summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp285
-rw-r--r--test/Transforms/InstCombine/load-slice.ll330
2 files changed, 615 insertions, 0 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 88e16e9725..0579c27db8 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -16,10 +16,20 @@
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
+/// Hidden option to stress test load slicing, i.e., when this option
+/// is enabled, load slicing bypasses most of its profitability guards.
+/// It will also generate, uncanonalized form of slicing.
+static cl::opt<bool>
+StressLoadSlicing("instcombine-stress-load-slicing", cl::Hidden,
+ cl::desc("Bypass the profitability model of load "
+ "slicing"),
+ cl::init(false));
+
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
@@ -337,6 +347,274 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
return 0;
}
+namespace {
+ /// \brief Helper structure used to slice a load in smaller loads.
+ struct LoadedSlice {
+ // The last instruction that represent the slice. This should be a
+ // truncate instruction.
+ Instruction *Inst;
+ // The original load instruction.
+ LoadInst *Origin;
+ // The right shift amount in bits from the original load.
+ unsigned Shift;
+
+ LoadedSlice(Instruction *Inst = NULL, LoadInst *Origin = NULL,
+ unsigned Shift = 0)
+ : Inst(Inst), Origin(Origin), Shift(Shift) {}
+
+ LoadedSlice(const LoadedSlice& LS) : Inst(LS.Inst), Origin(LS.Origin),
+ Shift(LS.Shift) {}
+
+ /// \brief Get the bits used in a chunk of bits \p BitWidth large.
+ /// \return Result is \p BitWidth and has used bits set to 1 and
+ /// not used bits set to 0.
+ APInt getUsedBits() const {
+ // Reproduce the trunc(lshr) sequence:
+ // - Start from the truncated value.
+ // - Zero extend to the desired bit width.
+ // - Shift left.
+ assert(Origin && "No original load to compare against.");
+ unsigned BitWidth = Origin->getType()->getPrimitiveSizeInBits();
+ assert(Inst && "This slice is not bound to an instruction");
+ assert(Inst->getType()->getPrimitiveSizeInBits() <= BitWidth &&
+ "Extracted slice is smaller than the whole type!");
+ APInt UsedBits(Inst->getType()->getPrimitiveSizeInBits(), 0);
+ UsedBits.setAllBits();
+ UsedBits = UsedBits.zext(BitWidth);
+ UsedBits <<= Shift;
+ return UsedBits;
+ }
+
+ /// \brief Get the size of the slice to be loaded in bytes.
+ unsigned getLoadedSize() const {
+ unsigned SliceSize = getUsedBits().countPopulation();
+ assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
+ return SliceSize / 8;
+ }
+
+ /// \brief Get the offset in bytes of this slice in the original chunk of
+ /// bits, whose layout is defined by \p IsBigEndian.
+ uint64_t getOffsetFromBase(bool IsBigEndian) const {
+ assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not support.");
+ uint64_t Offset = Shift / 8;
+ unsigned TySizeInBytes = Origin->getType()->getPrimitiveSizeInBits() / 8;
+ assert(!(Origin->getType()->getPrimitiveSizeInBits() & 0x7) &&
+ "The size of the original loaded type is not a multiple of a"
+ " byte.");
+ // If Offset is bigger than TySizeInBytes, it means we are loading all
+ // zeros. This should have been optimized before in the process.
+ assert(TySizeInBytes > Offset &&
+ "Invalid shift amount for given loaded size");
+ if (IsBigEndian)
+ Offset = TySizeInBytes - Offset - getLoadedSize();
+ return Offset;
+ }
+
+ /// \brief Generate the sequence of instructions to load the slice
+ /// represented by this object and redirect the uses of this slice to
+ /// this new sequence of instructions.
+ /// \pre this->Inst && this->Origin are valid Instructions.
+ /// \return The last instruction of the sequence used to load the slice.
+ Instruction *loadSlice(InstCombiner::BuilderTy &Builder,
+ bool IsBigEndian) const {
+ assert(Inst && Origin && "Unable to replace a non-existing slice.");
+ Value *BaseAddr = Origin->getOperand(0);
+ unsigned Alignment = Origin->getAlignment();
+ Builder.SetInsertPoint(Origin);
+ // Assume we are looking at a chunk of bytes.
+ // BaseAddr = (i8*)BaseAddr.
+ BaseAddr = Builder.CreateBitCast(BaseAddr, Builder.getInt8PtrTy(),
+ "raw_cast");
+ // Get the offset in that chunk of bytes w.r.t. the endianess.
+ uint64_t Offset = getOffsetFromBase(IsBigEndian);
+ if (Offset) {
+ APInt APOffset(64, Offset);
+ // BaseAddr = BaseAddr + Offset.
+ BaseAddr = Builder.CreateInBoundsGEP(BaseAddr, Builder.getInt(APOffset),
+ "raw_idx");
+ }
+
+ // Create the type of the loaded slice according to its size.
+ Type *SliceType =
+ Type::getIntNTy(Origin->getContext(), getLoadedSize() * 8);
+
+ // Bit cast the raw pointer to the pointer type of the slice.
+ BaseAddr = Builder.CreateBitCast(BaseAddr, SliceType->getPointerTo(),
+ "cast");
+
+ // Compute the new alignment.
+ if (Offset != 0)
+ Alignment = MinAlign(Alignment, Alignment + Offset);
+
+ // Create the load for the slice.
+ Instruction *LastInst = Builder.CreateAlignedLoad(BaseAddr, Alignment,
+ Inst->getName()+".val");
+ // If the final type is not the same as the loaded type, this means that
+ // we have to pad with zero. Create a zero extend for that.
+ Type * FinalType = Inst->getType();
+ if (SliceType != FinalType)
+ LastInst = cast<Instruction>(Builder.CreateZExt(LastInst, FinalType));
+
+ // Update the IR to reflect the new access to the slice.
+ Inst->replaceAllUsesWith(LastInst);
+
+ return LastInst;
+ }
+
+ /// \brief Check if it would be profitable to expand this slice as an
+ /// independant load.
+ bool isProfitable() const {
+ // Slicing is assumed to be profitable iff the chains leads to arithmetic
+ // operations.
+ SmallVector<const Instruction *, 8> Uses;
+ Uses.push_back(Inst);
+ do {
+ const Instruction *Use = Uses.pop_back_val();
+ for (Value::const_use_iterator UseIt = Use->use_begin(),
+ UseItEnd = Use->use_end(); UseIt != UseItEnd; ++UseIt) {
+ const Instruction *UseOfUse = cast<Instruction>(*UseIt);
+ // Consider these instructions as arithmetic operations.
+ if (isa<BinaryOperator>(UseOfUse) ||
+ isa<CastInst>(UseOfUse) ||
+ isa<PHINode>(UseOfUse) ||
+ isa<GetElementPtrInst>(UseOfUse))
+ return true;
+ // No need to check if the Use has already been checked as we do not
+ // insert any PHINode.
+ Uses.push_back(UseOfUse);
+ }
+ } while (!Uses.empty());
+ DEBUG(dbgs() << "IC: Not a profitable slice " << *Inst << '\n');
+ return false;
+ }
+ };
+}
+
+/// \brief Check the profitability of all involved LoadedSlice.
+/// Unless StressLoadSlicing is specified, this also returns false
+/// when slicing is not in the canonical form.
+/// The canonical form of sliced load is (1) two loads,
+/// which are (2) next to each other in memory.
+///
+/// FIXME: We may want to allow more slices to be created but
+/// this means other passes should know how to deal with all those
+/// slices.
+/// FIXME: We may want to split loads to different types, e.g.,
+/// int vs. float.
+static bool
+isSlicingProfitable(const SmallVectorImpl<LoadedSlice> &LoadedSlices,
+ const APInt &UsedBits) {
+ unsigned NbOfSlices = LoadedSlices.size();
+ // Check (1).
+ if (!StressLoadSlicing && NbOfSlices != 2)
+ return false;
+
+ // Check (2).
+ if (!StressLoadSlicing && !UsedBits.isAllOnesValue()) {
+ // Get rid of the unused bits on the right.
+ APInt MemoryLayout = UsedBits.lshr(UsedBits.countTrailingZeros());
+ // Get rid of the unused bits on the left.
+ if (MemoryLayout.countLeadingZeros())
+ MemoryLayout = MemoryLayout.trunc(MemoryLayout.getActiveBits());
+ // Check that the chunk of memory is completely used.
+ if (!MemoryLayout.isAllOnesValue())
+ return false;
+ }
+
+ unsigned NbOfProfitableSlices = 0;
+ for (unsigned CurrSlice = 0; CurrSlice < NbOfSlices; ++CurrSlice) {
+ if (LoadedSlices[CurrSlice].isProfitable())
+ ++NbOfProfitableSlices;
+ else if (!StressLoadSlicing)
+ return false;
+ }
+ // In Stress mode, we may have 0 profitable slice.
+ // Check that here.
+ // In non-Stress mode, all the slices are profitable at this point.
+ return NbOfProfitableSlices > 0;
+}
+
+/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
+/// operations, split it in the various pieces being extracted.
+///
+/// This sort of thing is introduced by SROA.
+/// This slicing takes care not to insert overlapping loads.
+/// \pre LI is a simple load (i.e., not an atomic or volatile load).
+static Instruction *sliceUpLoadInst(LoadInst &LI,
+ InstCombiner::BuilderTy &Builder,
+ DataLayout &TD) {
+ assert(LI.isSimple() && "We are trying to transform a non-simple load!");
+
+ // FIXME: If we want to support floating point and vector types, we should
+ // support bitcast and extract/insert element instructions.
+ Type *LITy = LI.getType();
+ if (!LITy->isIntegerTy()) return 0;
+
+ // Keep track of already used bits to detect overlapping values.
+ // In that case, we will just abort the transformation.
+ APInt UsedBits(LITy->getPrimitiveSizeInBits(), 0);
+
+ SmallVector<LoadedSlice, 4> LoadedSlices;
+
+ // Check if this load is used as several smaller chunks of bits.
+ // Basically, look for uses in trunc or trunc(lshr) and record a new chain
+ // of computation for each trunc.
+ for (Value::use_iterator UI = LI.use_begin(), UIEnd = LI.use_end();
+ UI != UIEnd; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ unsigned Shift = 0;
+
+ // Check if this is a trunc(lshr).
+ if (User->getOpcode() == Instruction::LShr && User->hasOneUse() &&
+ isa<ConstantInt>(User->getOperand(1))) {
+ Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
+ User = User->use_back();
+ }
+
+ // At this point, User is a TruncInst, iff we encountered, trunc or
+ // trunc(lshr).
+ if (!isa<TruncInst>(User))
+ return 0;
+
+ // The width of the type must be a power of 2 and greater than 8-bits.
+ // Otherwise the load cannot be represented in LLVM IR.
+ // Moreover, if we shifted with a non 8-bits multiple, the slice
+ // will be accross several bytes. We do not support that.
+ unsigned Width = User->getType()->getPrimitiveSizeInBits();
+ if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
+ return 0;
+
+ // Build the slice for this chain of computations.
+ LoadedSlice LS(User, &LI, Shift);
+ APInt CurrentUsedBits = LS.getUsedBits();
+
+ // Check if this slice overlaps with another.
+ if ((CurrentUsedBits & UsedBits) != 0)
+ return 0;
+ // Update the bits used globally.
+ UsedBits |= CurrentUsedBits;
+
+ // Record the slice.
+ LoadedSlices.push_back(LS);
+ }
+
+ // Abort slicing if it does not seem to be profitable.
+ if (!isSlicingProfitable(LoadedSlices, UsedBits))
+ return 0;
+
+ // Rewrite each chain to use an independent load.
+ // By construction, each chain can be represented by a unique load.
+ bool IsBigEndian = TD.isBigEndian();
+ for (SmallVectorImpl<LoadedSlice>::const_iterator LSIt = LoadedSlices.begin(),
+ LSItEnd = LoadedSlices.end(); LSIt != LSItEnd; ++LSIt) {
+ Instruction *SliceInst = LSIt->loadSlice(Builder, IsBigEndian);
+ (void)SliceInst;
+ DEBUG(dbgs() << "IC: Replacing " << *LSIt->Inst << "\n"
+ " with " << *SliceInst << '\n');
+ }
+ return 0; // Don't do anything with LI.
+}
+
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
@@ -443,6 +721,13 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
}
}
}
+
+ // Try to split a load in smaller non-overlapping loads to expose independant
+ // chain of computations and get rid of trunc/lshr sequence of code.
+ // The data layout is required for that operation, as code generation will
+ // change with respect to endianess.
+ if (TD)
+ return sliceUpLoadInst(LI, *Builder, *TD);
return 0;
}
diff --git a/test/Transforms/InstCombine/load-slice.ll b/test/Transforms/InstCombine/load-slice.ll
new file mode 100644
index 0000000000..8926653c88
--- /dev/null
+++ b/test/Transforms/InstCombine/load-slice.ll
@@ -0,0 +1,330 @@
+; RUN: opt -default-data-layout="E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" -instcombine -instcombine-stress-load-slicing -S < %s -o - | FileCheck %s --check-prefix=BIG
+; RUN: opt -default-data-layout="e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" -instcombine -instcombine-stress-load-slicing -S < %s -o - | FileCheck %s --check-prefix=LITTLE
+;
+; <rdar://problem/14477220>
+
+%class.Complex = type { float, float }
+
+
+; Check that independant slices leads to independant loads.
+;
+; The 64-bits should have been split in two 32-bits slices.
+; The big endian layout is:
+; MSB 7 6 5 4 | 3 2 1 0 LSB
+; High Low
+; The base address points to 7 and is 8-bytes aligned.
+; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned.
+; High slice starts at 7 (base) and is 8-bytes aligned.
+;
+; The little endian layout is:
+; LSB 0 1 2 3 | 4 5 6 7 MSB
+; Low High
+; The base address points to 0 and is 8-bytes aligned.
+; Low slice starts at 0 (base) and is 8-bytes aligned.
+; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned.
+;
+define void @t1(%class.Complex* nocapture %out, i64 %out_start) {
+; BIG-LABEL: @t1
+; Original load should have been sliced.
+; BIG-NOT: load i64*
+; BIG-NOT: trunc i64
+; BIG-NOT: lshr i64
+;
+; First 32-bits slice.
+; BIG: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[HIGH_SLICE_BASEADDR]] to i32*
+; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[HIGH_SLICE_ADDR]], align 8
+;
+; Second 32-bits slice.
+; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1
+; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32*
+; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4
+;
+; Cast to the final type.
+; BIG: [[LOW_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[LOW_SLICE]] to float
+; BIG: [[HIGH_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[HIGH_SLICE]] to float
+;
+; Uses of the slices.
+; BIG: fadd float {{%[a-zA-Z.0-9_]+}}, [[LOW_SLICE_FLOAT]]
+; BIG: fadd float {{%[a-zA-Z.0-9_]+}}, [[HIGH_SLICE_FLOAT]]
+;
+; LITTLE-LABEL: @t1
+; Original load should have been sliced.
+; LITTLE-NOT: load i64*
+; LITTLE-NOT: trunc i64
+; LITTLE-NOT: lshr i64
+;
+; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+;
+; First 32-bits slice.
+; LITTLE: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1
+; LITTLE: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[HIGH_SLICE_BASEADDR]] to i32*
+; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[HIGH_SLICE_ADDR]], align 4
+;
+; Second 32-bits slice.
+; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32*
+; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8
+;
+; Cast to the final type.
+; LITTLE: [[LOW_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[LOW_SLICE]] to float
+; LITTLE: [[HIGH_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[HIGH_SLICE]] to float
+;
+; Uses of the slices.
+; LITTLE: fadd float {{%[a-zA-Z.0-9_]+}}, [[LOW_SLICE_FLOAT]]
+; LITTLE: fadd float {{%[a-zA-Z.0-9_]+}}, [[HIGH_SLICE_FLOAT]]
+entry:
+ %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start
+ %tmp = bitcast %class.Complex* %arrayidx to i64*
+ %tmp1 = load i64* %tmp, align 8
+ %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32
+ %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float
+ %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32
+ %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32
+ %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float
+ %add = add i64 %out_start, 8
+ %arrayidx2 = getelementptr inbounds %class.Complex* %out, i64 %add
+ %i.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 0
+ %tmp4 = load float* %i.i, align 4
+ %add.i = fadd float %tmp4, %tmp2
+ %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0
+ %r.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 1
+ %tmp5 = load float* %r.i, align 4
+ %add5.i = fadd float %tmp5, %tmp3
+ %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1
+ %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>*
+ store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4
+ ret void
+}
+
+; Function Attrs: nounwind
+declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1
+
+; Function Attrs: nounwind
+declare void @llvm.lifetime.start(i64, i8* nocapture)
+
+; Function Attrs: nounwind
+declare void @llvm.lifetime.end(i64, i8* nocapture)
+
+; Check that slices not involved in arithmetic are not split in independant loads.
+; BIG-LABEL: @t2
+; BIG: load i16*
+; BIG: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8
+; BIG: lshr i16 {{%[a-zA-Z.0-9_]+}}, 8
+; BIG: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8
+;
+; LITTLE-LABEL: @t2
+; LITTLE: load i16*
+; LITTLE: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8
+; LITTLE: lshr i16 {{%[a-zA-Z.0-9_]+}}, 8
+; LITTLE: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8
+define void @t2(%class.Complex* nocapture %out, i64 %out_start) {
+ %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start
+ %bitcast = bitcast %class.Complex* %arrayidx to i16*
+ %chunk16 = load i16* %bitcast, align 8
+ %slice8_low = trunc i16 %chunk16 to i8
+ %shift = lshr i16 %chunk16, 8
+ %slice8_high = trunc i16 %shift to i8
+ %vec = insertelement <2 x i8> undef, i8 %slice8_high, i32 0
+ %vec1 = insertelement <2 x i8> %vec, i8 %slice8_low, i32 1
+ %addr = bitcast %class.Complex* %arrayidx to <2 x i8>*
+ store <2 x i8> %vec1, <2 x i8>* %addr, align 8
+ ret void
+}
+
+; Check that we do not read outside of the chunk of bits of the original loads.
+;
+; The 64-bits should have been split in one 32-bits and one 16-bits slices.
+; The 16-bits should be zero extended to match the final type.
+; The big endian layout is:
+; MSB 7 6 | 5 4 | 3 2 1 0 LSB
+; High Low
+; The base address points to 7 and is 8-bytes aligned.
+; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned.
+; High slice starts at 7 (base) and is 8-bytes aligned.
+;
+; The little endian layout is:
+; LSB 0 1 2 3 | 4 5 | 6 7 MSB
+; Low High
+; The base address points to 0 and is 8-bytes aligned.
+; Low slice starts at 0 (base) and is 8-bytes aligned.
+; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned.
+;
+; BIG-LABEL: @t3
+; Original load should have been sliced.
+; BIG-NOT: load i64*
+; BIG-NOT: trunc i64
+; BIG-NOT: lshr i64
+;
+; First 32-bits slice where only 16-bits comes from the memory.
+; BIG: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[HIGH_SLICE_BASEADDR]] to i16*
+; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR]], align 8
+; BIG: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32
+;
+; Second 32-bits slice.
+; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1
+; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32*
+; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4
+;
+; Use of the slices.
+; BIG: add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]]
+;
+; LITTLE-LABEL: @t3
+; Original load should have been sliced.
+; LITTLE-NOT: load i64*
+; LITTLE-NOT: trunc i64
+; LITTLE-NOT: lshr i64
+;
+; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+;
+; First 32-bits slice where only 16-bits comes from the memory.
+; LITTLE: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i8*
+; LITTLE: [[HIGH_SLICE_ADDR_I8:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[HIGH_SLICE_ADDR]], i64 6
+; LITTLE: [[HIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[HIGH_SLICE_ADDR_I8]] to i16*
+; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR_I16]], align 2
+; LITTLE: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32
+;
+; Second 32-bits slice.
+; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32*
+; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8
+;
+; Use of the slices.
+; LITTLE: add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]]
+define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) {
+ %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start
+ %bitcast = bitcast %class.Complex* %arrayidx to i64*
+ %chunk64 = load i64* %bitcast, align 8
+ %slice32_low = trunc i64 %chunk64 to i32
+ %shift48 = lshr i64 %chunk64, 48
+ %slice32_high = trunc i64 %shift48 to i32
+ %res = add i32 %slice32_high, %slice32_low
+ ret i32 %res
+}
+
+; Check that we do not optimize overlapping slices.
+;
+; The 64-bits should NOT have been split in as slices are overlapping.
+; First slice uses bytes numbered 0 to 3.
+; Second slice uses bytes numbered 6 and 7.
+; Third slice uses bytes numbered 4 to 7.
+; BIG-LABEL: @t4
+; BIG: load i64* {{%[a-zA-Z.0-9_]+}}, align 8
+; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+; BIG: lshr i64 {{%[a-zA-Z.0-9_]+}}, 48
+; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+; BIG: lshr i64 {{%[a-zA-Z.0-9_]+}}, 32
+; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+;
+; LITTLE-LABEL: @t4
+; LITTLE: load i64* {{%[a-zA-Z.0-9_]+}}, align 8
+; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+; LITTLE: lshr i64 {{%[a-zA-Z.0-9_]+}}, 48
+; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+; LITTLE: lshr i64 {{%[a-zA-Z.0-9_]+}}, 32
+; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32
+define i32 @t4(%class.Complex* nocapture %out, i64 %out_start) {
+ %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start
+ %bitcast = bitcast %class.Complex* %arrayidx to i64*
+ %chunk64 = load i64* %bitcast, align 8
+ %slice32_low = trunc i64 %chunk64 to i32
+ %shift48 = lshr i64 %chunk64, 48
+ %slice32_high = trunc i64 %shift48 to i32
+ %shift32 = lshr i64 %chunk64, 32
+ %slice32_lowhigh = trunc i64 %shift32 to i32
+ %tmpres = add i32 %slice32_high, %slice32_low
+ %res = add i32 %slice32_lowhigh, %tmpres
+ ret i32 %res
+}
+
+; Check that we optimize when 3 slices are involved.
+; The 64-bits should have been split in one 32-bits and one 16-bits slices.
+; The 16-bits should be zero extended to match the final type.
+; The big endian layout is:
+; MSB 7 6 | 5 4 | 3 2 1 0 LSB
+; High LowHigh Low
+; The base address points to 7 and is 8-bytes aligned.
+; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned.
+; High slice starts at 7 (base) and is 8-bytes aligned.
+; LowHigh slice starts at 5 (base + 2-bytes) and is 2-bytes aligned.
+;
+; The little endian layout is:
+; LSB 0 1 2 3 | 4 5 | 6 7 MSB
+; Low LowHigh High
+; The base address points to 0 and is 8-bytes aligned.
+; Low slice starts at 0 (base) and is 8-bytes aligned.
+; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned.
+; LowHigh slice starts at 4 (base + 4-bytes) and is 4-bytes aligned.
+;
+; Original load should have been sliced.
+; BIG-LABEL: @t5
+; BIG-NOT: load i64*
+; BIG-NOT: trunc i64
+; BIG-NOT: lshr i64
+;
+; LowHigh 32-bits slice where only 16-bits comes from the memory.
+; BIG: [[LOWHIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+; BIG: [[LOWHIGH_SLICE_BASEADDR_I8:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[LOWHIGH_SLICE_BASEADDR]] to i8*
+; BIG: [[LOWHIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[LOWHIGH_SLICE_BASEADDR_I8]], i64 2
+; BIG: [[LOWHIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[LOWHIGH_SLICE_ADDR]] to i16*
+; BIG: [[LOWHIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[LOWHIGH_SLICE_ADDR_I16]], align 2
+;
+; First 32-bits slice where only 16-bits comes from the memory.
+; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[LOWHIGH_SLICE_BASEADDR]] to i16*
+; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR]], align 8
+; BIG: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32
+;
+; Second 32-bits slice.
+; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1
+; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32*
+; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4
+;
+; Original sext is still here.
+; BIG: [[LOWHIGH_SLICE_SEXT:%[a-zA-Z.0-9_]+]] = sext i16 [[LOWHIGH_SLICE]] to i32
+;
+; Uses of the slices.
+; BIG: [[RES:%[a-zA-Z.0-9_]+]] = add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]]
+; BIG: add i32 [[LOWHIGH_SLICE_SEXT]], [[RES]]
+;
+; LITTLE-LABEL: @t5
+; LITTLE-NOT: load i64*
+; LITTLE-NOT: trunc i64
+; LITTLE-NOT: lshr i64
+;
+; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start
+;
+; LowHigh 32-bits slice where only 16-bits comes from the memory.
+; LITTLE: [[LOWHIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1
+; LITTLE: [[LOWHIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOWHIGH_SLICE_BASEADDR]] to i16*
+; LITTLE: [[LOWHIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[LOWHIGH_SLICE_ADDR_I16]], align 4
+;
+; First 32-bits slice where only 16-bits comes from the memory.
+; LITTLE: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i8*
+; LITTLE: [[HIGH_SLICE_ADDR_I8:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[HIGH_SLICE_BASEADDR]], i64 6
+; LITTLE: [[HIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[HIGH_SLICE_ADDR_I8]] to i16*
+; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR_I16]], align 2
+; LITTLE: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32
+;
+; Second 32-bits slice.
+; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32*
+; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8
+;
+; Original sext is still here.
+; LITTLE: [[LOWHIGH_SLICE_SEXT:%[a-zA-Z.0-9_]+]] = sext i16 [[LOWHIGH_SLICE]] to i32
+;
+; Uses of the slices.
+; LITTLE: [[RES:%[a-zA-Z.0-9_]+]] = add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]]
+; LITTLE: add i32 [[LOWHIGH_SLICE_SEXT]], [[RES]]
+define i32 @t5(%class.Complex* nocapture %out, i64 %out_start) {
+ %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start
+ %bitcast = bitcast %class.Complex* %arrayidx to i64*
+ %chunk64 = load i64* %bitcast, align 8
+ %slice32_low = trunc i64 %chunk64 to i32
+ %shift48 = lshr i64 %chunk64, 48
+ %slice32_high = trunc i64 %shift48 to i32
+ %shift32 = lshr i64 %chunk64, 32
+ %slice16_lowhigh = trunc i64 %shift32 to i16
+ %slice32_lowhigh = sext i16 %slice16_lowhigh to i32
+ %tmpres = add i32 %slice32_high, %slice32_low
+ %res = add i32 %slice32_lowhigh, %tmpres
+ ret i32 %res
+}