminate through some other exit condition first, or that
+ // the loop has undefined behavior. This means we can't "miss" the exit
+ // value, even with nonunit stride.
//
- // FIXME: Prove that loops always exhibits *acceptable* undefined
- // behavior. Loops must exhibit defined behavior until a wrapped value is
- // actually used. So the trip count computed by udiv could be smaller than the
- // number of well-defined iterations.
- if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
- // FIXME: We really want an "isexact" bit for udiv.
+ // This is only valid for expressions that directly compute the loop exit. It
+ // is invalid for subexpressions in which the loop may exit through this
+ // branch even if this subexpression is false. In that case, the trip count
+ // computed by this udiv could be smaller than the number of well-defined
+ // iterations.
+ if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
- }
+
// Then, try to solve the above equation provided that Start is constant.
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
@@ -6315,9 +6330,14 @@ const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
/// HowManyLessThans - Return the number of times a backedge containing the
/// specified less-than comparison will execute. If not computable, return
/// CouldNotCompute.
+///
+/// @param IsSubExpr is true when the LHS < RHS condition does not directly
+/// control the branch. In this case, we can only compute an iteration count for
+/// a subexpression that cannot overflow before evaluating true.
ScalarEvolution::ExitLimit
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool isSigned) {
+ const Loop *L, bool isSigned,
+ bool IsSubExpr) {
// Only handle: "ADDREC < LoopInvariant".
if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
@@ -6326,10 +6346,12 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
return getCouldNotCompute();
// Check to see if we have a flag which makes analysis easy.
- bool NoWrap = isSigned ?
- AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
- AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
-
+ bool NoWrap = false;
+ if (!IsSubExpr) {
+ NoWrap = AddRec->getNoWrapFlags(
+ (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW))
+ | SCEV::FlagNW));
+ }
if (AddRec->isAffine()) {
unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
const SCEV *Step = AddRec->getStepRecurrence(*this);