summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/ScalarEvolutionExpander.h66
-rw-r--r--lib/Analysis/IVUsers.cpp6
-rw-r--r--lib/Analysis/ScalarEvolution.cpp206
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp228
-rw-r--r--lib/Target/X86/X86ISelDAGToDAG.cpp2
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp14
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp4574
-rw-r--r--test/CodeGen/ARM/arm-negative-stride.ll26
-rw-r--r--test/CodeGen/ARM/lsr-code-insertion.ll4
-rw-r--r--test/CodeGen/ARM/remat.ll3
-rw-r--r--test/CodeGen/Thumb2/lsr-deficiency.ll18
-rw-r--r--test/CodeGen/Thumb2/thumb2-ifcvt1.ll12
-rw-r--r--test/CodeGen/X86/2006-05-11-InstrSched.ll4
-rw-r--r--test/CodeGen/X86/2007-08-13-SpillerReuse.ll102
-rw-r--r--test/CodeGen/X86/2007-11-30-LoadFolding-Bug.ll2
-rw-r--r--test/CodeGen/X86/2009-09-10-SpillComments.ll9
-rw-r--r--test/CodeGen/X86/full-lsr.ll12
-rw-r--r--test/CodeGen/X86/iv-users-in-other-loops.ll8
-rw-r--r--test/CodeGen/X86/loop-strength-reduce4.ll18
-rw-r--r--test/CodeGen/X86/loop-strength-reduce8.ll8
-rw-r--r--test/CodeGen/X86/lsr-reuse.ll159
-rw-r--r--test/CodeGen/X86/masked-iv-safe.ll7
-rw-r--r--test/CodeGen/X86/pr3495-2.ll1
-rw-r--r--test/CodeGen/X86/remat-mov-0.ll26
-rw-r--r--test/CodeGen/X86/remat-mov-1.ll40
-rw-r--r--test/CodeGen/X86/subreg-to-reg-5.ll35
-rw-r--r--test/Transforms/IndVarSimplify/gep-with-mul-base.ll5
-rw-r--r--test/Transforms/LoopStrengthReduce/2008-08-06-CmpStride.ll5
-rw-r--r--test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-0.ll7
-rw-r--r--test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-1.ll8
-rw-r--r--test/Transforms/LoopStrengthReduce/count-to-zero.ll2
-rw-r--r--test/Transforms/LoopStrengthReduce/icmp_use_postinc.ll27
32 files changed, 3030 insertions, 2614 deletions
diff --git a/include/llvm/Analysis/ScalarEvolutionExpander.h b/include/llvm/Analysis/ScalarEvolutionExpander.h
index bbdd0437a1..5bec8e445a 100644
--- a/include/llvm/Analysis/ScalarEvolutionExpander.h
+++ b/include/llvm/Analysis/ScalarEvolutionExpander.h
@@ -26,19 +26,44 @@ namespace llvm {
/// Clients should create an instance of this class when rewriting is needed,
/// and destroy it when finished to allow the release of the associated
/// memory.
- struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
+ class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
std::map<std::pair<const SCEV *, Instruction *>, AssertingVH<Value> >
InsertedExpressions;
std::set<Value*> InsertedValues;
+ /// PostIncLoop - When non-null, expanded addrecs referring to the given
+ /// loop expanded in post-inc mode. For example, expanding {1,+,1}<L> in
+ /// post-inc mode returns the add instruction that adds one to the phi
+ /// for {0,+,1}<L>, as opposed to a new phi starting at 1. This is only
+ /// supported in non-canonical mode.
+ const Loop *PostIncLoop;
+
+ /// IVIncInsertPos - When this is non-null, addrecs expanded in the
+ /// loop it indicates should be inserted with increments at
+ /// IVIncInsertPos.
+ const Loop *IVIncInsertLoop;
+
+ /// IVIncInsertPos - When expanding addrecs in the IVIncInsertLoop loop,
+ /// insert the IV increment at this position.
+ Instruction *IVIncInsertPos;
+
+ /// CanonicalMode - When true, expressions are expanded in "canonical"
+ /// form. In particular, addrecs are expanded as arithmetic based on
+ /// a canonical induction variable. When false, expression are expanded
+ /// in a more literal form.
+ bool CanonicalMode;
+
+ protected:
typedef IRBuilder<true, TargetFolder> BuilderType;
BuilderType Builder;
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
+ /// SCEVExpander - Construct a SCEVExpander in "canonical" mode.
explicit SCEVExpander(ScalarEvolution &se)
- : SE(se), Builder(se.getContext(), TargetFolder(se.TD)) {}
+ : SE(se), PostIncLoop(0), IVIncInsertLoop(0), CanonicalMode(true),
+ Builder(se.getContext(), TargetFolder(se.TD)) {}
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
@@ -54,11 +79,36 @@ namespace llvm {
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// specified block.
- Value *expandCodeFor(const SCEV *SH, const Type *Ty, Instruction *IP) {
+ Value *expandCodeFor(const SCEV *SH, const Type *Ty, Instruction *I) {
+ BasicBlock::iterator IP = I;
+ while (isInsertedInstruction(IP)) ++IP;
Builder.SetInsertPoint(IP->getParent(), IP);
return expandCodeFor(SH, Ty);
}
+ /// setIVIncInsertPos - Set the current IV increment loop and position.
+ void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
+ assert(!CanonicalMode &&
+ "IV increment positions are not supported in CanonicalMode");
+ IVIncInsertLoop = L;
+ IVIncInsertPos = Pos;
+ }
+
+ /// setPostInc - If L is non-null, enable post-inc expansion for addrecs
+ /// referring to the given loop. If L is null, disable post-inc expansion
+ /// completely. Post-inc expansion is only supported in non-canonical
+ /// mode.
+ void setPostInc(const Loop *L) {
+ assert(!CanonicalMode &&
+ "Post-inc expansion is not supported in CanonicalMode");
+ PostIncLoop = L;
+ }
+
+ /// disableCanonicalMode - Disable the behavior of expanding expressions in
+ /// canonical form rather than in a more literal form. Non-canonical mode
+ /// is useful for late optimization passes.
+ void disableCanonicalMode() { CanonicalMode = false; }
+
private:
LLVMContext &getContext() const { return SE.getContext(); }
@@ -121,6 +171,16 @@ namespace llvm {
Value *visitUnknown(const SCEVUnknown *S) {
return S->getValue();
}
+
+ void rememberInstruction(Value *I) {
+ if (!PostIncLoop) InsertedValues.insert(I);
+ }
+
+ Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
+ PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
+ const Loop *L,
+ const Type *ExpandTy,
+ const Type *IntTy);
};
}
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index 92f00273a2..38611ccb62 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -324,12 +324,6 @@ const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const {
// the actual replacement value.
if (U.isUseOfPostIncrementedValue())
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
- // Evaluate the expression out of the loop, if possible.
- if (!L->contains(U.getUser())) {
- const SCEV *ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
- if (ExitVal->isLoopInvariant(L))
- RetVal = ExitVal;
- }
return RetVal;
}
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 7389007bf2..2f44913abd 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -1089,6 +1089,15 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
if (!isa<SCEVSignExtendExpr>(SExt))
return SExt;
+ // Force the cast to be folded into the operands of an addrec.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
+ SmallVector<const SCEV *, 4> Ops;
+ for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
+ I != E; ++I)
+ Ops.push_back(getAnyExtendExpr(*I, Ty));
+ return getAddRecExpr(Ops, AR->getLoop());
+ }
+
// If the expression is obviously signed, use the sext cast value.
if (isa<SCEVSMaxExpr>(Op))
return SExt;
@@ -1204,6 +1213,17 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
"SCEVAddExpr operand types don't match!");
#endif
+ // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+ if (!HasNUW && HasNSW) {
+ bool All = true;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (!isKnownNonNegative(Ops[i])) {
+ All = false;
+ break;
+ }
+ if (All) HasNUW = true;
+ }
+
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, LI);
@@ -1521,10 +1541,13 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
- new (S) SCEVAddExpr(ID, Ops);
- UniqueSCEVs.InsertNode(S, IP);
+ SCEVAddExpr *S =
+ static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ S = SCEVAllocator.Allocate<SCEVAddExpr>();
+ new (S) SCEVAddExpr(ID, Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ }
if (HasNUW) S->setHasNoUnsignedWrap(true);
if (HasNSW) S->setHasNoSignedWrap(true);
return S;
@@ -1535,6 +1558,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
bool HasNUW, bool HasNSW) {
assert(!Ops.empty() && "Cannot get empty mul!");
+ if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
assert(getEffectiveSCEVType(Ops[i]->getType()) ==
@@ -1542,6 +1566,17 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
"SCEVMulExpr operand types don't match!");
#endif
+ // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+ if (!HasNUW && HasNSW) {
+ bool All = true;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (!isKnownNonNegative(Ops[i])) {
+ All = false;
+ break;
+ }
+ if (All) HasNUW = true;
+ }
+
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, LI);
@@ -1576,6 +1611,22 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
} else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
// If we have a multiply of zero, it will always be zero.
return Ops[0];
+ } else if (Ops[0]->isAllOnesValue()) {
+ // If we have a mul by -1 of an add, try distributing the -1 among the
+ // add operands.
+ if (Ops.size() == 2)
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
+ SmallVector<const SCEV *, 4> NewOps;
+ bool AnyFolded = false;
+ for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ const SCEV *Mul = getMulExpr(Ops[0], *I);
+ if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
+ NewOps.push_back(Mul);
+ }
+ if (AnyFolded)
+ return getAddExpr(NewOps);
+ }
}
}
@@ -1642,7 +1693,9 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
// It's tempting to propagate the NSW flag here, but nsw multiplication
// is not associative so this isn't necessarily safe.
- const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
+ const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
+ HasNUW && AddRec->hasNoUnsignedWrap(),
+ /*HasNSW=*/false);
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
@@ -1696,10 +1749,13 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
- new (S) SCEVMulExpr(ID, Ops);
- UniqueSCEVs.InsertNode(S, IP);
+ SCEVMulExpr *S =
+ static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ S = SCEVAllocator.Allocate<SCEVMulExpr>();
+ new (S) SCEVMulExpr(ID, Ops);
+ UniqueSCEVs.InsertNode(S, IP);
+ }
if (HasNUW) S->setHasNoUnsignedWrap(true);
if (HasNSW) S->setHasNoSignedWrap(true);
return S;
@@ -1842,10 +1898,24 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
}
+ // If HasNSW is true and all the operands are non-negative, infer HasNUW.
+ if (!HasNUW && HasNSW) {
+ bool All = true;
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i)
+ if (!isKnownNonNegative(Operands[i])) {
+ All = false;
+ break;
+ }
+ if (All) HasNUW = true;
+ }
+
// Canonicalize nested AddRecs in by nesting them in order of loop depth.
if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
const Loop *NestedLoop = NestedAR->getLoop();
- if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
+ if (L->contains(NestedLoop->getHeader()) ?
+ (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
+ (!NestedLoop->contains(L->getHeader()) &&
+ DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
NestedAR->op_end());
Operands[0] = NestedAR->getStart();
@@ -1884,10 +1954,13 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
ID.AddPointer(Operands[i]);
ID.AddPointer(L);
void *IP = 0;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
- new (S) SCEVAddRecExpr(ID, Operands, L);
- UniqueSCEVs.InsertNode(S, IP);
+ SCEVAddRecExpr *S =
+ static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ if (!S) {
+ S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
+ new (S) SCEVAddRecExpr(ID, Operands, L);
+ UniqueSCEVs.InsertNode(S, IP);
+ }
if (HasNUW) S->setHasNoUnsignedWrap(true);
if (HasNSW) S->setHasNoSignedWrap(true);
return S;
@@ -2525,31 +2598,28 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (Accum->isLoopInvariant(L) ||
(isa<SCEVAddRecExpr>(Accum) &&
cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
+ bool HasNUW = false;
+ bool HasNSW = false;
+
+ // If the increment doesn't overflow, then neither the addrec nor
+ // the post-increment will overflow.
+ if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
+ if (OBO->hasNoUnsignedWrap())
+ HasNUW = true;
+ if (OBO->hasNoSignedWrap())
+ HasNSW = true;
+ }
+
const SCEV *StartVal =
getSCEV(PN->getIncomingValue(IncomingEdge));
- const SCEVAddRecExpr *PHISCEV =
- cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
-
- // If the increment doesn't overflow, then neither the addrec nor the
- // post-increment will overflow.
- if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
- if (OBO->getOperand(0) == PN &&
- getSCEV(OBO->getOperand(1)) ==
- PHISCEV->getStepRecurrence(*this)) {
- const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
- if (OBO->hasNoUnsignedWrap()) {
- const_cast<SCEVAddRecExpr *>(PHISCEV)
- ->setHasNoUnsignedWrap(true);
- const_cast<SCEVAddRecExpr *>(PostInc)
- ->setHasNoUnsignedWrap(true);
- }
- if (OBO->hasNoSignedWrap()) {
- const_cast<SCEVAddRecExpr *>(PHISCEV)
- ->setHasNoSignedWrap(true);
- const_cast<SCEVAddRecExpr *>(PostInc)
- ->setHasNoSignedWrap(true);
- }
- }
+ const SCEV *PHISCEV =
+ getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
+
+ // Since the no-wrap flags are on the increment, they apply to the
+ // post-incremented value as well.
+ if (Accum->isLoopInvariant(L))
+ (void)getAddRecExpr(getAddExpr(StartVal, Accum),
+ Accum, L, HasNUW, HasNSW);
// Okay, for the entire analysis of this edge we assumed the PHI
// to be symbolic. We now need to go back and purge all of the
@@ -2781,26 +2851,29 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
- if (!Trip) return FullSet;
+ ConstantRange ConservativeResult = FullSet;
+
+ // If there's no unsigned wrap, the value will never be less than its
+ // initial value.
+ if (AddRec->hasNoUnsignedWrap())
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
+ ConservativeResult =
+ ConstantRange(C->getValue()->getValue(),
+ APInt(getTypeSizeInBits(C->getType()), 0));
// TODO: non-affine addrec
- if (AddRec->isAffine()) {
+ if (Trip && AddRec->isAffine()) {
const Type *Ty = AddRec->getType();
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*this);
const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
// Check for overflow.
- // TODO: This is very conservative.
- if (!(Step->isOne() &&
- isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
- !(Step->isAllOnesValue() &&
- isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
- return FullSet;
+ if (!AddRec->hasNoUnsignedWrap())
+ return ConservativeResult;
ConstantRange StartRange = getUnsignedRange(Start);
ConstantRange EndRange = getUnsignedRange(End);
@@ -2809,10 +2882,12 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
EndRange.getUnsignedMax());
if (Min.isMinValue() && Max.isMaxValue())
- return FullSet;
+ return ConservativeResult;
return ConstantRange(Min, Max+1);
}
}
+
+ return ConservativeResult;
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
@@ -2891,26 +2966,39 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
- if (!Trip) return FullSet;
+ ConstantRange ConservativeResult = FullSet;
+
+ // If there's no signed wrap, and all the operands have the same sign or
+ // zero, the value won't ever change sign.
+ if (AddRec->hasNoSignedWrap()) {
+ bool AllNonNeg = true;
+ bool AllNonPos = true;
+ for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
+ if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
+ if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
+ }
+ unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
+ if (AllNonNeg)
+ ConservativeResult = ConstantRange(APInt(BitWidth, 0),
+ APInt::getSignedMinValue(BitWidth));
+ else if (AllNonPos)
+ ConservativeResult = ConstantRange(APInt::getSignedMinValue(BitWidth),
+ APInt(BitWidth, 1));
+ }
// TODO: non-affine addrec
- if (AddRec->isAffine()) {
+ if (Trip && AddRec->isAffine()) {
const Type *Ty = AddRec->getType();
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*this);
const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
// Check for overflow.
- // TODO: This is very conservative.
- if (!(Step->isOne() &&
- isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
- !(Step->isAllOnesValue() &&
- isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
- return FullSet;
+ if (!AddRec->hasNoSignedWrap())
+ return ConservativeResult;
ConstantRange StartRange = getSignedRange(Start);
ConstantRange EndRange = getSignedRange(End);
@@ -2919,15 +3007,19 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
APInt Max = APIntOps::smax(StartRange.getSignedMax(),
EndRange.getSignedMax());
if (Min.isMinSignedValue() && Max.isMaxSignedValue())
- return FullSet;
+ return ConservativeResult;
return ConstantRange(Min, Max+1);
}
}
+
+ return ConservativeResult;
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
unsigned BitWidth = getTypeSizeInBits(U->getType());
+ if (!U->getValue()->getType()->isInteger() && !TD)
+ return FullSet;
unsigned NS = ComputeNumSignBits(U->getValue(), TD);
if (NS == 1)
return FullSet;
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index 2c66f1ac2c..b049f424fa 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -81,7 +81,7 @@ Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
A->getParent()->getEntryBlock().begin());
- InsertedValues.insert(I);
+ rememberInstruction(I);
return I;
}
@@ -114,7 +114,7 @@ Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
- InsertedValues.insert(CI);
+ rememberInstruction(CI);
return CI;
}
@@ -144,7 +144,7 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
// If we haven't found this binop, insert it.
Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
- InsertedValues.insert(BO);
+ rememberInstruction(BO);
return BO;
}
@@ -491,22 +491,39 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// Emit a GEP.
Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
- InsertedValues.insert(GEP);
+ rememberInstruction(GEP);
return GEP;
}
// Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
// because ScalarEvolution may have changed the address arithmetic to
// compute a value which is beyond the end of the allocated object.
- Value *GEP = Builder.CreateGEP(V,
+ Value *Casted = V;
+ if (V->getType() != PTy)
+ Casted = InsertNoopCastOfTo(Casted, PTy);
+ Value *GEP = Builder.CreateGEP(Casted,
GepIndices.begin(),
GepIndices.end(),
"scevgep");
Ops.push_back(SE.getUnknown(GEP));
- InsertedValues.insert(GEP);
+ rememberInstruction(GEP);
return expand(SE.getAddExpr(Ops));
}
+/// isNonConstantNegative - Return true if the specified scev is negated, but
+/// not a constant.
+static bool isNonConstantNegative(const SCEV *F) {
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
+ if (!Mul) return false;
+
+ // If there is a constant factor, it will be first.
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
+ if (!SC) return false;
+
+ // Return true if the value is negative, this matches things like (-42 * V).
+ return SC->getValue()->getValue().isNegative();
+}
+
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
int NumOperands = S->getNumOperands();
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
@@ -539,8 +556,14 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
// Emit a bunch of add instructions
for (int i = NumOperands-1; i >= 0; --i) {
if (i == PIdx) continue;
- Value *W = expandCodeFor(S->getOperand(i), Ty);
- V = InsertBinop(Instruction::Add, V, W);
+ const SCEV *Op = S->getOperand(i);
+ if (isNonConstantNegative(Op)) {
+ Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
+ V = InsertBinop(Instruction::Sub, V, W);
+ } else {
+ Value *W = expandCodeFor(Op, Ty);
+ V = InsertBinop(Instruction::Add, V, W);
+ }
}
return V;
}
@@ -603,7 +626,175 @@ static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
}
}
+/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
+/// the base addrec, which is the addrec without any non-loop-dominating
+/// values, and return the PHI.
+PHINode *
+SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
+ const Loop *L,
+ const Type *ExpandTy,
+ const Type *IntTy) {
+ // Reuse a previously-inserted PHI, if present.
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ if (isInsertedInstruction(PN) && SE.getSCEV(PN) == Normalized)
+ return PN;
+
+ // Save the original insertion point so we can restore it when we're done.
+ BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
+ BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
+
+ // Expand code for the start value.
+ Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
+ L->getHeader()->begin());
+
+ // Expand code for the step value. Insert instructions right before the
+ // terminator corresponding to the back-edge. Do this before creating the PHI
+ // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
+ // negative, insert a sub instead of an add for the increment (unless it's a
+ // constant, because subtracts of constants are canonicalized to adds).
+ const SCEV *Step = Normalized->getStepRecurrence(SE);
+ bool isPointer = isa<PointerType>(ExpandTy);
+ bool isNegative = !isPointer && isNonConstantNegative(Step);
+ if (isNegative)
+ Step = SE.getNegativeSCEV(Step);
+ Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
+
+ // Create the PHI.
+ Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
+ PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
+ rememberInstruction(PN);
+
+ // Create the step instructions and populate the PHI.
+ BasicBlock *Header = L->getHeader();
+ for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
+ HPI != HPE; ++HPI) {
+ BasicBlock *Pred = *HPI;
+
+ // Add a start value.
+ if (!L->contains(Pred)) {
+ PN->addIncoming(StartV, Pred);
+ continue;
+ }
+
+ // Create a step value and add it to the PHI. If IVIncInsertLoop is
+ // non-null and equal to the addrec's loop, insert the instructions
+ // at IVIncInsertPos.
+ Instruction *InsertPos = L == IVIncInsertLoop ?
+ IVIncInsertPos : Pred->getTerminator();
+ Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
+ Value *IncV;
+ // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
+ if (isPointer) {
+ const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
+ // If the step isn't constant, don't use an implicitly scaled GEP, because
+ // that would require a multiply inside the loop.
+ if (!isa<ConstantInt>(StepV))
+ GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
+ GEPPtrTy->getAddressSpace());
+ const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
+ IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
+ if (IncV->getType() != PN->getType()) {
+ IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
+ rememberInstruction(IncV);
+ }
+ } else {
+ IncV = isNegative ?
+ Builder.CreateSub(PN, StepV, "lsr.iv.next") :
+ Builder.CreateAdd(PN, StepV, "lsr.iv.next");
+ rememberInstruction(IncV);
+ }
+ PN->addIncoming(IncV, Pred);
+ }
+
+ // Restore the original insert point.
+ if (SaveInsertBB)
+ Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
+
+ // Remember this PHI, even in post-inc mode.
+ InsertedValues.insert(PN);
+
+ return PN;
+}
+
+Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
+ const Type *STy = S->getType();
+ const Type *IntTy = SE.getEffectiveSCEVType(STy);
+ const Loop *L = S->getLoop();
+
+ // Determine a normalized form of this expression, which is the expression
+ // before any post-inc adjustment is made.
+ const SCEVAddRecExpr *Normalized = S;
+ if (L == PostIncLoop) {
+ const SCEV *Step = S->getStepRecurrence(SE);
+ Normalized = cast<SCEVAddRecExpr>(SE.getMinusSCEV(S, Step));
+ }
+
+ // Strip off any non-loop-dominating component from the addrec start.
+ const SCEV *Start = Normalized->getStart();
+ const SCEV *PostLoopOffset = 0;
+ if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
+ PostLoopOffset = Start;
+ Start = SE.getIntegerSCEV(0, Normalized->getType());
+ Normalized =
+ cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
+ Normalized->getStepRecurrence(SE),
+ Normalized->getLoop()));
+ }
+
+ // Strip off any non-loop-dominating component from the addrec step.
+ const SCEV *Step = Normalized->getStepRecurrence(SE);
+ const SCEV *PostLoopScale = 0;
+ if (!Step->hasComputableLoopEvolution(L) &&
+ !Step->dominates(L->getHeader(), SE.DT)) {
+ PostLoopScale = Step;
+ Step = SE.getIntegerSCEV(1, Normalized->getType());
+ Normalized =
+ cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
+ Normalized->getLoop()));
+ }
+
+ // Expand the core addrec. If we need post-loop scaling, force it to
+ // expand to an integer type to avoid the need for additional casting.
+ const Type *ExpandTy = PostLoopScale ? IntTy : STy;
+ PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
+
+ // Accomodate post-inc mode, if necessary.
+ Value *Result;
+ if (L != PostIncLoop)
+ Result = PN;
+ else {
+ // In PostInc mode, use the post-incremented value.
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "PostInc mode requires a unique loop latch!");
+ Result = PN->getIncomingValueForBlock(LatchBlock);
+ }
+
+ // Re-apply any non-loop-dominating scale.
+ if (PostLoopScale) {
+ Result = Builder.CreateMul(Result,
+ expandCodeFor(PostLoopScale, IntTy));
+ rememberInstruction(Result);
+ }
+
+ // Re-apply any non-loop-dominating offset.
+ if (PostLoopOffset) {
+ if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
+ const SCEV *const OffsetArray[1] = { PostLoopOffset };
+ Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
+ } else {
+ Result = Builder.CreateAdd(Result,
+ expandCodeFor(PostLoopOffset, IntTy));
+ rememberInstruction(Result);
+ }
+ }
+
+ return Result;
+}
+
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
+ if (!CanonicalMode) return expandAddRecExprLiterally(S);
+
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
const Loop *L = S->getLoop();
@@ -681,7 +872,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// specified loop.
BasicBlock *Header = L->getHeader();
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
- InsertedValues.insert(PN);
+ rememberInstruction(PN);
Constant *One = ConstantInt::get(Ty, 1);
for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
@@ -691,7 +882,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// corresponding to the back-edge.
Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
(*HPI)->getTerminator());
- InsertedValues.insert(Add);
+ rememberInstruction(Add);
PN->addIncoming(Add, *HPI);
} else {
PN->addIncoming(Constant::getNullValue(Ty), *HPI);
@@ -738,7 +929,7 @@ Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateTrunc(V, Ty, "tmp");
- InsertedValues.insert(I);
+ rememberInstruction(I);
return I;
}
@@ -747,7 +938,7 @@ Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateZExt(V, Ty, "tmp");
- InsertedValues.insert(I);
+ rememberInstruction(I);
return I;
}
@@ -756,7 +947,7 @@ Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
Value *V = expandCodeFor(S->getOperand(),
SE.getEffectiveSCEVType(S->getOperand()->getType()));
Value *I = Builder.CreateSExt(V, Ty, "tmp");
- InsertedValues.insert(I);
+ rememberInstruction(I);
return I;
}
@@ -772,9 +963,9 @@ Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
}
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
- InsertedValues.insert(ICmp);
+ rememberInstruction(ICmp);
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
- InsertedValues.insert(Sel);
+ rememberInstruction(Sel);
LHS = Sel;
}
// In the case of mixed integer and pointer types, cast the
@@ -796,9 +987,9 @@ Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
}
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
- InsertedValues.insert(ICmp);
+ rememberInstruction(ICmp);
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
- InsertedValues.insert(Sel);
+ rememberInstruction(Sel);
LHS = Sel;
}
// In the case of mixed integer and pointer types, cast the
@@ -863,7 +1054,8 @@ Value *SCEVExpander::expand(const SCEV *S) {
Value *V = visit(S);
// Remember the expanded value for this SCEV at this location.
- InsertedExpressions[std::make_pair(S, InsertPt)] = V;
+ if (!PostIncLoop)
+ InsertedExpressions[std::make_pair(S, InsertPt)] = V;
Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
return V;
diff --git a/lib/Target/X86/X86ISelDAGToDAG.cpp b/lib/Target/X86/X86ISelDAGToDAG.cpp
index 01cad71977..91e04838c9 100644
--- a/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -944,7 +944,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
// Okay, we know that we have a scale by now. However, if the scaled
// value is an add of something and a constant, we can fold the
// constant into the disp field here.
- if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
+ if (ShVal.getNode()->getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
AM.IndexReg = ShVal.getNode()->getOperand(0);
ConstantSDNode *AddVal =
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index ce1307c8df..17f7d98509 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -471,6 +471,13 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
+ // Evaluate the expression out of the loop, if possible.
+ if (!L->contains(UI->getUser())) {
+ const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
+ if (ExitVal->isLoopInvariant(L))
+ AR = ExitVal;
+ }
+
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
@@ -522,11 +529,10 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
Rewriter.clear();
// Now that we're done iterating through lists, clean up any instructions
// which are now dead.
- while (!DeadInsts.empty()) {
- Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
- if (Inst)
+ while (!DeadInsts.empty())
+ if (Instruction *Inst =
+ dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
}
/// If there's a single exit block, sink any loop-invariant values that
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index fa820ed8e4..6456ca1eb0 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -17,6 +17,45 @@
// available on the target, and it performs a variety of other optimizations
// related to loop induction variables.
//
+// Terminology note: this code has a lot of handling for "post-increment" or
+// "post-inc" users. This is not talking about post-increment addressing modes;
+// it is instead talking about code like this:
+//
+// %i = phi [ 0, %entry ], [ %i.next, %latch ]
+// ...
+// %i.next = add %i, 1
+// %c = icmp eq %i.next, %n
+//
+// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
+// it's useful to think about these as the same register, with some uses using
+// the value of the register before the add and some using // it after. In this
+// example, the icmp is a post-increment user, since it uses %i.next, which is
+// the value of the induction variable after the increment. The other common
+// case of post-increment users is users outside the loop.
+//
+// TODO: More sophistication in the way Formulae are generated.
+//
+// TODO: Handle multiple loops at a time.
+//
+// TODO: test/CodeGen/X86/full-lsr.ll should get full lsr. The problem is
+// that {0,+,1}<%bb> is getting picked first because all 7 uses can
+// use it, and while it's a pretty good solution, it means that LSR
+// doesn't look further to find an even better solution.
+//
+// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
+// instead of a GlobalValue?
+//
+// TODO: When truncation is free, truncate ICmp users' operands to make it a
+// smaller encoding (on x86 at least).
+//
+// TODO: When a negated register is used by an add (such as in a list of
+// multiple base registers, or as the increment expression in an addrec),
+// we may not actually need both reg and (-1 * reg) in registers; the
+// negation can be implemented by using a sub instead of an add. The
+// lack of support for taking this into consideration when making
+// register pressure decisions is partly worked around by the "Special"
+// use kind.
+//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-reduce"
@@ -26,2025 +65,1524 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/IVUsers.h"
+#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
-STATISTIC(NumReduced , "Number of IV uses strength reduced");
-STATISTIC(NumInserted, "Number of PHIs inserted");
-STATISTIC(NumVariable, "Number of PHIs with variable strides");
-STATISTIC(NumEliminated, "Number of strides eliminated");
-STATISTIC(NumShadow, "Number of Shadow IVs optimized");
-STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
-STATISTIC(NumLoopCond, "Number of loop terminating conds optimized");
-STATISTIC(NumCountZero, "Number of count iv optimized to count toward zero");
-
-static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
- cl::init(false),
- cl::Hidden);
-
namespace {
- struct BasedUser;
+// Constant strides come first which in turns are sorted by their absolute
+// values. If absolute values are the same, then positive strides comes first.
+// e.g.
+// 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
+struct StrideCompare {
+ const ScalarEvolution &SE;
+ explicit StrideCompare(const ScalarEvolution &se) : SE(se) {}
+
+ bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) const {
+ const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
+ const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
+ if (LHSC && RHSC) {
+ unsigned BitWidth = std::max(SE.getTypeSizeInBits(LHS->getType()),
+ SE.getTypeSizeInBits(RHS->getType()));
+ APInt LV = LHSC->getValue()->getValue();
+ APInt RV = RHSC->getValue()->getValue();
+ LV.sextOrTrunc(BitWidth);
+ RV.sextOrTrunc(BitWidth);
+ APInt ALV = LV.abs();
+ APInt ARV = RV.abs();
+ if (ALV == ARV) {
+ if (LV != RV)
+ return LV.sgt(RV);
+ } else {
+ return ALV.ult(ARV);
+ }
+
+ // If it's the same value but different type, sort by bit width so
+ // that we emit larger induction variables before smaller
+ // ones, letting the smaller be re-written in terms of larger ones.
+ return SE.getTypeSizeInBits(RHS->getType()) <
+ SE.getTypeSizeInBits(LHS->getType());
+ }
+ return LHSC && !RHSC;
+ }
+};
- /// IVInfo - This structure keeps track of one IV expression inserted during
- /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
- /// well as the PHI node and increment value created for rewrite.
- struct IVExpr {
- const SCEV *Stride;
- const SCEV *Base;
- PHINode *PHI;
+/// RegSortData - This class holds data which is used to order reuse
+/// candidates.
+class RegSortData {
+public:
+ /// Bits - This represents the set of LSRUses (by index) which reference a
+ /// particular register.
+ SmallBitVector Bits;
- IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
- : Stride(stride), Base(base), PHI(phi) {}
- };
+ /// MaxComplexity - This represents the greatest complexity (see the comments
+ /// on Formula::getComplexity) seen with a particular register.
+ uint32_t MaxComplexity;
- /// IVsOfOneStride - This structure keeps track of all IV expression inserted
- /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
- struct IVsOfOneStride {
- std::vector<IVExpr> IVs;
+ /// Index - This holds an arbitrary value used as a last-resort tie breaker
+ /// to ensure deterministic behavior.
+ unsigned Index;
- void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
- IVs.push_back(IVExpr(Stride, Base, PHI));
- }
- };
+ RegSortData() {}
- class LoopStrengthReduce : public LoopPass {
- IVUsers *IU;
- ScalarEvolution *SE;
- bool Changed;
-
- /// IVsByStride - Keep track of all IVs that have been inserted for a
- /// particular stride.
- std::map<const SCEV *, IVsOfOneStride> IVsByStride;
-
- /// DeadInsts - Keep track of instructions we may have made dead, so that
- /// we can remove them after we are done working.
- SmallVector<WeakVH, 16> DeadInsts;
-
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetLowering *TLI;
-
- public:
- static char ID; // Pass ID, replacement for typeid
- explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
- LoopPass(&ID), TLI(tli) {}
-
- bool runOnLoop(Loop *L, LPPassManager &LPM);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- // We split critical edges, so we change the CFG. However, we do update
- // many analyses if they are around.
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreserved("loops");
- AU.addPreserved("domfrontier");
- AU.addPreserved("domtree");
-
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- AU.addRequired<IVUsers>();
- AU.addPreserved<IVUsers>();
- }
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
- private:
- void OptimizeIndvars(Loop *L);
-
- /// OptimizeLoopTermCond - Change loop terminating condition to use the
- /// postinc iv when possible.
- void OptimizeLoopTermCond(Loop *L);
-
- /// OptimizeShadowIV - If IV is used in a int-to-float cast
- /// inside the loop then try to eliminate the cast opeation.
- void OptimizeShadowIV(Loop *L);
-
- /// OptimizeMax - Rewrite the loop's terminating condition
- /// if it uses a max computation.
- ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
- IVStrideUse* &CondUse);
-
- /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for
- /// deciding when to exit the loop is used only for that purpose, try to
- /// rearrange things so it counts down to a test against zero.
- bool OptimizeLoopCountIV(Loop *L);
- bool OptimizeLoopCountIVOfStride(const SCEV* &Stride,
- IVStrideUse* &CondUse, Loop *L);
-
- /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a
- /// single stride of IV. All of the users may have different starting
- /// values, and this may not be the only stride.
- void StrengthReduceIVUsersOfStride(const SCEV *Stride,
- IVUsersOfOneStride &Uses,
- Loop *L);
- void StrengthReduceIVUsers(Loop *L);
-
- ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
- IVStrideUse* &CondUse,
- const SCEV* &CondStride,
- bool PostPass = false);
-
- bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
- const SCEV* &CondStride);
- bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
- const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *,
- IVExpr&, const Type*,
- const std::vector<BasedUser>& UsersToProcess);
- bool ValidScale(bool, int64_t,
- const std::vector<BasedUser>& UsersToProcess);
- bool ValidOffset(bool, int64_t, int64_t,
- const std::vector<BasedUser>& UsersToProcess);
- const SCEV *CollectIVUsers(const SCEV *Stride,
- IVUsersOfOneStride &Uses,
- Loop *L,
- bool &AllUsesAreAddresses,
- bool &AllUsesAreOutsideLoop,
- std::vector<BasedUser> &UsersToProcess);
- bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc);
- bool ShouldUseFullStrengthReductionMode(
- const std::vector<BasedUser> &UsersToProcess,
- const Loop *L,
- bool AllUsesAreAddresses,
- const SCEV *Stride);
- void PrepareToStrengthReduceFully(
- std::vector<BasedUser> &UsersToProcess,
- const SCEV *Stride,
- const SCEV *CommonExprs,
- const Loop *L,
- SCEVExpander &PreheaderRewriter);
- void PrepareToStrengthReduceFromSmallerStride(
- std::vector<BasedUser> &UsersToProcess,
- Value *CommonBaseV,
- const IVExpr &ReuseIV,
- Instruction *PreInsertPt);
- void PrepareToStrengthReduceWithNewPhi(
- std::vector<BasedUser> &UsersToProcess,
- const SCEV *Stride,
- const SCEV *CommonExprs,
- Value *CommonBaseV,
- Instruction *IVIncInsertPt,
- const Loop *L,
- SCEVExpander &PreheaderRewriter);
-
- void DeleteTriviallyDeadInstructions();
- };
}
-char LoopStrengthReduce::ID = 0;
-static RegisterPass<LoopStrengthReduce>
-X("loop-reduce", "Loop Strength Reduction");
+void RegSortData::print(raw_ostream &OS) const {
+ OS << "[NumUses=" << Bits.count()
+ << ", MaxComplexity=";
+ OS.write_hex(MaxComplexity);
+ OS << ", Index=" << Index << ']';
+}
-Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
- return new LoopStrengthReduce(TLI);
+void RegSortData::dump() const {
+ print(errs()); errs() << '\n';
}
-/// DeleteTriviallyDeadInstructions - If any of the instructions is the
-/// specified set are trivially dead, delete them and see if this makes any of
-/// their operands subsequently dead.
-void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
- while (!DeadInsts.empty()) {
- Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
+namespace {
- if (I == 0 || !isInstructionTriviallyDead(I))
- continue;
+/// RegCount - This is a helper class to sort a given set of registers
+/// according to associated RegSortData values.
+class RegCount {
+public:
+ const SCEV *Reg;
+ RegSortData Sort;
+
+ RegCount(const SCEV *R, const RegSortData &RSD)
+ : Reg(R), Sort(RSD) {}
+
+ // Sort by count. Returning true means the register is preferred.
+ bool operator<(const RegCount &Other) const {
+ // Sort by the number of unique uses of this register.
+ unsigned A = Sort.Bits.count();
+ unsigned B = Other.Sort.Bits.count();
+ if (A != B) return A > B;
+
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
+ const SCEVAddRecExpr *BR = dyn_cast<SCEVAddRecExpr>(Other.Reg);
+ // AddRecs have higher priority than other things.
+ if (!BR) return true;
+
+ // Prefer affine values.
+ if (AR->isAffine() != BR->isAffine())
+ return AR->isAffine();
+
+ const Loop *AL = AR->getLoop();
+ const Loop *BL = BR->getLoop();
+ if (AL != BL) {
+ unsigned ADepth = AL->getLoopDepth();
+ unsigned BDepth = BL->getLoopDepth();
+ // Prefer a less deeply nested addrec.
+ if (ADepth != BDepth)
+ return ADepth < BDepth;
+
+ // Different loops at the same depth; do something arbitrary.
+ BasicBlock *AH = AL->getHeader();
+ BasicBlock *BH = BL->getHeader();
+ for (Function::iterator I = AH, E = AH->getParent()->end(); I != E; ++I)
+ if (&*I == BH) return true;
+ return false;
+ }
- for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
- if (Instruction *U = dyn_cast<Instruction>(*OI)) {
- *OI = 0;
- if (U->use_empty())
- DeadInsts.push_back(U);
+ // Sort addrecs by stride.
+ const SCEV *AStep = AR->getOperand(1);
+ const SCEV *BStep = BR->getOperand(1);
+ if (AStep != BStep) {
+ if (const SCEVConstant *AC = dyn_cast<SCEVConstant>(AStep)) {
+ const SCEVConstant *BC = dyn_cast<SCEVConstant>(BStep);
+ if (!BC) return true;
+ // Arbitrarily prefer wider registers.
+ if (AC->getValue()->getValue().getBitWidth() !=
+ BC->getValue()->getValue().getBitWidth())
+ return AC->getValue()->getValue().getBitWidth() >
+ BC->getValue()->getValue().getBitWidth();
+ // Ignore the sign bit, assuming that striding by a negative value
+ // is just as easy as by a positive value.
+ // Prefer the addrec with the lesser absolute value stride, as it
+ // will allow uses to have simpler addressing modes.
+ return AC->getValue()->getValue().abs()
+ .ult(BC->getValue()->getValue().abs());
+ }
}
- I->eraseFromParent();
- Changed = true;
+ // Then sort by the register which will permit the simplest uses.
+ // This is a heuristic; currently we only track the most complex use as a
+ // representative.
+ if (Sort.MaxComplexity != Other.Sort.MaxComplexity)
+ return Sort.MaxComplexity < Other.Sort.MaxComplexity;
+
+ // Then sort them by their start values.
+ const SCEV *AStart = AR->getStart();
+ const SCEV *BStart = BR->getStart();
+ if (AStart != BStart) {
+ if (const SCEVConstant *AC = dyn_cast<SCEVConstant>(AStart)) {
+ const SCEVConstant *BC = dyn_cast<SCEVConstant>(BStart);
+ if (!BC) return true;
+ // Arbitrarily prefer wider registers.
+ if (AC->getValue()->getValue().getBitWidth() !=
+ BC->getValue()->getValue().getBitWidth())
+ return AC->getValue()->getValue().getBitWidth() >
+ BC->getValue()->getValue().getBitWidth();
+ // Prefer positive over negative if the absolute values are the same.
+ if (AC->getValue()->getValue().abs() ==
+ BC->getValue()->getValue().abs())
+ return AC->getValue()->getValue().isStrictlyPositive();
+ // Prefer the addrec with the lesser absolute value start.
+ return AC->getValue()->getValue().abs()
+ .ult(BC->getValue()->getValue().abs());
+ }
+ }
+ } else {
+ // AddRecs have higher priority than other things.
+ if (isa<SCEVAddRecExpr>(Other.Reg)) return false;
+ // Sort by the register which will permit the simplest uses.
+ // This is a heuristic; currently we only track the most complex use as a
+ // representative.
+ if (Sort.MaxComplexity != Other.Sort.MaxComplexity)
+ return Sort.MaxComplexity < Other.Sort.MaxComplexity;
+ }
+
+
+ // Tie-breaker: the arbitrary index, to ensure a reliable ordering.
+ return Sort.Index < Other.Sort.Index;
}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
}
-/// isAddressUse - Returns true if the specified instruction is using the
-/// specified value as an address.
-static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
- bool isAddress = isa<LoadInst>(Inst);
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->getOperand(1) == OperandVal)
- isAddress = true;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // Addressing modes can also be folded into prefetches and a variety
- // of intrinsics.
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::prefetch:
- case Intrinsic::x86_sse2_loadu_dq:
- case Intrinsic::x86_sse2_loadu_pd:
- case Intrinsic::x86_sse_loadu_ps:
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- case Intrinsic::x86_sse2_storel_dq:
- if (II->getOperand(1) == OperandVal)
- isAddress = true;
- break;
- }
- }
- return isAddress;
+void RegCount::print(raw_ostream &OS) const {
+ OS << *Reg << ':';
+ Sort.print(OS);
}
-/// getAccessType - Return the type of the memory being accessed.
-static const Type *getAccessType(const Instruction *Inst) {
- const Type *AccessTy = Inst->getType();
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
- AccessTy = SI->getOperand(0)->getType();
- else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // Addressing modes can also be folded into prefetches and a variety
- // of intrinsics.
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- case Intrinsic::x86_sse2_storel_dq:
- AccessTy = II->getOperand(1)->getType();
- break;
- }
- }
- return AccessTy;
+void RegCount::dump() const {
+ print(errs()); errs() << '\n';
}
namespace {
- /// BasedUser - For a particular base value, keep information about how we've
- /// partitioned the expression so far.
- struct BasedUser {
- /// Base - The Base value for the PHI node that needs to be inserted for
- /// this use. As the use is processed, information gets moved from this
- /// field to the Imm field (below). BasedUser values are sorted by this
- /// field.
- const SCEV *Base;
-
- /// Inst - The instruction using the induction variable.
- Instruction *Inst;
-
- /// OperandValToReplace - The operand value of Inst to replace with the
- /// EmittedBase.
- Value *OperandValToReplace;
-
- /// Imm - The immediate value that should be added to the base immediately
- /// before Inst, because it will be folded into the imm field of the
- /// instruction. This is also sometimes used for loop-variant values that
- /// must be added inside the loop.
- const SCEV *Imm;
-
- /// Phi - The induction variable that performs the striding that
- /// should be used for this user.
- PHINode *Phi;
-
- // isUseOfPostIncrementedValue - True if this should use the
- // post-incremented version of this IV, not the preincremented version.
- // This can only be set in special cases, such as the terminating setcc
- // instruction for a loop and uses outside the loop that are dominated by
- // the loop.
- bool isUseOfPostIncrementedValue;
-
- BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
- : Base(IVSU.getOffset()), Inst(IVSU.getUser()),
- OperandValToReplace(IVSU.getOperandValToReplace()),
- Imm(se->getIntegerSCEV(0, Base->getType())),
- isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
-
- // Once we rewrite the code to insert the new IVs we want, update the
- // operands of Inst to use the new expression 'NewBase', with 'Imm' added
- // to it.
- void RewriteInstructionToUseNewBase(const SCEV *NewBase,
- Instruction *InsertPt,
- SCEVExpander &Rewriter, Loop *L, Pass *P,
- SmallVectorImpl<WeakVH> &DeadInsts,
- ScalarEvolution *SE);
-
- Value *InsertCodeForBaseAtPosition(const SCEV *NewBase,
- const Type *Ty,
- SCEVExpander &Rewriter,
- Instruction *IP,
- ScalarEvolution *SE);
- void dump() const;
- };
-}
-void BasedUser::dump() const {
- dbgs() << " Base=" << *Base;
- dbgs() << " Imm=" << *Imm;
- dbgs() << " Inst: " << *Inst;
-}
+/// Formula - This class holds information that describes a formula for
+/// satisfying a use. It may include broken-out immediates and scaled registers.
+struct Formula {
+ /// AM - This is used to represent complex addressing, as well as other kinds
+ /// of interesting uses.
+ TargetLowering::AddrMode AM;
-Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *NewBase,
- const Type *Ty,
- SCEVExpander &Rewriter,
- Instruction *IP,
- ScalarEvolution *SE) {
- Value *Base = Rewriter.expandCodeFor(NewBase, 0, IP);
+ /// BaseRegs - The list of "base" registers for this use. When this is
+ /// non-empty, AM.HasBaseReg should be set to true.
+ SmallVector<const SCEV *, 2> BaseRegs;
- // Wrap the base in a SCEVUnknown so that ScalarEvolution doesn't try to
- // re-analyze it.
- const SCEV *NewValSCEV = SE->getUnknown(Base);
+ /// ScaledReg - The 'scaled' register for this use. This should be non-null
+ /// when AM.Scale is not zero.
+ const SCEV *ScaledReg;
- // Always emit the immediate into the same block as the user.
- NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
+ Formula() : ScaledReg(0) {}
- return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
-}
+ unsigned getNumRegs() const;
+ uint32_t getComplexity() const;
+ const Type *getType() const;
+ void InitialMatch(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
-// Once we rewrite the code to insert the new IVs we want, update the
-// operands of Inst to use the new expression 'NewBase', with 'Imm' added
-// to it. NewBasePt is the last instruction which contributes to the
-// value of NewBase in the case that it's a diffferent instruction from
-// the PHI that NewBase is computed from, or null otherwise.
-//
-void BasedUser::RewriteInstructionToUseNewBase(const SCEV *NewBase,
- Instruction *NewBasePt,
- SCEVExpander &Rewriter, Loop *L, Pass *P,
- SmallVectorImpl<WeakVH> &DeadInsts,
- ScalarEvolution *SE) {
- if (!isa<PHINode>(Inst)) {
- // By default, insert code at the user instruction.
- BasicBlock::iterator InsertPt = Inst;
-
- // However, if the Operand is itself an instruction, the (potentially
- // complex) inserted code may be shared by many users. Because of this, we
- // want to emit code for the computation of the operand right before its old
- // computation. This is usually safe, because we obviously used to use the
- // computation when it was computed in its current block. However, in some
- // cases (e.g. use of a post-incremented induction variable) the NewBase
- // value will be pinned to live somewhere after the original computation.
- // In this case, we have to back off.
- //
- // If this is a use outside the loop (which means after, since it is based
- // on a loop indvar) we use the post-incremented value, so that we don't
- // artificially make the preinc value live out the bottom of the loop.
- if (!isUseOfPostIncrementedValue && L->contains(Inst)) {
- if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
- InsertPt = NewBasePt;
- ++InsertPt;
- } else if (Instruction *OpInst
- = dyn_cast<Instruction>(OperandValToReplace)) {
- InsertPt = OpInst;
- while (isa<PHINode>(InsertPt)) ++InsertPt;
- }
- }
- Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
- OperandValToReplace->getType(),
- Rewriter, InsertPt, SE);
- // Replace the use of the operand Value with the new Phi we just created.
- Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
-
- DEBUG(dbgs() << " Replacing with ");
- DEBUG(WriteAsOperand(dbgs(), NewVal, /*PrintType=*/false));
- DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
- << *Imm << "\n");
- return;
+ /// referencesReg - Test if this formula references the given register.
+ bool referencesReg(const SCEV *S) const {
+ return S == ScaledReg ||
+ std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
}
- // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
- // expression into each operand block that uses it. Note that PHI nodes can
- // have multiple entries for the same predecessor. We use a map to make sure
- // that a PHI node only has a single Value* for each predecessor (which also
- // prevents us from inserting duplicate code in some blocks).
- DenseMap<BasicBlock*, Value*> InsertedCode;
- PHINode *PN = cast<PHINode>(Inst);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- if (PN->getIncomingValue(i) == OperandValToReplace) {
- // If the original expression is outside the loop, put the replacement
- // code in the same place as the original expression,
- // which need not be an immediate predecessor of this PHI. This way we
- // need only one copy of it even if it is referenced multiple times in
- // the PHI. We don't do this when the original expression is inside the
- // loop because multiple copies sometimes do useful sinking of code in
- // that case(?).
- Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
- BasicBlock *PHIPred = PN->getIncomingBlock(i);
- if (L->contains(OldLoc)) {
- // If this is a critical edge, split the edge so that we do not insert
- // the code on all predecessor/successor paths. We do this unless this
- // is the canonical backedge for this loop, as this can make some
- // inserted code be in an illegal position.
- if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
- !isa<IndirectBrInst>(PHIPred->getTerminator()) &&
- (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
-
- // First step, split the critical edge.
- BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
- P, false);
-
- // Next step: move the basic block. In particular, if the PHI node
- // is outside of the loop, and PredTI is in the loop, we want to
- // move the block to be immediately before the PHI block, not
- // immediately after PredTI.
- if (L->contains(PHIPred) && !L->contains(PN))
- NewBB->moveBefore(PN->getParent());
+ bool operator==(const Formula &Other) const {
+ return BaseRegs == Other.BaseRegs &&
+ ScaledReg == Other.ScaledReg &&
+ AM.Scale == Other.AM.Scale &&
+ AM.BaseOffs == Other.AM.BaseOffs &&
+ AM.BaseGV == Other.AM.BaseGV;
+ }
- // Splitting the edge can reduce the number of PHI entries we have.
- e = PN->getNumIncomingValues();
- PHIPred = NewBB;
- i = PN->getBasicBlockIndex(PHIPred);
- }
- }
- Value *&Code = InsertedCode[PHIPred];
- if (!Code) {
- // Insert the code into the end of the predecessor block.
- Instruction *InsertPt = (L->contains(OldLoc)) ?
- PHIPred->getTerminator() :
- OldLoc->getParent()->getTerminator();
- Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
- Rewriter, InsertPt, SE);
-
- DEBUG(dbgs() << " Changing PHI use to ");
- DEBUG(WriteAsOperand(dbgs(), Code, /*PrintType=*/false));
- DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
- << *Imm << "\n");
- }
+ // This sorts at least partially based on host pointer values which are
+ // not deterministic, so it is only usable for uniqification.
+ bool operator<(const Formula &Other) const {
+ if (BaseRegs != Other.BaseRegs)
+ return BaseRegs < Other.BaseRegs;
+ if (ScaledReg != Other.ScaledReg)
+ return ScaledReg < Other.ScaledReg;
+ if (AM.Scale != Other.AM.Scale)
+ return AM.Scale < Other.AM.Scale;
+ if (AM.BaseOffs != Other.AM.BaseOffs)
+ return AM.BaseOffs < Other.AM.BaseOffs;
+ if (AM.BaseGV != Other.AM.BaseGV)
+ return AM.BaseGV < Other.AM.BaseGV;
+ return false;
+ }
- // Replace the use of the operand Value with the new Phi we just created.
- PN->setIncomingValue(i, Code);
- Rewriter.clear();
- }
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+}
+
+/// getNumRegs - Return the total number of register operands used by this
+/// formula.
+unsigned Formula::getNumRegs() const {
+ return !!ScaledReg + BaseRegs.size();
+}
+
+/// getComplexity - Return an oversimplified value indicating the complexity
+/// of this formula. This is used as a tie-breaker in choosing register
+/// preferences.
+uint32_t Formula::getComplexity() const {
+ // Encode the information in a uint32_t so that comparing with operator<
+ // will be interesting.
+ return
+ // Most significant, the number of registers. This saturates because we
+ // need the bits, and because beyond a few hundred it doesn't really matter.
+ (std::min(getNumRegs(), (1u<<15)-1) << 17) |
+ // Having multiple base regs is worse than having a base reg and a scale.
+ ((BaseRegs.size() > 1) << 16) |
+ // Scale absolute value.
+ ((AM.Scale != 0 ? (Log2_64(abs64(AM.Scale)) + 1) : 0u) << 9) |
+ // Scale sign, which is less significant than the absolute value.
+ ((AM.Scale < 0) << 8) |
+ // Offset absolute value.
+ ((AM.BaseOffs != 0 ? (Log2_64(abs64(AM.BaseOffs)) + 1) : 0u) << 1) |
+ // If a GV is present, treat it like a maximal offset.
+ ((AM.BaseGV ? ((1u<<7)-1) : 0) << 1) |
+ // Offset sign, which is less significant than the absolute offset.
+ ((AM.BaseOffs < 0) << 0);
+}
+
+/// getType - Return the type of this formula, if it has one, or null
+/// otherwise. This type is meaningless except for the bit size.
+const Type *Formula::getType() const {
+ return !BaseRegs.empty() ? BaseRegs.front()->getType() :
+ ScaledReg ? ScaledReg->getType() :
+ AM.BaseGV ? AM.BaseGV->getType() :
+ 0;
+}
+
+namespace {
+
+/// ComplexitySorter - A predicate which orders Formulae by the number of
+/// registers they contain.
+struct ComplexitySorter {
+ bool operator()(const Formula &LHS, const Formula &RHS) const {
+ unsigned L = LHS.getNumRegs();
+ unsigned R = RHS.getNumRegs();
+ if (L != R) return L < R;
+
+ return LHS.getComplexity() < RHS.getComplexity();
}
+};
- // PHI node might have become a constant value after SplitCriticalEdge.
- DeadInsts.push_back(Inst);
}
+/// DoInitialMatch - Recurrsion helper for InitialMatch.
+static void DoInitialMatch(const SCEV *S, Loop *L,
+ SmallVectorImpl<const SCEV *> &Good,
+ SmallVectorImpl<const SCEV *> &Bad,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ // Collect expressions which properly dominate the loop header.
+ if (S->properlyDominates(L->getHeader(), &DT)) {
+ Good.push_back(S);
+ return;
+ }
-/// fitsInAddressMode - Return true if V can be subsumed within an addressing
-/// mode, and does not need to be put in a register first.
-static bool fitsInAddressMode(const SCEV *V, const Type *AccessTy,
- const TargetLowering *TLI, bool HasBaseReg) {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
- int64_t VC = SC->getValue()->getSExtValue();
- if (TLI) {
- TargetLowering::AddrMode AM;
- AM.BaseOffs = VC;
- AM.HasBaseReg = HasBaseReg;
- return TLI->isLegalAddressingMode(AM, AccessTy);
- } else {
- // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
- return (VC > -(1 << 16) && VC < (1 << 16)-1);
+ // Look at add operands.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I)
+ DoInitialMatch(*I, L, Good, Bad, SE, DT);
+ return;
+ }
+
+ // Look at addrec operands.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ if (!AR->getStart()->isZero()) {
+ DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
+ DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
+ AR->getStepRecurrence(SE),
+ AR->getLoop()),
+ L, Good, Bad, SE, DT);
+ return;
}
}
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
- if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
- if (TLI) {
- TargetLowering::AddrMode AM;
- AM.BaseGV = GV;
- AM.HasBaseReg = HasBaseReg;
- return TLI->isLegalAddressingMode(AM, AccessTy);
- } else {
- // Default: assume global addresses are not legal.
- }
+ // Handle a multiplication by -1 (negation) if it didn't fold.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
+ if (Mul->getOperand(0)->isAllOnesValue()) {
+ SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *NewMul = SE.getMulExpr(Ops);
+
+ SmallVector<const SCEV *, 4> MyGood;
+ SmallVector<const SCEV *, 4> MyBad;
+ DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
+ const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
+ SE.getEffectiveSCEVType(NewMul->getType())));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
+ E = MyGood.end(); I != E; ++I)
+ Good.push_back(SE.getMulExpr(NegOne, *I));
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
+ E = MyBad.end(); I != E; ++I)
+ Bad.push_back(SE.getMulExpr(NegOne, *I));
+ return;
}
- return false;
+ // Ok, we can't do anything interesting. Just stuff the whole thing into a
+ // register and hope for the best.
+ Bad.push_back(S);
}
-/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
-/// loop varying to the Imm operand.
-static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
- Loop *L, ScalarEvolution *SE) {
- if (Val->isLoopInvariant(L)) return; // Nothing to do.
-
- if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.reserve(SAE->getNumOperands());
-
- for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
- if (!SAE->getOperand(i)->isLoopInvariant(L)) {
- // If this is a loop-variant expression, it must stay in the immediate
- // field of the expression.
- Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
- } else {
- NewOps.push_back(SAE->getOperand(i));
- }
+/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
+/// attempting to keep all loop-invariant and loop-computable values in a
+/// single base register.
+void Formula::InitialMatch(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ SmallVector<const SCEV *, 4> Good;
+ SmallVector<const SCEV *, 4> Bad;
+ DoInitialMatch(S, L, Good, Bad, SE, DT);
+ if (!Good.empty()) {
+ BaseRegs.push_back(SE.getAddExpr(Good));
+ AM.HasBaseReg = true;
+ }
+ if (!Bad.empty()) {
+ BaseRegs.push_back(SE.getAddExpr(Bad));
+ AM.HasBaseReg = true;
+ }
+}
- if (NewOps.empty())
- Val = SE->getIntegerSCEV(0, Val->getType());
+void Formula::print(raw_ostream &OS) const {
+ bool First = true;
+ if (AM.BaseGV) {
+ if (!First) OS << " + "; else First = false;
+ WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
+ }
+ if (AM.BaseOffs != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.BaseOffs;
+ }
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
+ E = BaseRegs.end(); I != E; ++I) {
+ if (!First) OS << " + "; else First = false;
+ OS << "reg(";
+ OS << **I;
+ OS << ")";
+ }
+ if (AM.Scale != 0) {
+ if (!First) OS << " + "; else First = false;
+ OS << AM.Scale << "*reg(";
+ if (ScaledReg)
+ OS << *ScaledReg;
else
- Val = SE->getAddExpr(NewOps);
- } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
- // Try to pull immediates out of the start value of nested addrec's.
- const SCEV *Start = SARE->getStart();
- MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
-
- SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
- Ops[0] = Start;
- Val = SE->getAddRecExpr(Ops, SARE->getLoop());
- } else {
- // Otherwise, all of Val is variant, move the whole thing over.
- Imm = SE->getAddExpr(Imm, Val);
- Val = SE->getIntegerSCEV(0, Val->getType());
+ OS << "<unknown>";
+ OS << ")";
}
}
+void Formula::dump() const {
+ print(errs()); errs() << '\n';
+}
-/// MoveImmediateValues - Look at Val, and pull out any additions of constants
-/// that can fit into the immediate field of instructions in the target.
-/// Accumulate these immediate values into the Imm value.
-static void MoveImmediateValues(const TargetLowering *TLI,
- const Type *AccessTy,
- const SCEV *&Val, const SCEV *&Imm,
- bool isAddress, Loop *L,
- ScalarEvolution *SE) {
- if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.reserve(SAE->getNumOperands());
+/// getSDiv - Return an expression for LHS /s RHS, if it can be determined,
+/// or null otherwise. If IgnoreSignificantBits is true, expressions like
+/// (X * Y) /s Y are simplified to Y, ignoring that the multiplication may
+/// overflow, which is useful when the result will be used in a context where
+/// the most significant bits are ignored.
+static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS,
+ ScalarEvolution &SE,
+ bool IgnoreSignificantBits = false) {
+ // Handle the trivial case, which works for any SCEV type.
+ if (LHS == RHS)
+ return SE.getIntegerSCEV(1, LHS->getType());
+
+ // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
+ // folding.
+ if (RHS->isAllOnesValue())
+ return SE.getMulExpr(LHS, RHS);
+
+ // Check for a division of a constant by a constant.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
+ const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
+ if (!RC)
+ return 0;
+ if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
+ return 0;
+ return SE.getConstant(C->getValue()->getValue()
+ .sdiv(RC->getValue()->getValue()));
+ }
- for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
- const SCEV *NewOp = SAE->getOperand(i);
- MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
+ // Distribute the sdiv over addrec operands.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
+ const SCEV *Start = getSDiv(AR->getStart(), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Start) return 0;
+ const SCEV *Step = getSDiv(AR->getStepRecurrence(SE), RHS, SE,
+ IgnoreSignificantBits);
+ if (!Step) return 0;
+ return SE.getAddRecExpr(Start, Step, AR->getLoop());
+ }
- if (!NewOp->isLoopInvariant(L)) {
- // If this is a loop-variant expression, it must stay in the immediate
- // field of the expression.
- Imm = SE->getAddExpr(Imm, NewOp);
- } else {
- NewOps.push_back(NewOp);
- }
+ // Distribute the sdiv over add operands.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
+ SmallVector<const SCEV *, 8> Ops;
+ for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
+ I != E; ++I) {
+ const SCEV *Op = getSDiv(*I, RHS, SE,
+ IgnoreSignificantBits);
+ if (!Op) return 0;
+ Ops.push_back(Op);
}
+ return SE.getAddExpr(Ops);
+ }
- if (NewOps.empty())
- Val = SE->getIntegerSCEV(0, Val->getType());
- else
- Val = SE->getAddExpr(NewOps);
- return;
- } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
- // Try to pull immediates out of the start value of nested addrec's.
- const SCEV *Start = SARE->getStart();
- MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
-
- if (Start != SARE->getStart()) {
- SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
- Ops[0] = Start;
- Val = SE->getAddRecExpr(Ops, SARE->getLoop());
- }
- return;
- } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
- // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
- if (isAddress &&
- fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
- SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
-
- const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
- const SCEV *NewOp = SME->getOperand(1);
- MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
-
- // If we extracted something out of the subexpressions, see if we can
- // simplify this!
- if (NewOp != SME->getOperand(1)) {
- // Scale SubImm up by "8". If the result is a target constant, we are
- // good.
- SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
- if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
- // Accumulate the immediate.
- Imm = SE->getAddExpr(Imm, SubImm);
-
- // Update what is left of 'Val'.
- Val = SE->getMulExpr(SME->getOperand(0), NewOp);
- return;
- }
+ // Check for a multiply operand that we can pull RHS out of.
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
+ if (IgnoreSignificantBits || Mul->hasNoSignedWrap()) {
+ SmallVector<const SCEV *, 4> Ops;
+ bool Found = false;
+ for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
+ I != E; ++I) {
+ if (!Found)
+ if (const SCEV *Q = getSDiv(*I, RHS, SE, IgnoreSignificantBits)) {
+ Ops.push_back(Q);
+ Found = true;
+ continue;
+ }
+ Ops.push_back(*I);
}
+ return Found ? SE.getMulExpr(Ops) : 0;
}
- }
- // Loop-variant expressions must stay in the immediate field of the
- // expression.
- if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
- !Val->isLoopInvariant(L)) {
- Imm = SE->getAddExpr(Imm, Val);
- Val = SE->getIntegerSCEV(0, Val->getType());
- return;
- }
+ // Otherwise we don't know.
+ return 0;
+}
- // Otherwise, no immediates to move.
-}
-
-static void MoveImmediateValues(const TargetLowering *TLI,
- Instruction *User,
- const SCEV *&Val, const SCEV *&Imm,
- bool isAddress, Loop *L,
- ScalarEvolution *SE) {
- const Type *AccessTy = getAccessType(User);
- MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
-}
-
-/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
-/// added together. This is used to reassociate common addition subexprs
-/// together for maximal sharing when rewriting bases.
-static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
- const SCEV *Expr,
- ScalarEvolution *SE) {
- if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
- for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
- SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
- } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
- const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
- if (SARE->getOperand(0) == Zero) {
- SubExprs.push_back(Expr);
- } else {
- // Compute the addrec with zero as its base.
- SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
- Ops[0] = Zero; // Start with zero base.
- SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
+namespace {
+/// LSRUse - This class holds the state that LSR keeps for each use in
+/// IVUsers, as well as uses invented by LSR itself. It includes information
+/// about what kinds of things can be folded into the user, information
+/// about the user itself, and information about how the use may be satisfied.
+/// TODO: Represent multiple users of the same expression in common?
+class LSRUse {
+ SmallSet<Formula, 8> FormulaeUniquifier;
+
+public:
+ /// KindType - An enum for a kind of use, indicating what types of
+ /// scaled and immediate operands it might support.
+ enum KindType {
+ Basic, ///< A normal use, with no folding.
+ Special, ///< A special case of basic, allowing -1 scales.
+ Address, ///< An address use; folding according to TargetLowering
+ ICmpZero ///< An equality icmp with both operands folded into one.
+ // TODO: Add a generic icmp too?
+ };
+
+ KindType Kind;
+ const Type *AccessTy;
+ Instruction *UserInst;
+ Value *OperandValToReplace;
+
+ /// PostIncLoop - If this user is to use the post-incremented value of an
+ /// induction variable, this variable is non-null and holds the loop
+ /// associated with the induction variable.
+ const Loop *PostIncLoop;
+
+ /// Formulae - A list of ways to build a value that can satisfy this user.
+ /// After the list is populated, one of these is selected heuristically and
+ /// used to formulate a replacement for OperandValToReplace in UserInst.
+ SmallVector<Formula, 12> Formulae;
+
+ LSRUse() : Kind(Basic), AccessTy(0),
+ UserInst(0), OperandValToReplace(0), PostIncLoop(0) {}
+
+ void InsertInitialFormula(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT);
+ void InsertSupplementalFormula(const SCEV *S);
+
+ bool InsertFormula(const Formula &F);
+
+ void Rewrite(Loop *L, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ ScalarEvolution &SE, DominatorTree &DT,
+ Pass *P) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ Value *Expand(BasicBlock::iterator IP,
+ Loop *L, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ ScalarEvolution &SE, DominatorTree &DT) const;
+};
- SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
- }
- } else if (!Expr->isZero()) {
- // Do not add zero.
- SubExprs.push_back(Expr);
- }
}
-// This is logically local to the following function, but C++ says we have
-// to make it file scope.
-struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
-
-/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
-/// the Uses, removing any common subexpressions, except that if all such
-/// subexpressions can be folded into an addressing mode for all uses inside
-/// the loop (this case is referred to as "free" in comments herein) we do
-/// not remove anything. This looks for things like (a+b+c) and
-/// (a+c+d) and computes the common (a+c) subexpression. The common expression
-/// is *removed* from the Bases and returned.
-static const SCEV *
-RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
- ScalarEvolution *SE, Loop *L,
- const TargetLowering *TLI) {
- unsigned NumUses = Uses.size();
-
- // Only one use? This is a very common case, so we handle it specially and
- // cheaply.
- const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
- const SCEV *Result = Zero;
- const SCEV *FreeResult = Zero;
- if (NumUses == 1) {
- // If the use is inside the loop, use its base, regardless of what it is:
- // it is clearly shared across all the IV's. If the use is outside the loop
- // (which means after it) we don't want to factor anything *into* the loop,
- // so just use 0 as the base.
- if (L->contains(Uses[0].Inst))
- std::swap(Result, Uses[0].Base);
+/// ExtractImmediate - If S involves the addition of a constant integer value,
+/// return that integer value, and mutate S to point to a new SCEV with that
+/// value excluded.
+static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+ if (C->getValue()->getValue().getMinSignedBits() <= 64) {
+ S = SE.getIntegerSCEV(0, C->getType());
+ return C->getValue()->getSExtValue();
+ }
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ int64_t Result = ExtractImmediate(NewOps.front(), SE);
+ S = SE.getAddRecExpr(NewOps, AR->getLoop());
return Result;
}
+ return 0;
+}
- // To find common subexpressions, count how many of Uses use each expression.
- // If any subexpressions are used Uses.size() times, they are common.
- // Also track whether all uses of each expression can be moved into an
- // an addressing mode "for free"; such expressions are left within the loop.
- // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
- std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
-
- // UniqueSubExprs - Keep track of all of the subexpressions we see in the
- // order we see them.
- SmallVector<const SCEV *, 16> UniqueSubExprs;
-
- SmallVector<const SCEV *, 16> SubExprs;
- unsigned NumUsesInsideLoop = 0;
- for (unsigned i = 0; i != NumUses; ++i) {
- // If the user is outside the loop, just ignore it for base computation.
- // Since the user is outside the loop, it must be *after* the loop (if it
- // were before, it could not be based on the loop IV). We don't want users
- // after the loop to affect base computation of values *inside* the loop,
- // because we can always add their offsets to the result IV after the loop
- // is done, ensuring we get good code inside the loop.
- if (!L->contains(Uses[i].Inst))
- continue;
- NumUsesInsideLoop++;
-
- // If the base is zero (which is common), return zero now, there are no
- // CSEs we can find.
- if (Uses[i].Base == Zero) return Zero;
-
- // If this use is as an address we may be able to put CSEs in the addressing
- // mode rather than hoisting them.
- bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
- // We may need the AccessTy below, but only when isAddrUse, so compute it
- // only in that case.
- const Type *AccessTy = 0;
- if (isAddrUse)
- AccessTy = getAccessType(Uses[i].Inst);
-
- // Split the expression into subexprs.
- SeparateSubExprs(SubExprs, Uses[i].Base, SE);
- // Add one to SubExpressionUseData.Count for each subexpr present, and
- // if the subexpr is not a valid immediate within an addressing mode use,
- // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
- // hoist these out of the loop (if they are common to all uses).
- for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
- if (++SubExpressionUseData[SubExprs[j]].Count == 1)
- UniqueSubExprs.push_back(SubExprs[j]);
- if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
- SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
+/// ExtractSymbol - If S involves the addition of a GlobalValue address,
+/// return that symbol, and mutate S to point to a new SCEV with that
+/// value excluded.
+static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
+ S = SE.getIntegerSCEV(0, GV->getType());
+ return GV;
}
- SubExprs.clear();
+ } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
+ S = SE.getAddExpr(NewOps);
+ return Result;
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
+ GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
+ S = SE.getAddRecExpr(NewOps, AR->getLoop());
+ return Result;
}
+ return 0;
+}
- // Now that we know how many times each is used, build Result. Iterate over
- // UniqueSubexprs so that we have a stable ordering.
- for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
- std::map<const SCEV *, SubExprUseData>::iterator I =
- SubExpressionUseData.find(UniqueSubExprs[i]);
- assert(I != SubExpressionUseData.end() && "Entry not found?");
- if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
- if (I->second.notAllUsesAreFree)
- Result = SE->getAddExpr(Result, I->first);
- else
- FreeResult = SE->getAddExpr(FreeResult, I->first);
- } else
- // Remove non-cse's from SubExpressionUseData.
- SubExpressionUseData.erase(I);
- }
+/// isLegalUse - Test whether the use described by AM is "legal", meaning
+/// it can be completely folded into the user instruction at isel time.
+/// This includes address-mode folding and special icmp tricks.
+static bool isLegalUse(const TargetLowering::AddrMode &AM,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI) {
+ switch (Kind) {
+ case LSRUse::Address:
+ // If we have low-level target information, ask the target if it can
+ // completely fold this address.
+ if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
+
+ // Otherwise, just guess that reg+reg addressing is legal.
+ return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
+
+ case LSRUse::ICmpZero:
+ // There's not even a target hook for querying whether it would be legal
+ // to fold a GV into an ICmp.
+ if (AM.BaseGV)
+ return false;
- if (FreeResult != Zero) {
- // We have some subexpressions that can be subsumed into addressing
- // modes in every use inside the loop. However, it's possible that
- // there are so many of them that the combined FreeResult cannot
- // be subsumed, or that the target cannot handle both a FreeResult
- // and a Result in the same instruction (for example because it would
- // require too many registers). Check this.
- for (unsigned i=0; i<NumUses; ++i) {
- if (!L->contains(Uses[i].Inst))
- continue;
- // We know this is an addressing mode use; if there are any uses that
- // are not, FreeResult would be Zero.
- const Type *AccessTy = getAccessType(Uses[i].Inst);
- if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
- // FIXME: could split up FreeResult into pieces here, some hoisted
- // and some not. There is no obvious advantage to this.
- Result = SE->getAddExpr(Result, FreeResult);
- FreeResult = Zero;
- break;
- }
- }
- }
+ // ICmp only has two operands; don't allow more than two non-trivial parts.
+ if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
+ return false;
- // If we found no CSE's, return now.
- if (Result == Zero) return Result;
-
- // If we still have a FreeResult, remove its subexpressions from
- // SubExpressionUseData. This means they will remain in the use Bases.
- if (FreeResult != Zero) {
- SeparateSubExprs(SubExprs, FreeResult, SE);
- for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
- std::map<const SCEV *, SubExprUseData>::iterator I =
- SubExpressionUseData.find(SubExprs[j]);
- SubExpressionUseData.erase(I);
- }
- SubExprs.clear();
- }
+ // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale
+ // by putting the scaled register in the other operand of the icmp.
+ if (AM.Scale != 0 && AM.Scale != -1)
+ return false;
- // Otherwise, remove all of the CSE's we found from each of the base values.
- for (unsigned i = 0; i != NumUses; ++i) {
- // Uses outside the loop don't necessarily include the common base, but
- // the final IV value coming into those uses does. Instead of trying to
- // remove the pieces of the common base, which might not be there,
- // subtract off the base to compensate for this.
- if (!L->contains(Uses[i].Inst)) {
- Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
- continue;
+ // If we have low-level target information, ask the target if it can
+ // fold an integer immediate on an icmp.
+ if (AM.BaseOffs != 0) {
+ if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
+ return false;
}
- // Split the expression into subexprs.
- SeparateSubExprs(SubExprs, Uses[i].Base, SE);
+ return true;
- // Remove any common subexpressions.
- for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
- if (SubExpressionUseData.count(SubExprs[j])) {
- SubExprs.erase(SubExprs.begin()+j);
- --j; --e;
- }
+ case LSRUse::Basic:
+ // Only handle single-register values.
+ return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
- // Finally, add the non-shared expressions together.
- if (SubExprs.empty())
- Uses[i].Base = Zero;
- else
- Uses[i].Base = SE->getAddExpr(SubExprs);
- SubExprs.clear();
+ case LSRUse::Special:
+ // Only handle -1 scales, or no scale.
+ return AM.Scale == 0 || AM.Scale == -1;
}
- return Result;
+ return false;
}
-/// ValidScale - Check whether the given Scale is valid for all loads and
-/// stores in UsersToProcess.
-///
-bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
- const std::vector<BasedUser>& UsersToProcess) {
- if (!TLI)
- return true;
+static bool isAlwaysFoldable(const SCEV *S,
+ bool HasBaseReg,
+ LSRUse::KindType Kind, const Type *AccessTy,
+ const TargetLowering *TLI,
+ ScalarEvolution &SE) {
+ // Fast-path: zero is always foldable.
+ if (S->isZero()) return true;
+
+ // Conservatively, create an address with an immediate and a
+ // base and a scale.
+ TargetLowering::AddrMode AM;
+ AM.BaseOffs = ExtractImmediate(S, SE);
+ AM.BaseGV = ExtractSymbol(S, SE);
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
+
+ // If there's anything else involved, it's not foldable.
+ if (!S->isZero()) return false;
+
+ return isLegalUse(AM, Kind, AccessTy, TLI);
+}
- for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
- // If this is a load or other access, pass the type of the access in.
- const Type *AccessTy =
- Type::getVoidTy(UsersToProcess[i].Inst->getContext());
- if (isAddressUse(UsersToProcess[i].Inst,
- UsersToProcess[i].OperandValToReplace))
- AccessTy = getAccessType(UsersToProcess[i].Inst);
- else if (isa<PHINode>(UsersToProcess[i].Inst))
- continue;
+/// InsertFormula - If the given formula has not yet been inserted, add it
+/// to the list, and return true. Return false otherwise.
+bool LSRUse::InsertFormula(const Formula &F) {
+ Formula Copy = F;
- TargetLowering::AddrMode AM;
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
- AM.BaseOffs = SC->getValue()->getSExtValue();
- AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
- AM.Scale = Scale;
+ // Sort the base regs, to avoid adding the same solution twice with
+ // the base regs in different orders. This uses host pointer values, but
+ // it doesn't matter since it's only used for uniquifying.
+ std::sort(Copy.BaseRegs.begin(), Copy.BaseRegs.end());
- // If load[imm+r*scale] is illegal, bail out.
- if (!TLI->isLegalAddressingMode(AM, AccessTy))
- return false;
- }
- return true;
-}
+ DEBUG(for (SmallVectorImpl<const SCEV *>::const_iterator I =
+ F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
+ assert(!(*I)->isZero() && "Zero allocated in a base register!");
+ assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
+ "Zero allocated in a scaled register!"));
-/// ValidOffset - Check whether the given Offset is valid for all loads and
-/// stores in UsersToProcess.
-///
-bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
- int64_t Offset,
- int64_t Scale,
- const std::vector<BasedUser>& UsersToProcess) {
- if (!TLI)
+ if (FormulaeUniquifier.insert(Copy)) {
+ Formulae.push_back(F);
return true;
+ }
- for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
- // If this is a load or other access, pass the type of the access in.
- const Type *AccessTy =
- Type::getVoidTy(UsersToProcess[i].Inst->getContext());
- if (isAddressUse(UsersToProcess[i].Inst,
- UsersToProcess[i].OperandValToReplace))
- AccessTy = getAccessType(UsersToProcess[i].Inst);
- else if (isa<PHINode>(UsersToProcess[i].Inst))
- continue;
-
- TargetLowering::AddrMode AM;
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
- AM.BaseOffs = SC->getValue()->getSExtValue();
- AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
- AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
- AM.Scale = Scale;
+ return false;
+}
- // If load[imm+r*scale] is illegal, bail out.
- if (!TLI->isLegalAddressingMode(AM, AccessTy))
- return false;
- }
- return true;
+void
+LSRUse::InsertInitialFormula(const SCEV *S, Loop *L,
+ ScalarEvolution &SE, DominatorTree &DT) {
+ Formula F;
+ F.InitialMatch(S, L, SE, DT);
+ bool Inserted = InsertFormula(F);
+ assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}
-/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
-/// a nop.
-bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
- const Type *Ty2) {
- if (Ty1 == Ty2)
- return false;
- Ty1 = SE->getEffectiveSCEVType(Ty1);
- Ty2 = SE->getEffectiveSCEVType(Ty2);
- if (Ty1 == Ty2)
- return false;
- if (Ty1->canLosslesslyBitCastTo(Ty2))
- return false;
- if (TLI && TLI->isTruncateFree(Ty1, Ty2))
- return false;
- return true;
+void
+LSRUse::InsertSupplementalFormula(const SCEV *S) {
+ Formula F;
+ F.BaseRegs.push_back(S);
+ F.AM.HasBaseReg = true;
+ bool Inserted = InsertFormula(F);
+ assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
-/// CheckForIVReuse - Returns the multiple if the stride is the multiple
-/// of a previous stride and it is a legal value for the target addressing
-/// mode scale component and optional base reg. This allows the users of
-/// this stride to be rewritten as prev iv * factor. It returns 0 if no
-/// reuse is possible. Factors can be negative on same targets, e.g. ARM.
+/// getImmediateDominator - A handy utility for the specific DominatorTree
+/// query that we need here.
///
-/// If all uses are outside the loop, we don't require that all multiplies
-/// be folded into the addressing mode, nor even that the factor be constant;
-/// a multiply (executed once) outside the loop is better than another IV
-/// within. Well, usually.
-const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
- bool AllUsesAreAddresses,
- bool AllUsesAreOutsideLoop,
- const SCEV *Stride,
- IVExpr &IV, const Type *Ty,
- const std::vector<BasedUser>& UsersToProcess) {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
- int64_t SInt = SC->getValue()->getSExtValue();
- for (unsigned NewStride = 0, e = IU->StrideOrder.size();
- NewStride != e; ++NewStride) {
- std::map<const SCEV *, IVsOfOneStride>::iterator SI =
- IVsByStride.find(IU->StrideOrder[NewStride]);
- if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
- continue;
- // The other stride has no uses, don't reuse it.
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI =
- IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
- if (UI->second->Users.empty())
- continue;
- int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
- if (SI->first != Stride &&
- (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
- continue;
- int64_t Scale = SInt / SSInt;
- // Check that this stride is valid for all the types used for loads and
- // stores; if it can be used for some and not others, we might as well use
- // the original stride everywhere, since we have to create the IV for it
- // anyway. If the scale is 1, then we don't need to worry about folding
- // multiplications.
- if (Scale == 1 ||
- (AllUsesAreAddresses &&
- ValidScale(HasBaseReg, Scale, UsersToProcess))) {
- // Prefer to reuse an IV with a base of zero.
- for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
- IE = SI->second.IVs.end(); II != IE; ++II)
- // Only reuse previous IV if it would not require a type conversion
- // and if the base difference can be folded.
- if (II->Base->isZero() &&
- !RequiresTypeConversion(II->Base->getType(), Ty)) {
- IV = *II;
- return SE->getIntegerSCEV(Scale, Stride->getType());
- }
- // Otherwise, settle for an IV with a foldable base.
- if (AllUsesAreAddresses)
- for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
- IE = SI->second.IVs.end(); II != IE; ++II)
- // Only reuse previous IV if it would not require a type conversion
- // and if the base difference can be folded.
- if (SE->getEffectiveSCEVType(II->Base->getType()) ==
- SE->getEffectiveSCEVType(Ty) &&
- isa<SCEVConstant>(II->Base)) {
- int64_t Base =
- cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
- if (Base > INT32_MIN && Base <= INT32_MAX &&
- ValidOffset(HasBaseReg, -Base * Scale,
- Scale, UsersToProcess)) {
- IV = *II;
- return SE->getIntegerSCEV(Scale, Stride->getType());
- }
- }
+static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
+ DomTreeNode *Node = DT.getNode(BB);
+ if (!Node) return 0;
+ Node = Node->getIDom();
+ if (!Node) return 0;
+ return Node->getBlock();
+}
+
+Value *LSRUse::Expand(BasicBlock::iterator IP,
+ Loop *L, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ ScalarEvolution &SE, DominatorTree &DT) const {
+ // Then, collect some instructions which we will remain dominated by when
+ // expanding the replacement. These must be dominated by any operands that
+ // will be required in the expansion.
+ SmallVector<Instruction *, 4> Inputs;
+ if (Instruction *I = dyn_cast<Instruction>(OperandValToReplace))
+ Inputs.push_back(I);
+ if (Kind == ICmpZero)
+ if (Instruction *I =
+ dyn_cast<Instruction>(cast<ICmpInst>(UserInst)->getOperand(1)))
+ Inputs.push_back(I);
+ if (PostIncLoop && !L->contains(UserInst))
+ Inputs.push_back(L->getLoopLatch()->getTerminator());
+
+ // Then, climb up the immediate dominator tree as far as we can go while
+ // still being dominated by the input positions.
+ for (;;) {
+ bool AllDominate = true;
+ Instruction *BetterPos = 0;
+ BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT);
+ if (!IDom) break;
+ Instruction *Tentative = IDom->getTerminator();
+ for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
+ E = Inputs.end(); I != E; ++I) {
+ Instruction *Inst = *I;
+ if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
+ AllDominate = false;
+ break;
}
+ if (IDom == Inst->getParent() &&
+ (!BetterPos || DT.dominates(BetterPos, Inst)))
+ BetterPos = next(BasicBlock::iterator(Inst));
}
- } else if (AllUsesAreOutsideLoop) {
- // Accept nonconstant strides here; it is really really right to substitute
- // an existing IV if we can.
- for (unsigned NewStride = 0, e = IU->StrideOrder.size();
- NewStride != e; ++NewStride) {
- std::map<const SCEV *, IVsOfOneStride>::iterator SI =
- IVsByStride.find(IU->StrideOrder[NewStride]);
- if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
- continue;
- int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
- if (SI->first != Stride && SSInt != 1)
- continue;
- for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
- IE = SI->second.IVs.end(); II != IE; ++II)
- // Accept nonzero base here.
- // Only reuse previous IV if it would not require a type conversion.
- if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
- IV = *II;
- return Stride;
- }
- }
- // Special case, old IV is -1*x and this one is x. Can treat this one as
- // -1*old.
- for (unsigned NewStride = 0, e = IU->StrideOrder.size();
- NewStride != e; ++NewStride) {
- std::map<const SCEV *, IVsOfOneStride>::iterator SI =
- IVsByStride.find(IU->StrideOrder[NewStride]);
- if (SI == IVsByStride.end())
- continue;
- if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
- if (Stride == ME->getOperand(1) &&
- SC->getValue()->getSExtValue() == -1LL)
- for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
- IE = SI->second.IVs.end(); II != IE; ++II)
- // Accept nonzero base here.
- // Only reuse previous IV if it would not require type conversion.
- if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
- IV = *II;
- return SE->getIntegerSCEV(-1LL, Stride->getType());
- }
- }
+ if (!AllDominate)
+ break;
+ if (BetterPos)
+ IP = BetterPos;
+ else
+ IP = Tentative;
}
- return SE->getIntegerSCEV(0, Stride->getType());
-}
-
-/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
-/// returns true if Val's isUseOfPostIncrementedValue is true.
-static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
- return Val.isUseOfPostIncrementedValue;
-}
-
-/// isNonConstantNegative - Return true if the specified scev is negated, but
-/// not a constant.
-static bool isNonConstantNegative(const SCEV *Expr) {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
- if (!Mul) return false;
-
- // If there is a constant factor, it will be first.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
- if (!SC) return false;
-
- // Return true if the value is negative, this matches things like (-42 * V).
- return SC->getValue()->getValue().isNegative();
-}
-
-/// CollectIVUsers - Transform our list of users and offsets to a bit more
-/// complex table. In this new vector, each 'BasedUser' contains 'Base', the
-/// base of the strided accesses, as well as the old information from Uses. We
-/// progressively move information from the Base field to the Imm field, until
-/// we eventually have the full access expression to rewrite the use.
-const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *Stride,
- IVUsersOfOneStride &Uses,
- Loop *L,
- bool &AllUsesAreAddresses,
- bool &AllUsesAreOutsideLoop,
- std::vector<BasedUser> &UsersToProcess) {
- // FIXME: Generalize to non-affine IV's.
- if (!Stride->isLoopInvariant(L))
- return SE->getIntegerSCEV(0, Stride->getType());
-
- UsersToProcess.reserve(Uses.Users.size());
- for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
- E = Uses.Users.end(); I != E; ++I) {
- UsersToProcess.push_back(BasedUser(*I, SE));
-
- // Move any loop variant operands from the offset field to the immediate
- // field of the use, so that we don't try to use something before it is
- // computed.
- MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
- UsersToProcess.back().Imm, L, SE);
- assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
- "Base value is not loop invariant!");
+ while (isa<PHINode>(IP)) ++IP;
+
+ // The first formula in the list is the winner.
+ const Formula &F = Formulae.front();
+
+ // Inform the Rewriter if we have a post-increment use, so that it can
+ // perform an advantageous expansion.
+ Rewriter.setPostInc(PostIncLoop);
+
+ // This is the type that the user actually needs.
+ const Type *OpTy = OperandValToReplace->getType();
+ // This will be the type that we'll initially expand to.
+ const Type *Ty = F.getType();
+ if (!Ty)
+ // No type known; just expand directly to the ultimate type.
+ Ty = OpTy;
+ else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
+ // Expand directly to the ultimate type if it's the right size.
+ Ty = OpTy;
+ // This is the type to do integer arithmetic in.
+ const Type *IntTy = SE.getEffectiveSCEVType(Ty);
+
+ // Build up a list of operands to add together to form the full base.
+ SmallVector<const SCEV *, 8> Ops;
+
+ // Expand the BaseRegs portion.
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ assert(!Reg->isZero() && "Zero allocated in a base register!");
+
+ // If we're expanding for a post-inc user for the add-rec's loop, make the
+ // post-inc adjustment.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg))
+ if (AR->getLoop() == PostIncLoop)
+ Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE));
+
+ Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
}
- // We now have a whole bunch of uses of like-strided induction variables, but
- // they might all have different bases. We want to emit one PHI node for this
- // stride which we fold as many common expressions (between the IVs) into as
- // possible. Start by identifying the common expressions in the base values
- // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
- // "A+B"), emit it to the preheader, then remove the expression from the
- // UsersToProcess base values.
- const SCEV *CommonExprs =
- RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
-
- // Next, figure out what we can represent in the immediate fields of
- // instructions. If we can represent anything there, move it to the imm
- // fields of the BasedUsers. We do this so that it increases the commonality
- // of the remaining uses.
- unsigned NumPHI = 0;
- bool HasAddress = false;
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
- // If the user is not in the current loop, this means it is using the exit
- // value of the IV. Do not put anything in the base, make sure it's all in
- // the immediate field to allow as much factoring as possible.
- if (!L->contains(UsersToProcess[i].Inst)) {
- UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
- UsersToProcess[i].Base);
- UsersToProcess[i].Base =
- SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
+ // Expand the ScaledReg portion.
+ Value *ICmpScaledV = 0;
+ if (F.AM.Scale != 0) {
+ const SCEV *ScaledS = F.ScaledReg;
+
+ // If we're expanding for a post-inc user for the add-rec's loop, make the
+ // post-inc adjustment.
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS))
+ if (AR->getLoop() == PostIncLoop)
+ ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE));
+
+ if (Kind == ICmpZero) {
+ // An interesting way of "folding" with an icmp is to use a negated
+ // scale, which we'll implement by inserting it into the other operand
+ // of the icmp.
+ assert(F.AM.Scale == -1 &&
+ "The only scale supported by ICmpZero uses is -1!");
+ ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
} else {
- // Not all uses are outside the loop.
- AllUsesAreOutsideLoop = false;
-
- // Addressing modes can be folded into loads and stores. Be careful that
- // the store is through the expression, not of the expression though.
- bool isPHI = false;
- bool isAddress = isAddressUse(UsersToProcess[i].Inst,
- UsersToProcess[i].OperandValToReplace);
- if (isa<PHINode>(UsersToProcess[i].Inst)) {
- isPHI = true;
- ++NumPHI;
+ // Otherwise just expand the scaled register and an explicit scale,
+ // which is expected to be matched as part of the address.
+ ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
+ const Type *ScaledTy = SE.getEffectiveSCEVType(ScaledS->getType());
+ ScaledS = SE.getMulExpr(ScaledS,
+ SE.getSCEV(ConstantInt::get(ScaledTy,
+ F.AM.Scale)));
+ Ops.push_back(ScaledS);
+ }
+ }
+
+ // Expand the immediate portions.
+ if (F.AM.BaseGV)
+ Ops.push_back(SE.getSCEV(F.AM.BaseGV));
+ if (F.AM.BaseOffs != 0) {
+ if (Kind == ICmpZero) {
+ // The other interesting way of "folding" with an ICmpZero is to use a
+ // negated immediate.
+ if (!ICmpScaledV)
+ ICmpScaledV = ConstantInt::get(IntTy, -F.AM.BaseOffs);
+ else {
+ Ops.push_back(SE.getUnknown(ICmpScaledV));
+ ICmpScaledV = ConstantInt::get(IntTy, F.AM.BaseOffs);
}
+ } else {
+ // Just add the immediate values. These again are expected to be matched
+ // as part of the address.
+ Ops.push_back(SE.getSCEV(ConstantInt::get(IntTy, F.AM.BaseOffs)));
+ }
+ }
- if (isAddress)
- HasAddress = true;
+ // Emit instructions summing all the operands.
+ const SCEV *FullS = Ops.empty() ?
+ SE.getIntegerSCEV(0, IntTy) :
+ SE.getAddExpr(Ops);
+ Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
+
+ // We're done expanding now, so reset the rewriter.
+ Rewriter.setPostInc(0);
+
+ // An ICmpZero Formula represents an ICmp which we're handling as a
+ // comparison against zero. Now that we've expanded an expression for that
+ // form, update the ICmp's other operand.
+ if (Kind == ICmpZero) {
+ ICmpInst *CI = cast<ICmpInst>(UserInst);
+ DeadInsts.push_back(CI->getOperand(1));
+ assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ if (F.AM.Scale == -1) {
+ if (ICmpScaledV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
+ OpTy, false),
+ ICmpScaledV, OpTy, "tmp", CI);
+ ICmpScaledV = Cast;
+ }
+ CI->setOperand(1, ICmpScaledV);
+ } else {
+ assert(F.AM.Scale == 0 &&
+ "ICmp does not support folding a global value and "
+ "a scale at the same time!");
+ Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
+ -(uint64_t)F.AM.BaseOffs);
+ if (C->getType() != OpTy)
+ C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
+ OpTy, false),
+ C, OpTy);
+
+ CI->setOperand(1, C);
+ }
+ }
- // If this use isn't an address, then not all uses are addresses.
- if (!isAddress && !isPHI)
- AllUsesAreAddresses = false;
+ return FullV;
+}
+
+/// Rewrite - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding"), and update the UserInst to reference
+/// the newly expanded value.
+void LSRUse::Rewrite(Loop *L, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakVH> &DeadInsts,
+ ScalarEvolution &SE, DominatorTree &DT,
+ Pass *P) const {
+ const Type *OpTy = OperandValToReplace->getType();
+
+ // First, find an insertion point that dominates UserInst. For PHI nodes,
+ // find the nearest block which dominates all the relevant uses.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
+ DenseMap<BasicBlock *, Value *> Inserted;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == OperandValToReplace) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+
+ // If this is a critical edge, split the edge so that we do not insert
+ // the code on all predecessor/successor paths. We do this unless this
+ // is the canonical backedge for this loop, which complicates post-inc
+ // users.
+ if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
+ !isa<IndirectBrInst>(BB->getTerminator()) &&
+ (PN->getParent() != L->getHeader() || !L->contains(BB))) {
+ // Split the critical edge.
+ BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
+
+ // If PN is outside of the loop and BB is in the loop, we want to
+ // move the block to be immediately before the PHI block, not
+ // immediately after BB.
+ if (L->contains(BB) && !L->contains(PN))
+ NewBB->moveBefore(PN->getParent());
- MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
- UsersToProcess[i].Imm, isAddress, L, SE);
+ // Splitting the edge can reduce the number of PHI entries we have.
+ e = PN->getNumIncomingValues();
+ BB = NewBB;
+ i = PN->getBasicBlockIndex(BB);
+ }
+
+ std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
+ Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
+ if (!Pair.second)
+ PN->setIncomingValue(i, Pair.first->second);
+ else {
+ Value *FullV = Expand(BB->getTerminator(),
+ L, Rewriter, DeadInsts, SE, DT);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ if (FullV->getType() != OpTy)
+ FullV =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false,
+ OpTy, false),
+ FullV, OperandValToReplace->getType(),
+ "tmp", BB->getTerminator());
+
+ PN->setIncomingValue(i, FullV);
+ Pair.first->second = FullV;
+ }
+ }
+ } else {
+ Value *FullV = Expand(UserInst, L, Rewriter, DeadInsts, SE, DT);
+
+ // If this is reuse-by-noop-cast, insert the noop cast.
+ if (FullV->getType() != OpTy) {
+ Instruction *Cast =
+ CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
+ FullV, OpTy, "tmp", UserInst);
+ FullV = Cast;
}
+
+ // Update the user.
+ UserInst->replaceUsesOfWith(OperandValToReplace, FullV);
}
- // If one of the use is a PHI node and all other uses are addresses, still
- // allow iv reuse. Essentially we are trading one constant multiplication
- // for one fewer iv.
- if (NumPHI > 1)
- AllUsesAreAddresses = false;
+ DeadInsts.push_back(OperandValToReplace);
+}
- // There are no in-loop address uses.
- if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
- AllUsesAreAddresses = false;
+void LSRUse::print(raw_ostream &OS) const {
+ OS << "LSR Use: Kind=";
+ switch (Kind) {
+ case Basic: OS << "Basic"; break;
+ case Special: OS << "Special"; break;
+ case ICmpZero: OS << "ICmpZero"; break;
+ case Address:
+ OS << "Address of ";
+ if (isa<PointerType>(AccessTy))
+ OS << "pointer"; // the full pointer type could be really verbose
+ else
+ OS << *AccessTy;
+ }
- return CommonExprs;
+ OS << ", UserInst=";
+ // Store is common and interesting enough to be worth special-casing.
+ if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
+ OS << "store ";
+ WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
+ } else if (UserInst->getType()->isVoidTy())
+ OS << UserInst->getOpcodeName();
+ else
+ WriteAsOperand(OS, UserInst, /*PrintType=*/false);
+
+ OS << ", OperandValToReplace=";
+ WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
+
+ if (PostIncLoop) {
+ OS << ", PostIncLoop=";
+ WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false);
+ }
}
-/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
-/// is valid and profitable for the given set of users of a stride. In
-/// full strength-reduction mode, all addresses at the current stride are
-/// strength-reduced all the way down to pointer arithmetic.
-///
-bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
- const std::vector<BasedUser> &UsersToProcess,
- const Loop *L,
- bool AllUsesAreAddresses,
- const SCEV *Stride) {
- if (!EnableFullLSRMode)
- return false;
+void LSRUse::dump() const {
+ print(errs()); errs() << '\n';
+}
- // The heuristics below aim to avoid increasing register pressure, but
- // fully strength-reducing all the addresses increases the number of
- // add instructions, so don't do this when optimizing for size.
- // TODO: If the loop is large, the savings due to simpler addresses
- // may oughtweight the costs of the extra increment instructions.
- if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
- return false;
+namespace {
- // TODO: For now, don't do full strength reduction if there could
- // potentially be greater-stride multiples of the current stride
- // which could reuse the current stride IV.
- if (IU->StrideOrder.back() != Stride)
- return false;
+/// Score - This class is used to measure and compare candidate formulae.
+class Score {
+ unsigned NumRegs;
+ unsigned NumPhis;
+ unsigned NumIVMuls;
+ unsigned NumBaseAdds;
+ unsigned NumImms;
- // Iterate through the uses to find conditions that automatically rule out
- // full-lsr mode.
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
- const SCEV *Base = UsersToProcess[i].Base;
- const SCEV *Imm = UsersToProcess[i].Imm;
- // If any users have a loop-variant component, they can't be fully
- // strength-reduced.
- if (Imm && !Imm->isLoopInvariant(L))
- return false;
- // If there are to users with the same base and the difference between
- // the two Imm values can't be folded into the address, full
- // strength reduction would increase register pressure.
- do {
- const SCEV *CurImm = UsersToProcess[i].Imm;
- if ((CurImm || Imm) && CurImm != Imm) {
- if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
- if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
- const Instruction *Inst = UsersToProcess[i].Inst;
- const Type *AccessTy = getAccessType(Inst);
- const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
- if (!Diff->isZero() &&
- (!AllUsesAreAddresses ||
- !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
- return false;
- }
- } while (++i != e && Base == UsersToProcess[i].Base);
- }
+public:
+ Score()
+ : NumRegs(0), NumPhis(0), NumIVMuls(0), NumBaseAdds(0), NumImms(0) {}
- // If there's exactly one user in this stride, fully strength-reducing it
- // won't increase register pressure. If it's starting from a non-zero base,
- // it'll be simpler this way.
- if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
- return true;
+ void RateInitial(SmallVector<LSRUse, 16> const &Uses, const Loop *L,
+ ScalarEvolution &SE);
- // Otherwise, if there are any users in this stride that don't require
- // a register for their base, full strength-reduction will increase
- // register pressure.
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
- if (UsersToProcess[i].Base->isZero())
- return false;
+ void Rate(const SCEV *Reg, const SmallBitVector &Bits,
+ const SmallVector<LSRUse, 16> &Uses, const Loop *L,
+ ScalarEvolution &SE);
+
+ bool operator<(const Score &Other) const;
+
+ void print_details(raw_ostream &OS, const SCEV *Reg,
+ const SmallPtrSet<const SCEV *, 8> &Regs) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ void RateRegister(const SCEV *Reg, SmallPtrSet<const SCEV *, 8> &Regs,
+ const Loop *L);
+ void RateFormula(const Formula &F, SmallPtrSet<const SCEV *, 8> &Regs,
+ const Loop *L);
+
+ void Loose();
+};
- // Otherwise, go for it.
- return true;
}
-/// InsertAffinePhi Create and insert a PHI node for an induction variable
-/// with the specified start and step values in the specified loop.
-///
-/// If NegateStride is true, the stride should be negated by using a
-/// subtract instead of an add.
-///
-/// Return the created phi node.
-///
-static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
- Instruction *IVIncInsertPt,
- const Loop *L,
- SCEVExpander &Rewriter) {
- assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
- assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
-
- BasicBlock *Header = L->getHeader();
- BasicBlock *Preheader = L->getLoopPreheader();
- BasicBlock *LatchBlock = L->getLoopLatch();
- const Type *Ty = Start->getType();
- Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
-
- PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
- PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
- Preheader);
-
- // If the stride is negative, insert a sub instead of an add for the
- // increment.
- bool isNegative = isNonConstantNegative(Step);
- const SCEV *IncAmount = Step;
- if (isNegative)
- IncAmount = Rewriter.SE.getNegativeSCEV(Step);
-
- // Insert an add instruction right before the terminator corresponding
- // to the back-edge or just before the only use. The location is determined
- // by the caller and passed in as IVIncInsertPt.
- Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
- Preheader->getTerminator());
- Instruction *IncV;
- if (isNegative) {
- IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
- IVIncInsertPt);
- } else {
- IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
- IVIncInsertPt);
- }
- if (!isa<ConstantInt>(StepV)) ++NumVariable;
-
- PN->addIncoming(IncV, LatchBlock);
-
- ++NumInserted;
- return PN;
-}
-
-static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
- // We want to emit code for users inside the loop first. To do this, we
- // rearrange BasedUser so that the entries at the end have
- // isUseOfPostIncrementedValue = false, because we pop off the end of the
- // vector (so we handle them first).
- std::partition(UsersToProcess.begin(), UsersToProcess.end(),
- PartitionByIsUseOfPostIncrementedValue);
-
- // Sort this by base, so that things with the same base are handled
- // together. By partitioning first and stable-sorting later, we are
- // guaranteed that within each base we will pop off users from within the
- // loop before users outside of the loop with a particular base.
- //
- // We would like to use stable_sort here, but we can't. The problem is that
- // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
- // we don't have anything to do a '<' comparison on. Because we think the
- // number of uses is small, do a horrible bubble sort which just relies on
- // ==.
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
- // Get a base value.
- const SCEV *Base = UsersToProcess[i].Base;
-
- // Compact everything with this base to be consecutive with this one.
- for (unsigned j = i+1; j != e; ++j) {
- if (UsersToProcess[j].Base == Base) {
- std::swap(UsersToProcess[i+1], UsersToProcess[j]);
- ++i;
- }
+/// RateRegister - Tally up interesting quantities from the given register.
+void Score::RateRegister(const SCEV *Reg,
+ SmallPtrSet<const SCEV *, 8> &Regs,
+ const Loop *L) {
+ if (Regs.insert(Reg))
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
+ NumPhis += AR->getLoop() == L;
+
+ // Add the step value register, if it needs one.
+ if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
+ RateRegister(AR->getOperand(1), Regs, L);
}
- }
}
-/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
-/// UsersToProcess, meaning lowering addresses all the way down to direct
-/// pointer arithmetic.
-///
-void
-LoopStrengthReduce::PrepareToStrengthReduceFully(
- std::vector<BasedUser> &UsersToProcess,
- const SCEV *Stride,
- const SCEV *CommonExprs,
- const Loop *L,
- SCEVExpander &PreheaderRewriter) {
- DEBUG(dbgs() << " Fully reducing all users\n");
-
- // Rewrite the UsersToProcess records, creating a separate PHI for each
- // unique Base value.
- Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
- // TODO: The uses are grouped by base, but not sorted. We arbitrarily
- // pick the first Imm value here to start with, and adjust it for the
- // other uses.
- const SCEV *Imm = UsersToProcess[i].Imm;
- const SCEV *Base = UsersToProcess[i].Base;
- const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
- PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
- PreheaderRewriter);
- // Loop over all the users with the same base.
- do {
- UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
- UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
- UsersToProcess[i].Phi = Phi;
- assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
- "ShouldUseFullStrengthReductionMode should reject this!");
- } while (++i != e && Base == UsersToProcess[i].Base);
+void Score::RateFormula(const Formula &F,
+ SmallPtrSet<const SCEV *, 8> &Regs,
+ const Loop *L) {
+ // Tally up the registers.
+ if (F.ScaledReg)
+ RateRegister(F.ScaledReg, Regs, L);
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ RateRegister(BaseReg, Regs, L);
+
+ NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
+ BaseReg->hasComputableLoopEvolution(L);
}
-}
-/// FindIVIncInsertPt - Return the location to insert the increment instruction.
-/// If the only use if a use of postinc value, (must be the loop termination
-/// condition), then insert it just before the use.
-static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
- const Loop *L) {
- if (UsersToProcess.size() == 1 &&
- UsersToProcess[0].isUseOfPostIncrementedValue &&
- L->contains(UsersToProcess[0].Inst))
- return UsersToProcess[0].Inst;
- return L->getLoopLatch()->getTerminator();
+ if (F.BaseRegs.size() > 1)
+ NumBaseAdds += F.BaseRegs.size() - 1;
+
+ // Tally up the non-zero immediates.
+ if (F.AM.BaseGV || F.AM.BaseOffs != 0)
+ ++NumImms;
}
-/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
-/// given users to share.
-///
-void
-LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
- std::vector<BasedUser> &UsersToProcess,
- const SCEV *Stride,
- const SCEV *CommonExprs,
- Value *CommonBaseV,
- Instruction *IVIncInsertPt,
- const Loop *L,
- SCEVExpander &PreheaderRewriter) {
- DEBUG(dbgs() << " Inserting new PHI:\n");
-
- PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
- Stride, IVIncInsertPt, L,
- PreheaderRewriter);
-
- // Remember this in case a later stride is multiple of this.
- IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
-
- // All the users will share this new IV.
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
- UsersToProcess[i].Phi = Phi;
-
- DEBUG(dbgs() << " IV=");
- DEBUG(WriteAsOperand(dbgs(), Phi, /*PrintType=*/false));
- DEBUG(dbgs() << "\n");
-}
-
-/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
-/// reuse an induction variable with a stride that is a factor of the current
-/// induction variable.
-///
-void
-LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
- std::vector<BasedUser> &UsersToProcess,
- Value *CommonBaseV,
- const IVExpr &ReuseIV,
- Instruction *PreInsertPt) {
- DEBUG(dbgs() << " Rewriting in terms of existing IV of STRIDE "
- << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
-
- // All the users will share the reused IV.
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
- UsersToProcess[i].Phi = ReuseIV.PHI;
-
- Constant *C = dyn_cast<Constant>(CommonBaseV);
- if (C &&
- (!C->isNullValue() &&
- !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
- TLI, false)))
- // We want the common base emitted into the preheader! This is just
- // using cast as a copy so BitCast (no-op cast) is appropriate
- CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
- "commonbase", PreInsertPt);
-}
-
-static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
- const Type *AccessTy,
- std::vector<BasedUser> &UsersToProcess,
- const TargetLowering *TLI) {
- SmallVector<Instruction*, 16> AddrModeInsts;
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
- if (UsersToProcess[i].isUseOfPostIncrementedValue)
- continue;
- ExtAddrMode AddrMode =
- AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
- AccessTy, UsersToProcess[i].Inst,
- AddrModeInsts, *TLI);
- if (GV && GV != AddrMode.BaseGV)
- return false;
- if (Offset && !AddrMode.BaseOffs)
- // FIXME: How to accurate check it's immediate offset is folded.
- return false;
- AddrModeInsts.clear();
- }
- return true;
+/// Loose - Set this score to a loosing value.
+void Score::Loose() {
+ NumRegs = ~0u;
+ NumPhis = ~0u;
+ NumIVMuls = ~0u;
+ NumBaseAdds = ~0u;
+ NumImms = ~0u;
}
-/// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a single
-/// stride of IV. All of the users may have different starting values, and this
-/// may not be the only stride.
-void
-LoopStrengthReduce::StrengthReduceIVUsersOfStride(const SCEV *Stride,
- IVUsersOfOneStride &Uses,
- Loop *L) {
- // If all the users are moved to another stride, then there is nothing to do.
- if (Uses.Users.empty())
- return;
+/// RateInitial - Compute a score for the initial "fully reduced" solution.
+void Score::RateInitial(SmallVector<LSRUse, 16> const &Uses, const Loop *L,
+ ScalarEvolution &SE) {
+ SmallPtrSet<const SCEV *, 8> Regs;
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I)
+ RateFormula(I->Formulae.front(), Regs, L);
+ NumRegs += Regs.size();
- // Keep track if every use in UsersToProcess is an address. If they all are,
- // we may be able to rewrite the entire collection of them in terms of a
- // smaller-stride IV.
- bool AllUsesAreAddresses = true;
-
- // Keep track if every use of a single stride is outside the loop. If so,
- // we want to be more aggressive about reusing a smaller-stride IV; a
- // multiply outside the loop is better than another IV inside. Well, usually.
- bool AllUsesAreOutsideLoop = true;
-
- // Transform our list of users and offsets to a bit more complex table. In
- // this new vector, each 'BasedUser' contains 'Base' the base of the
- // strided accessas well as the old information from Uses. We progressively
- // move information from the Base field to the Imm field, until we eventually
- // have the full access expression to rewrite the use.
- std::vector<BasedUser> UsersToProcess;
- const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
- AllUsesAreOutsideLoop,
- UsersToProcess);
-
- // Sort the UsersToProcess array so that users with common bases are
- // next to each other.
- SortUsersToProcess(UsersToProcess);
-
- // If we managed to find some expressions in common, we'll need to carry
- // their value in a register and add it in for each use. This will take up
- // a register operand, which potentially restricts what stride values are
- // valid.
- bool HaveCommonExprs = !CommonExprs->isZero();
- const Type *ReplacedTy = CommonExprs->getType();
-
- // If all uses are addresses, consider sinking the immediate part of the
- // common expression back into uses if they can fit in the immediate fields.
- if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
- const SCEV *NewCommon = CommonExprs;
- const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
- MoveImmediateValues(TLI, Type::getVoidTy(
- L->getLoopPreheader()->getContext()),
- NewCommon, Imm, true, L, SE);
- if (!Imm->isZero()) {
- bool DoSink = true;
-
- // If the immediate part of the common expression is a GV, check if it's
- // possible to fold it into the target addressing mode.
- GlobalValue *GV = 0;
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
- GV = dyn_cast<GlobalValue>(SU->getValue());
- int64_t Offset = 0;
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
- Offset = SC->getValue()->getSExtValue();
- if (GV || Offset)
- // Pass VoidTy as the AccessTy to be conservative, because
- // there could be multiple access types among all the uses.
- DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
- Type::getVoidTy(L->getLoopPreheader()->getContext()),
- UsersToProcess, TLI);
-
- if (DoSink) {
- DEBUG(dbgs() << " Sinking " << *Imm << " back down into uses\n");
- for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
- UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
- CommonExprs = NewCommon;
- HaveCommonExprs = !CommonExprs->isZero();
- ++NumImmSunk;
+ DEBUG(print_details(dbgs(), 0, Regs));
+}
+
+/// Rate - Compute a score for the solution where the reuse associated with
+/// putting Reg in a register is selected.
+void Score::Rate(const SCEV *Reg, const SmallBitVector &Bits,
+ const SmallVector<LSRUse, 16> &Uses, const Loop *L,
+ ScalarEvolution &SE) {
+ SmallPtrSet<const SCEV *, 8> Regs;
+ for (size_t i = 0, e = Uses.size(); i != e; ++i) {
+ const LSRUse &LU = Uses[i];
+
+ const Formula *BestFormula = 0;
+ if (i >= Bits.size() || !Bits.test(i))
+ // This use doesn't use the current register. Just go with the current
+ // leading candidate formula.
+ BestFormula = &LU.Formulae.front();
+ else
+ // Find the best formula for this use that uses the current register.
+ for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
+ E = LU.Formulae.end(); I != E; ++I) {
+ const Formula &F = *I;
+ if (F.referencesReg(Reg) &&
+ (!BestFormula || ComplexitySorter()(F, *BestFormula)))
+ BestFormula = &F;
}
+
+ // If we didn't find *any* forumlae, because earlier we eliminated some
+ // in greedy fashion, skip the current register's reuse opportunity.
+ if (!BestFormula) {
+ DEBUG(dbgs() << "Reuse with reg " << *Reg
+ << " wouldn't help any users.\n");
+ Loose();
+ return;
}
+
+ // For an in-loop post-inc user, don't allow multiple base registers,
+ // because that would require an awkward in-loop add after the increment.
+ if (LU.PostIncLoop && LU.PostIncLoop->contains(LU.UserInst) &&
+ BestFormula->BaseRegs.size() > 1) {
+ DEBUG(dbgs() << "Reuse with reg " << *Reg
+ << " would require an in-loop post-inc add: ";
+ BestFormula->dump());
+ Loose();
+ return;
+ }
+
+ RateFormula(*BestFormula, Regs, L);
}
+ NumRegs += Regs.size();
- // Now that we know what we need to do, insert the PHI node itself.
- //
- DEBUG(dbgs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
- << *Stride << ":\n"
- << " Common base: " << *CommonExprs << "\n");
+ DEBUG(print_details(dbgs(), Reg, Regs));
+}
- SCEVExpander Rewriter(*SE);
- SCEVExpander PreheaderRewriter(*SE);
+/// operator< - Choose the better score.
+bool Score::operator<(const Score &Other) const {
+ if (NumRegs != Other.NumRegs)
+ return NumRegs < Other.NumRegs;
+ if (NumPhis != Other.NumPhis)
+ return NumPhis < Other.NumPhis;
+ if (NumIVMuls != Other.NumIVMuls)
+ return NumIVMuls < Other.NumIVMuls;
+ if (NumBaseAdds != Other.NumBaseAdds)
+ return NumBaseAdds < Other.NumBaseAdds;
+ return NumImms < Other.NumImms;
+}
- BasicBlock *Preheader = L->getLoopPreheader();
- Instruction *PreInsertPt = Preheader->getTerminator();
- BasicBlock *LatchBlock = L->getLoopLatch();
- Instruction *IVIncInsertPt = LatchBlock->getTerminator();
-
- Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
-
- const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
- IVExpr ReuseIV(SE->getIntegerSCEV(0,
- Type::getInt32Ty(Preheader->getContext())),
- SE->getIntegerSCEV(0,
- Type::getInt32Ty(Preheader->getContext())),
- 0);
-
- // Choose a strength-reduction strategy and prepare for it by creating
- // the necessary PHIs and adjusting the bookkeeping.
- if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
- AllUsesAreAddresses, Stride)) {
- PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
- PreheaderRewriter);
- } else {
- // Emit the initial base value into the loop preheader.
- CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
- PreInsertPt);
-
- // If all uses are addresses, check if it is possible to reuse an IV. The
- // new IV must have a stride that is a multiple of the old stride; the
- // multiple must be a number that can be encoded in the scale field of the
- // target addressing mode; and we must have a valid instruction after this
- // substitution, including the immediate field, if any.
- RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
- AllUsesAreOutsideLoop,
- Stride, ReuseIV, ReplacedTy,
- UsersToProcess);
- if (!RewriteFactor->isZero())
- PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
- ReuseIV, PreInsertPt);
- else {
- IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
- PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
- CommonBaseV, IVIncInsertPt,
- L, PreheaderRewriter);
+void Score::print_details(raw_ostream &OS,
+ const SCEV *Reg,
+ const SmallPtrSet<const SCEV *, 8> &Regs) const {
+ if (Reg) OS << "Reuse with reg " << *Reg << " would require ";
+ else OS << "The initial solution would require ";
+ print(OS);
+ OS << ". Regs:";
+ for (SmallPtrSet<const SCEV *, 8>::const_iterator I = Regs.begin(),
+ E = Regs.end(); I != E; ++I)
+ OS << ' ' << **I;
+ OS << '\n';
+}
+
+void Score::print(raw_ostream &OS) const {
+ OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
+ if (NumPhis != 0)
+ OS << ", including " << NumPhis << " PHI" << (NumPhis == 1 ? "" : "s");
+ if (NumIVMuls != 0)
+ OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
+ if (NumBaseAdds != 0)
+ OS << ", plus " << NumBaseAdds << " base add"
+ << (NumBaseAdds == 1 ? "" : "s");
+ if (NumImms != 0)
+ OS << ", plus " << NumImms << " imm" << (NumImms == 1 ? "" : "s");
+}
+
+void Score::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+/// isAddressUse - Returns true if the specified instruction is using the
+/// specified value as an address.
+static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
+ bool isAddress = isa<LoadInst>(Inst);
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ if (SI->getOperand(1) == OperandVal)
+ isAddress = true;
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::prefetch:
+ case Intrinsic::x86_sse2_loadu_dq:
+ case Intrinsic::x86_sse2_loadu_pd:
+ case Intrinsic::x86_sse_loadu_ps:
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ if (II->getOperand(1) == OperandVal)
+ isAddress = true;
+ break;
}
}
+ return isAddress;
+}
- // Process all the users now, replacing their strided uses with
- // strength-reduced forms. This outer loop handles all bases, the inner
- // loop handles all users of a particular base.
- while (!UsersToProcess.empty()) {
- const SCEV *Base = UsersToProcess.back().Base;
- Instruction *Inst = UsersToProcess.back().Inst;
-
- // Emit the code for Base into the preheader.
- Value *BaseV = 0;
- if (!Base->isZero()) {
- BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
-
- DEBUG(dbgs() << " INSERTING code for BASE = " << *Base << ":");
- if (BaseV->hasName())
- DEBUG(dbgs() << " Result value name = %" << BaseV->getName());
- DEBUG(dbgs() << "\n");
-
- // If BaseV is a non-zero constant, make sure that it gets inserted into
- // the preheader, instead of being forward substituted into the uses. We
- // do this by forcing a BitCast (noop cast) to be inserted into the
- // preheader in this case.
- if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
- isa<Constant>(BaseV)) {
- // We want this constant emitted into the preheader! This is just
- // using cast as a copy so BitCast (no-op cast) is appropriate
- BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
- PreInsertPt);
- }
+/// getAccessType - Return the type of the memory being accessed.
+static const Type *getAccessType(const Instruction *Inst) {
+ const Type *AccessTy = Inst->getType();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ AccessTy = SI->getOperand(0)->getType();
+ else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Addressing modes can also be folded into prefetches and a variety
+ // of intrinsics.
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ case Intrinsic::x86_sse2_storel_dq:
+ AccessTy = II->getOperand(1)->getType();
+ break;
}
+ }
+ return AccessTy;
+}
- // Emit the code to add the immediate offset to the Phi value, just before
- // the instructions that we identified as using this stride and base.
- do {
- // FIXME: Use emitted users to emit other users.
- BasedUser &User = UsersToProcess.back();
+/// DeleteTriviallyDeadInstructions - If any of the instructions is the
+/// specified set are trivially dead, delete them and see if this makes any of
+/// their operands subsequently dead.
+static bool
+DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
+ bool Changed = false;
- DEBUG(dbgs() << " Examining ");
- if (User.isUseOfPostIncrementedValue)
- DEBUG(dbgs() << "postinc");
- else
- DEBUG(dbgs() << "preinc");
- DEBUG(dbgs() << " use ");
- DEBUG(WriteAsOperand(dbgs(), UsersToProcess.back().OperandValToReplace,
- /*PrintType=*/false));
- DEBUG(dbgs() << " in Inst: " << *User.Inst);
-
- // If this instruction wants to use the post-incremented value, move it
- // after the post-inc and use its value instead of the PHI.
- Value *RewriteOp = User.Phi;
- if (User.isUseOfPostIncrementedValue) {
- RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
- // If this user is in the loop, make sure it is the last thing in the
- // loop to ensure it is dominated by the increment. In case it's the
- // only use of the iv, the increment instruction is already before the
- // use.
- if (L->contains(User.Inst) && User.Inst != IVIncInsertPt)
- User.Inst->moveBefore(IVIncInsertPt);
- }
+ while (!DeadInsts.empty()) {
+ Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
- const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
+ if (I == 0 || !isInstructionTriviallyDead(I))
+ continue;
- if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
- SE->getEffectiveSCEVType(ReplacedTy)) {
- assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
- SE->getTypeSizeInBits(ReplacedTy) &&
- "Unexpected widening cast!");
- RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
+ for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
+ if (Instruction *U = dyn_cast<Instruction>(*OI)) {
+ *OI = 0;
+ if (U->use_empty())
+ DeadInsts.push_back(U);
}
- // If we had to insert new instructions for RewriteOp, we have to
- // consider that they may not have been able to end up immediately
- // next to RewriteOp, because non-PHI instructions may never precede
- // PHI instructions in a block. In this case, remember where the last
- // instruction was inserted so that if we're replacing a different
- // PHI node, we can use the later point to expand the final
- // RewriteExpr.
- Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
- if (RewriteOp == User.Phi) NewBasePt = 0;
-
- // Clear the SCEVExpander's expression map so that we are guaranteed
- // to have the code emitted where we expect it.
- Rewriter.clear();
-
- // If we are reusing the iv, then it must be multiplied by a constant
- // factor to take advantage of the addressing mode scale component.
- if (!RewriteFactor->isZero()) {
- // If we're reusing an IV with a nonzero base (currently this happens
- // only when all reuses are outside the loop) subtract that base here.
- // The base has been used to initialize the PHI node but we don't want
- // it here.
- if (!ReuseIV.Base->isZero()) {
- const SCEV *typedBase = ReuseIV.Base;
- if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
- SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
- // It's possible the original IV is a larger type than the new IV,
- // in which case we have to truncate the Base. We checked in
- // RequiresTypeConversion that this is valid.
- assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
- SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
- "Unexpected lengthening conversion!");
- typedBase = SE->getTruncateExpr(ReuseIV.Base,
- RewriteExpr->getType());
- }
- RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
- }
+ I->eraseFromParent();
+ Changed = true;
+ }
- // Multiply old variable, with base removed, by new scale factor.
- RewriteExpr = SE->getMulExpr(RewriteFactor,
- RewriteExpr);
-
- // The common base is emitted in the loop preheader. But since we
- // are reusing an IV, it has not been used to initialize the PHI node.
- // Add it to the expression used to rewrite the uses.
- // When this use is outside the loop, we earlier subtracted the
- // common base, and are adding it back here. Use the same expression
- // as before, rather than CommonBaseV, so DAGCombiner will zap it.
- if (!CommonExprs->isZero()) {
- if (L->contains(User.Inst))
- RewriteExpr = SE->getAddExpr(RewriteExpr,
- SE->getUnknown(CommonBaseV));
- else
- RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
- }
- }
+ return Changed;
+}
- // Now that we know what we need to do, insert code before User for the
- // immediate and any loop-variant expressions.
- if (BaseV)
- // Add BaseV to the PHI value if needed.
- RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
+namespace {
- User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
- Rewriter, L, this,
- DeadInsts, SE);
+/// LSRInstance - This class holds state for the main loop strength
+/// reduction logic.
+class LSRInstance {
+ IVUsers &IU;
+ ScalarEvolution &SE;
+ DominatorTree &DT;
+ const TargetLowering *const TLI;
+ Loop *const L;
+ bool Changed;
+
+ /// CurrentArbitraryRegIndex - To ensure a deterministic ordering, assign an
+ /// arbitrary index value to each register as a sort tie breaker.
+ unsigned CurrentArbitraryRegIndex;
+
+ /// Factors - Interesting factors between use strides.
+ SmallSetVector<int64_t, 4> Factors;
+
+ /// Types - Interesting use types, to facilitate truncation reuse.
+ SmallSetVector<const Type *, 4> Types;
+
+ /// Uses - The list of interesting uses.
+ SmallVector<LSRUse, 16> Uses;
+
+ // TODO: Reorganize these data structures.
+ typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
+ RegUsesTy RegUses;
+ SmallVector<const SCEV *, 16> RegSequence;
+
+ void OptimizeShadowIV();
+ bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
+ const SCEV* &CondStride);
+ ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
+ bool StrideMightBeShared(const SCEV* Stride);
+ bool OptimizeLoopTermCond(Instruction *&IVIncInsertPos);
+
+ LSRUse &getNewUse() {
+ Uses.push_back(LSRUse());
+ return Uses.back();
+ }
- // Mark old value we replaced as possibly dead, so that it is eliminated
- // if we just replaced the last use of that value.
- DeadInsts.push_back(User.OperandValToReplace);
+ void CountRegister(const SCEV *Reg, uint32_t Complexity, size_t LUIdx);
+ void CountRegisters(const Formula &F, size_t LUIdx);
- UsersToProcess.pop_back();
- ++NumReduced;
+ void GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
+ void GenerateICmpZeroScaledReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
+ void GenerateFormulaeFromReplacedBaseReg(LSRUse &LU,
+ unsigned LUIdx,
+ const Formula &Base, unsigned i,
+ const SmallVectorImpl<const SCEV *>
+ &AddOps);
+ void GenerateReassociationReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
+ void GenerateCombinationReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
+ void GenerateScaledReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
+ void GenerateTruncateReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base);
- // If there are any more users to process with the same base, process them
- // now. We sorted by base above, so we just have to check the last elt.
- } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
- // TODO: Next, find out which base index is the most common, pull it out.
- }
+ void GenerateConstantOffsetReuse();
- // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
- // different starting values, into different PHIs.
-}
+ void GenerateAllReuseFormulae();
-void LoopStrengthReduce::StrengthReduceIVUsers(Loop *L) {
- // Note: this processes each stride/type pair individually. All users
- // passed into StrengthReduceIVUsersOfStride have the same type AND stride.
- // Also, note that we iterate over IVUsesByStride indirectly by using
- // StrideOrder. This extra layer of indirection makes the ordering of
- // strides deterministic - not dependent on map order.
- for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; ++Stride) {
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
- assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
- // FIXME: Generalize to non-affine IV's.
- if (!SI->first->isLoopInvariant(L))
- continue;
- StrengthReduceIVUsersOfStride(SI->first, *SI->second, L);
- }
-}
+ void GenerateLoopInvariantRegisterUses();
-/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
-/// set the IV user and stride information and return true, otherwise return
-/// false.
-bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond,
- IVStrideUse *&CondUse,
- const SCEV* &CondStride) {
- for (unsigned Stride = 0, e = IU->StrideOrder.size();
- Stride != e && !CondUse; ++Stride) {
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
- assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
+public:
+ LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
- for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
- E = SI->second->Users.end(); UI != E; ++UI)
- if (UI->getUser() == Cond) {
- // NOTE: we could handle setcc instructions with multiple uses here, but
- // InstCombine does it as well for simple uses, it's not clear that it
- // occurs enough in real life to handle.
- CondUse = UI;
- CondStride = SI->first;
- return true;
- }
- }
- return false;
-}
+ bool getChanged() const { return Changed; }
-namespace {
- // Constant strides come first which in turns are sorted by their absolute
- // values. If absolute values are the same, then positive strides comes first.
- // e.g.
- // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
- struct StrideCompare {
- const ScalarEvolution *SE;
- explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
-
- bool operator()(const SCEV *LHS, const SCEV *RHS) {
- const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
- const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
- if (LHSC && RHSC) {
- int64_t LV = LHSC->getValue()->getSExtValue();
- int64_t RV = RHSC->getValue()->getSExtValue();
- uint64_t ALV = (LV < 0) ? -LV : LV;
- uint64_t ARV = (RV < 0) ? -RV : RV;
- if (ALV == ARV) {
- if (LV != RV)
- return LV > RV;
- } else {
- return ALV < ARV;
- }
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
- // If it's the same value but different type, sort by bit width so
- // that we emit larger induction variables before smaller
- // ones, letting the smaller be re-written in terms of larger ones.
- return SE->getTypeSizeInBits(RHS->getType()) <
- SE->getTypeSizeInBits(LHS->getType());
- }
- return LHSC && !RHSC;
- }
- };
}
-/// ChangeCompareStride - If a loop termination compare instruction is the
-/// only use of its stride, and the compaison is against a constant value,
-/// try eliminate the stride by moving the compare instruction to another
-/// stride and change its constant operand accordingly. e.g.
-///
-/// loop:
-/// ...
-/// v1 = v1 + 3
-/// v2 = v2 + 1
-/// if (v2 < 10) goto loop
-/// =>
-/// loop:
-/// ...
-/// v1 = v1 + 3
-/// if (v1 < 30) goto loop
-ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
- IVStrideUse* &CondUse,
- const SCEV* &CondStride,
- bool PostPass) {
- // If there's only one stride in the loop, there's nothing to do here.
- if (IU->StrideOrder.size() < 2)
- return Cond;
- // If there are other users of the condition's stride, don't bother
- // trying to change the condition because the stride will still
- // remain.
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
- IU->IVUsesByStride.find(CondStride);
- if (I == IU->IVUsesByStride.end())
- return Cond;
- if (I->second->Users.size() > 1) {
- for (ilist<IVStrideUse>::iterator II = I->second->Users.begin(),
- EE = I->second->Users.end(); II != EE; ++II) {
- if (II->getUser() == Cond)
- continue;
- if (!isInstructionTriviallyDead(II->getUser()))
- return Cond;
- }
- }
- // Only handle constant strides for now.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(CondStride);
- if (!SC) return Cond;
-
- ICmpInst::Predicate Predicate = Cond->getPredicate();
- int64_t CmpSSInt = SC->getValue()->getSExtValue();
- unsigned BitWidth = SE->getTypeSizeInBits(CondStride->getType());
- uint64_t SignBit = 1ULL << (BitWidth-1);
- const Type *CmpTy = Cond->getOperand(0)->getType();
- const Type *NewCmpTy = NULL;
- unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
- unsigned NewTyBits = 0;
- const SCEV *NewStride = NULL;
- Value *NewCmpLHS = NULL;
- Value *NewCmpRHS = NULL;
- int64_t Scale = 1;
- const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
- int64_t CmpVal = C->getValue().getSExtValue();
-
- // Check the relevant induction variable for conformance to
- // the pattern.
- const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
- if (!AR || !AR->isAffine())
- return Cond;
-
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
- // Check stride constant and the comparision constant signs to detect
- // overflow.
- if (StartC) {
- if ((StartC->getValue()->getSExtValue() < CmpVal && CmpSSInt < 0) ||
- (StartC->getValue()->getSExtValue() > CmpVal && CmpSSInt > 0))
- return Cond;
- } else {
- // More restrictive check for the other cases.
- if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
- return Cond;
- }
+/// OptimizeShadowIV - If IV is used in a int-to-float cast
+/// inside the loop then try to eliminate the cast opeation.
+void LSRInstance::OptimizeShadowIV() {
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ return;
- // Look for a suitable stride / iv as replacement.
- for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(IU->StrideOrder[i]);
- if (!isa<SCEVConstant>(SI->first) || SI->second->Users.empty())
- continue;
- int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
- if (SSInt == CmpSSInt ||
- abs64(SSInt) < abs64(CmpSSInt) ||
- (SSInt % CmpSSInt) != 0)
- continue;
+ for (size_t StrideIdx = 0, e = IU.StrideOrder.size();
+ StrideIdx != e; ++StrideIdx) {
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
+ IU.IVUsesByStride.find(IU.StrideOrder[StrideIdx]);
+ assert(SI != IU.IVUsesByStride.end() && "Stride doesn't exist!");
+ if (!isa<SCEVConstant>(SI->first))
+ continue;
- Scale = SSInt / CmpSSInt;
- int64_t NewCmpVal = CmpVal * Scale;
+ for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; /* empty */) {
+ ilist<IVStrideUse>::iterator CandidateUI = UI;
+ ++UI;
+ Instruction *ShadowUse = CandidateUI->getUser();
+ const Type *DestTy = NULL;
- // If old icmp value fits in icmp immediate field, but the new one doesn't
- // try something else.
- if (TLI &&
- TLI->isLegalICmpImmediate(CmpVal) &&
- !TLI->isLegalICmpImmediate(NewCmpVal))
- continue;
+ /* If shadow use is a int->float cast then insert a second IV
+ to eliminate this cast.
- APInt Mul = APInt(BitWidth*2, CmpVal, true);
- Mul = Mul * APInt(BitWidth*2, Scale, true);
- // Check for overflow.
- if (!Mul.isSignedIntN(BitWidth))
- continue;
- // Check for overflow in the stride's type too.
- if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
- continue;
+ for (unsigned i = 0; i < n; ++i)
+ foo((double)i);
- // Watch out for overflow.
- if (ICmpInst::isSigned(Predicate) &&
- (CmpVal & SignBit) != (NewCmpVal & SignBit))
- continue;
+ is transformed into
- // Pick the best iv to use trying to avoid a cast.
- NewCmpLHS = NULL;
- for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
- E = SI->second->Users.end(); UI != E; ++UI) {
- Value *Op = UI->getOperandValToReplace();
-
- // If the IVStrideUse implies a cast, check for an actual cast which
- // can be used to find the original IV expression.
- if (SE->getEffectiveSCEVType(Op->getType()) !=
- SE->getEffectiveSCEVType(SI->first->getType())) {
- CastInst *CI = dyn_cast<CastInst>(Op);
- // If it's not a simple cast, it's complicated.
- if (!CI)
- continue;
- // If it's a cast from a type other than the stride type,
- // it's complicated.
- if (CI->getOperand(0)->getType() != SI->first->getType())
- continue;
- // Ok, we found the IV expression in the stride's type.
- Op = CI->getOperand(0);
- }
+ double d = 0.0;
+ for (unsigned i = 0; i < n; ++i, ++d)
+ foo(d);
+ */
+ if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
+ DestTy = UCast->getDestTy();
+ else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
+ DestTy = SCast->getDestTy();
+ if (!DestTy) continue;
- NewCmpLHS = Op;
- if (NewCmpLHS->getType() == CmpTy)
- break;
+ if (TLI) {
+ // If target does not support DestTy natively then do not apply
+ // this transformation.
+ EVT DVT = TLI->getValueType(DestTy);
+ if (!TLI->isTypeLegal(DVT)) continue;
}
- if (!NewCmpLHS)
- continue;
- NewCmpTy = NewCmpLHS->getType();
- NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
- const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
- if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
- // Check if it is possible to rewrite it using
- // an iv / stride of a smaller integer type.
- unsigned Bits = NewTyBits;
- if (ICmpInst::isSigned(Predicate))
- --Bits;
- uint64_t Mask = (1ULL << Bits) - 1;
- if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
- continue;
- }
+ PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
+ if (!PH) continue;
+ if (PH->getNumIncomingValues() != 2) continue;
- // Don't rewrite if use offset is non-constant and the new type is
- // of a different type.
- // FIXME: too conservative?
- if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
+ const Type *SrcTy = PH->getType();
+ int Mantissa = DestTy->getFPMantissaWidth();
+ if (Mantissa == -1) continue;
+ if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
continue;
- if (!PostPass) {
- bool AllUsesAreAddresses = true;
- bool AllUsesAreOutsideLoop = true;
- std::vector<BasedUser> UsersToProcess;
- const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
- AllUsesAreAddresses,
- AllUsesAreOutsideLoop,
- UsersToProcess);
- // Avoid rewriting the compare instruction with an iv of new stride
- // if it's likely the new stride uses will be rewritten using the
- // stride of the compare instruction.
- if (AllUsesAreAddresses &&
- ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
- continue;
+ unsigned Entry, Latch;
+ if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
+ Entry = 0;
+ Latch = 1;
+ } else {
+ Entry = 1;
+ Latch = 0;
}
- // Avoid rewriting the compare instruction with an iv which has
- // implicit extension or truncation built into it.
- // TODO: This is over-conservative.
- if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
+ ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
+ if (!Init) continue;
+ Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
+
+ BinaryOperator *Incr =
+ dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
+ if (!Incr) continue;
+ if (Incr->getOpcode() != Instruction::Add
+ && Incr->getOpcode() != Instruction::Sub)
continue;
- // If scale is negative, use swapped predicate unless it's testing
- // for equality.
- if (Scale < 0 && !Cond->isEquality())
- Predicate = ICmpInst::getSwappedPredicate(Predicate);
+ /* Initialize new IV, double d = 0.0 in above example. */
+ ConstantInt *C = NULL;
+ if (Incr->getOperand(0) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(1));
+ else if (Incr->getOperand(1) == PH)
+ C = dyn_cast<ConstantInt>(Incr->getOperand(0));
+ else
+ continue;
- NewStride = IU->StrideOrder[i];
- if (!isa<PointerType>(NewCmpTy))
- NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
- else {
- Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
- NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
- }
- NewOffset = TyBits == NewTyBits
- ? SE->getMulExpr(CondUse->getOffset(),
- SE->getConstant(CmpTy, Scale))
- : SE->getConstant(NewCmpIntTy,
- cast<SCEVConstant>(CondUse->getOffset())->getValue()
- ->getSExtValue()*Scale);
+ if (!C) continue;
+
+ // Ignore negative constants, as the code below doesn't handle them
+ // correctly. TODO: Remove this restriction.
+ if (!C->getValue().isStrictlyPositive()) continue;
+
+ /* Add new PHINode. */
+ PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
+
+ /* create new increment. '++d' in above example. */
+ Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
+ BinaryOperator *NewIncr =
+ BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
+ Instruction::FAdd : Instruction::FSub,
+ NewPH, CFP, "IV.S.next.", Incr);
+
+ NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
+ NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
+
+ /* Remove cast operation */
+ ShadowUse->replaceAllUsesWith(NewPH);
+ ShadowUse->eraseFromParent();
break;
}
}
+}
- // Forgo this transformation if it the increment happens to be
- // unfortunately positioned after the condition, and the condition
- // has multiple uses which prevent it from being moved immediately
- // before the branch. See
- // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
- // for an example of this situation.
- if (!Cond->hasOneUse()) {
- for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
- I != E; ++I)
- if (I == NewCmpLHS)
- return Cond;
- }
+/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
+/// set the IV user and stride information and return true, otherwise return
+/// false.
+bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
+ IVStrideUse *&CondUse,
+ const SCEV* &CondStride) {
+ for (unsigned StrideIdx = 0, e = IU.StrideOrder.size();
+ StrideIdx != e && !CondUse; ++StrideIdx) {
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
+ IU.IVUsesByStride.find(IU.StrideOrder[StrideIdx]);
+ assert(SI != IU.IVUsesByStride.end() && "Stride doesn't exist!");
- if (NewCmpRHS) {
- // Create a new compare instruction using new stride / iv.
- ICmpInst *OldCond = Cond;
- // Insert new compare instruction.
- Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
- L->getHeader()->getName() + ".termcond");
-
- DEBUG(dbgs() << " Change compare stride in Inst " << *OldCond);
- DEBUG(dbgs() << " to " << *Cond << '\n');
-
- // Remove the old compare instruction. The old indvar is probably dead too.
- DeadInsts.push_back(CondUse->getOperandValToReplace());
- OldCond->replaceAllUsesWith(Cond);
- OldCond->eraseFromParent();
-
- IU->IVUsesByStride[NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
- CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
- CondStride = NewStride;
- ++NumEliminated;
- Changed = true;
+ for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; ++UI)
+ if (UI->getUser() == Cond) {
+ // NOTE: we could handle setcc instructions with multiple uses here, but
+ // InstCombine does it as well for simple uses, it's not clear that it
+ // occurs enough in real life to handle.
+ CondUse = UI;
+ CondStride = SI->first;
+ return true;
+ }
}
-
- return Cond;
+ return false;
}
/// OptimizeMax - Rewrite the loop's terminating condition if it uses
@@ -2087,7 +1625,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
-/// needed, and it does this using a simple analyis that only succeeds if
+/// needed, and it does this using a simple analysis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
@@ -2097,8 +1635,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
///
-ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
- IVStrideUse* &CondUse) {
+ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
// Check that the loop matches the pattern we're looking for.
if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
Cond->getPredicate() != CmpInst::ICMP_NE)
@@ -2107,19 +1644,19 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
if (!Sel || !Sel->hasOneUse()) return Cond;
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return Cond;
- const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
+ const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
// Add one to the backedge-taken count to get the trip count.
- const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
+ const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
// Check for a max calculation that matches the pattern.
if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
return Cond;
const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
- if (Max != SE->getSCEV(Sel)) return Cond;
+ if (Max != SE.getSCEV(Sel)) return Cond;
// To handle a max with more than two operands, this optimization would
// require additional checking and setup.
@@ -2129,14 +1666,13 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
const SCEV *MaxLHS = Max->getOperand(0);
const SCEV *MaxRHS = Max->getOperand(1);
if (!MaxLHS || MaxLHS != One) return Cond;
-
// Check the relevant induction variable for conformance to
// the pattern.
- const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
+ const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
if (!AR || !AR->isAffine() ||
AR->getStart() != One ||
- AR->getStepRecurrence(*SE) != One)
+ AR->getStepRecurrence(SE) != One)
return Cond;
assert(AR->getLoop() == L &&
@@ -2145,9 +1681,9 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
// Check the right operand of the select, and remember it, as it will
// be used in the new comparison instruction.
Value *NewRHS = 0;
- if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
+ if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
NewRHS = Sel->getOperand(1);
- else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
+ else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
NewRHS = Sel->getOperand(2);
if (!NewRHS) return Cond;
@@ -2174,136 +1710,11 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
return NewCond;
}
-/// OptimizeShadowIV - If IV is used in a int-to-float cast
-/// inside the loop then try to eliminate the cast opeation.
-void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
-
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- return;
-
- for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
- ++Stride) {
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
- assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
- if (!isa<SCEVConstant>(SI->first))
- continue;
-
- for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
- E = SI->second->Users.end(); UI != E; /* empty */) {
- ilist<IVStrideUse>::iterator CandidateUI = UI;
- ++UI;
- Instruction *ShadowUse = CandidateUI->getUser();
- const Type *DestTy = NULL;
-
- /* If shadow use is a int->float cast then insert a second IV
- to eliminate this cast.
-
- for (unsigned i = 0; i < n; ++i)
- foo((double)i);
-
- is transformed into
-
- double d = 0.0;
- for (unsigned i = 0; i < n; ++i, ++d)
- foo(d);
- */
- if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
- DestTy = UCast->getDestTy();
- else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
- DestTy = SCast->getDestTy();
- if (!DestTy) continue;
-
- if (TLI) {
- // If target does not support DestTy natively then do not apply
- // this transformation.
- EVT DVT = TLI->getValueType(DestTy);
- if (!TLI->isTypeLegal(DVT)) continue;
- }
-
- PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
- if (!PH) continue;
- if (PH->getNumIncomingValues() != 2) continue;
-
- const Type *SrcTy = PH->getType();
- int Mantissa = DestTy->getFPMantissaWidth();
- if (Mantissa == -1) continue;
- if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
- continue;
-
- unsigned Entry, Latch;
- if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
- Entry = 0;
- Latch = 1;
- } else {
- Entry = 1;
- Latch = 0;
- }
-
- ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
- if (!Init) continue;
- Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
-
- BinaryOperator *Incr =
- dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
- if (!Incr) continue;
- if (Incr->getOpcode() != Instruction::Add
- && Incr->getOpcode() != Instruction::Sub)
- continue;
-
- /* Initialize new IV, double d = 0.0 in above example. */
- ConstantInt *C = NULL;
- if (Incr->getOperand(0) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(1));
- else if (Incr->getOperand(1) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(0));
- else
- continue;
-
- if (!C) continue;
-
- // Ignore negative constants, as the code below doesn't handle them
- // correctly. TODO: Remove this restriction.
- if (!C->getValue().isStrictlyPositive()) continue;
-
- /* Add new PHINode. */
- PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
-
- /* create new increment. '++d' in above example. */
- Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
- BinaryOperator *NewIncr =
- BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
- Instruction::FAdd : Instruction::FSub,
- NewPH, CFP, "IV.S.next.", Incr);
-
- NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
- NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
-
- /* Remove cast operation */
- ShadowUse->replaceAllUsesWith(NewPH);
- ShadowUse->eraseFromParent();
- NumShadow++;
- break;
- }
- }
-}
-
-/// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
-/// uses in the loop, look to see if we can eliminate some, in favor of using
-/// common indvars for the different uses.
-void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
- // TODO: implement optzns here.
-
- OptimizeShadowIV(L);
-}
-
-bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L,
- bool CheckPreInc) {
+bool LSRInstance::StrideMightBeShared(const SCEV* Stride) {
int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
- for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
+ for (unsigned i = 0, e = IU.StrideOrder.size(); i != e; ++i) {
std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(IU->StrideOrder[i]);
+ IU.IVUsesByStride.find(IU.StrideOrder[i]);
const SCEV *Share = SI->first;
if (!isa<SCEVConstant>(SI->first) || Share == Stride)
continue;
@@ -2313,110 +1724,44 @@ bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L,
if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
continue;
int64_t Scale = SSInt / SInt;
- bool AllUsesAreAddresses = true;
- bool AllUsesAreOutsideLoop = true;
- std::vector<BasedUser> UsersToProcess;
- const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
- AllUsesAreAddresses,
- AllUsesAreOutsideLoop,
- UsersToProcess);
- if (AllUsesAreAddresses &&
- ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) {
- if (!CheckPreInc)
+
+ // This AM will be used for conservative queries. At this point in the
+ // process we don't know which users will have a base reg, immediate,
+ // etc., so we conservatively assume that it may not, making more
+ // strides valid, thus erring on the side of assuming that there
+ // might be sharing.
+ TargetLowering::AddrMode AM;
+ AM.Scale = Scale;
+
+ // Any pre-inc iv use?
+ IVUsersOfOneStride &StrideUses = *IU.IVUsesByStride[Share];
+ for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
+ E = StrideUses.Users.end(); I != E; ++I) {
+ bool isAddress = isAddressUse(I->getUser(), I->getOperandValToReplace());
+ if (!I->isUseOfPostIncrementedValue() &&
+ isLegalUse(AM, isAddress ? LSRUse::Address : LSRUse::Basic,
+ isAddress ? getAccessType(I->getUser()) : 0,
+ TLI))
return true;
- // Any pre-inc iv use?
- IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[Share];
- for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
- E = StrideUses.Users.end(); I != E; ++I) {
- if (!I->isUseOfPostIncrementedValue())
- return true;
- }
}
}
return false;
}
-/// isUsedByExitBranch - Return true if icmp is used by a loop terminating
-/// conditional branch or it's and / or with other conditions before being used
-/// as the condition.
-static bool isUsedByExitBranch(ICmpInst *Cond, Loop *L) {
- BasicBlock *CondBB = Cond->getParent();
- if (!L->isLoopExiting(CondBB))
- return false;
- BranchInst *TermBr = dyn_cast<BranchInst>(CondBB->getTerminator());
- if (!TermBr || !TermBr->isConditional())
- return false;
-
- Value *User = *Cond->use_begin();
- Instruction *UserInst = dyn_cast<Instruction>(User);
- while (UserInst &&
- (UserInst->getOpcode() == Instruction::And ||
- UserInst->getOpcode() == Instruction::Or)) {
- if (!UserInst->hasOneUse() || UserInst->getParent() != CondBB)
- return false;
- User = *User->use_begin();
- UserInst = dyn_cast<Instruction>(User);
- }
- return User == TermBr;
-}
-
-static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse,
- ScalarEvolution *SE, Loop *L,
- const TargetLowering *TLI = 0) {
- if (!L->contains(Cond))
- return false;
-
- if (!isa<SCEVConstant>(CondUse->getOffset()))
- return false;
-
- // Handle only tests for equality for the moment.
- if (!Cond->isEquality() || !Cond->hasOneUse())
- return false;
- if (!isUsedByExitBranch(Cond, L))
- return false;
-
- Value *CondOp0 = Cond->getOperand(0);
- const SCEV *IV = SE->getSCEV(CondOp0);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
- if (!AR || !AR->isAffine())
- return false;
-
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
- if (!SC || SC->getValue()->getSExtValue() < 0)
- // If it's already counting down, don't do anything.
- return false;
-
- // If the RHS of the comparison is not an loop invariant, the rewrite
- // cannot be done. Also bail out if it's already comparing against a zero.
- // If we are checking this before cmp stride optimization, check if it's
- // comparing against a already legal immediate.
- Value *RHS = Cond->getOperand(1);
- ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
- if (!L->isLoopInvariant(RHS) ||
- (RHSC && RHSC->isZero()) ||
- (RHSC && TLI && TLI->isLegalICmpImmediate(RHSC->getSExtValue())))
- return false;
-
- // Make sure the IV is only used for counting. Value may be preinc or
- // postinc; 2 uses in either case.
- if (!CondOp0->hasNUses(2))
- return false;
-
- return true;
-}
-
/// OptimizeLoopTermCond - Change loop terminating condition to use the
/// postinc iv when possible.
-void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
+bool
+LSRInstance::OptimizeLoopTermCond(Instruction *&IVIncInsertPos) {
+ SmallPtrSet<Instruction *, 4> PostIncs;
+
BasicBlock *LatchBlock = L->getLoopLatch();
- bool LatchExit = L->isLoopExiting(LatchBlock);
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BasicBlock *ExitingBlock = ExitingBlocks[i];
- // Finally, get the terminating condition for the loop if possible. If we
+ // Get the terminating condition for the loop if possible. If we
// can, we want to change it to use a post-incremented version of its
// induction variable, to allow coalescing the live ranges for the IV into
// one register value.
@@ -2435,291 +1780,982 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
if (!FindIVUserForCond(Cond, CondUse, CondStride))
continue;
- // If the latch block is exiting and it's not a single block loop, it's
- // not safe to use postinc iv in other exiting blocks. FIXME: overly
- // conservative? How about icmp stride optimization?
- bool UsePostInc = !(e > 1 && LatchExit && ExitingBlock != LatchBlock);
- if (UsePostInc && ExitingBlock != LatchBlock) {
- if (!Cond->hasOneUse())
- // See below, we don't want the condition to be cloned.
- UsePostInc = false;
- else {
- // If exiting block is the latch block, we know it's safe and profitable
- // to transform the icmp to use post-inc iv. Otherwise do so only if it
- // would not reuse another iv and its iv would be reused by other uses.
- // We are optimizing for the case where the icmp is the only use of the
- // iv.
- IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[CondStride];
- for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
- E = StrideUses.Users.end(); I != E; ++I) {
- if (I->getUser() == Cond)
- continue;
- if (!I->isUseOfPostIncrementedValue()) {
- UsePostInc = false;
- break;
- }
- }
- }
-
- // If iv for the stride might be shared and any of the users use pre-inc
- // iv might be used, then it's not safe to use post-inc iv.
- if (UsePostInc &&
- isa<SCEVConstant>(CondStride) &&
- StrideMightBeShared(CondStride, L, true))
- UsePostInc = false;
- }
-
// If the trip count is computed in terms of a max (due to ScalarEvolution
// being unable to find a sufficient guard, for example), change the loop
// comparison to use SLT or ULT instead of NE.
- Cond = OptimizeMax(L, Cond, CondUse);
-
- // If possible, change stride and operands of the compare instruction to
- // eliminate one stride. However, avoid rewriting the compare instruction
- // with an iv of new stride if it's likely the new stride uses will be
- // rewritten using the stride of the compare instruction.
- if (ExitingBlock == LatchBlock && isa<SCEVConstant>(CondStride)) {
- // If the condition stride is a constant and it's the only use, we might
- // want to optimize it first by turning it to count toward zero.
- if (!StrideMightBeShared(CondStride, L, false) &&
- !ShouldCountToZero(Cond, CondUse, SE, L, TLI))
- Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
+ // One consequence of doing this now is that it disrupts the count-down
+ // optimization. That's not always a bad thing though, because in such
+ // cases it may still be worthwhile to avoid a max.
+ Cond = OptimizeMax(Cond, CondUse);
+
+ // If this exiting block is the latch block, and the condition has only
+ // one use inside the loop (the branch), use the post-incremented value
+ // of the induction variable
+ if (ExitingBlock != LatchBlock) {
+ // If this exiting block dominates the latch block, it may also use
+ // the post-inc value if it won't be shared with other uses.
+ // Check for dominance.
+ if (!DT.dominates(ExitingBlock, LatchBlock))
+ continue;
+ // Check for sharing within the same stride.
+ bool SameStrideSharing = false;
+ IVUsersOfOneStride &StrideUses = *IU.IVUsesByStride[CondStride];
+ for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
+ E = StrideUses.Users.end(); I != E; ++I) {
+ if (I->getUser() == Cond)
+ continue;
+ if (!I->isUseOfPostIncrementedValue()) {
+ SameStrideSharing = true;
+ break;
+ }
+ }
+ if (SameStrideSharing)
+ continue;
+ // Check for sharing from a different stride.
+ if (isa<SCEVConstant>(CondStride) && StrideMightBeShared(CondStride))
+ continue;
+ }
+ if (!Cond->hasOneUse()) {
+ bool HasOneUseInLoop = true;
+ for (Value::use_iterator UI = Cond->use_begin(), UE = Cond->use_end();
+ UI != UE; ++UI) {
+ Instruction *U = cast<Instruction>(*UI);
+ if (U == TermBr)
+ continue;
+ if (L->contains(U)) {
+ HasOneUseInLoop = false;
+ break;
+ }
+ }
+ if (!HasOneUseInLoop)
+ continue;
}
-
- if (!UsePostInc)
- continue;
DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
- << *Cond << '\n');
+ << *Cond << '\n');
// It's possible for the setcc instruction to be anywhere in the loop, and
// possible for it to have multiple users. If it is not immediately before
// the exiting block branch, move it.
- if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
+ if (&*++BasicBlock::iterator(Cond) != TermBr) {
if (Cond->hasOneUse()) { // Condition has a single use, just move it.
Cond->moveBefore(TermBr);
} else {
// Otherwise, clone the terminating condition and insert into the
// loopend.
+ ICmpInst *OldCond = Cond;
Cond = cast<ICmpInst>(Cond->clone());
Cond->setName(L->getHeader()->getName() + ".termcond");
ExitingBlock->getInstList().insert(TermBr, Cond);
// Clone the IVUse, as the old use still exists!
- IU->IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond,
+ IU.IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond,
CondUse->getOperandValToReplace());
- CondUse = &IU->IVUsesByStride[CondStride]->Users.back();
+ CondUse = &IU.IVUsesByStride[CondStride]->Users.back();
+ TermBr->replaceUsesOfWith(OldCond, Cond);
}
}
// If we get to here, we know that we can transform the setcc instruction to
// use the post-incremented version of the IV, allowing us to coalesce the
// live ranges for the IV correctly.
- CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), CondStride));
+ CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(), CondStride));
CondUse->setIsUseOfPostIncrementedValue(true);
Changed = true;
- ++NumLoopCond;
+ PostIncs.insert(Cond);
}
-}
-
-bool LoopStrengthReduce::OptimizeLoopCountIVOfStride(const SCEV* &Stride,
- IVStrideUse* &CondUse,
- Loop *L) {
- // If the only use is an icmp of a loop exiting conditional branch, then
- // attempt the optimization.
- BasedUser User = BasedUser(*CondUse, SE);
- assert(isa<ICmpInst>(User.Inst) && "Expecting an ICMPInst!");
- ICmpInst *Cond = cast<ICmpInst>(User.Inst);
- // Less strict check now that compare stride optimization is done.
- if (!ShouldCountToZero(Cond, CondUse, SE, L))
- return false;
+ // Determine an insertion point for the loop induction variable increment. It
+ // must dominate all the post-inc comparisons we just set up, and it must
+ // dominate the loop latch edge.
+ IVIncInsertPos = L->getLoopLatch()->getTerminator();
+ for (SmallPtrSet<Instruction *, 4>::iterator I = PostIncs.begin(),
+ E = PostIncs.end(); I != E; ++I) {
+ BasicBlock *BB =
+ DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
+ (*I)->getParent());
+ if (BB == (*I)->getParent())
+ IVIncInsertPos = *I;
+ else if (BB != IVIncInsertPos->getParent())
+ IVIncInsertPos = BB->getTerminator();
+ }
- Value *CondOp0 = Cond->getOperand(0);
- PHINode *PHIExpr = dyn_cast<PHINode>(CondOp0);
- Instruction *Incr;
- if (!PHIExpr) {
- // Value tested is postinc. Find the phi node.
- Incr = dyn_cast<BinaryOperator>(CondOp0);
- // FIXME: Just use User.OperandValToReplace here?
- if (!Incr || Incr->getOpcode() != Instruction::Add)
- return false;
+ return Changed;
+}
- PHIExpr = dyn_cast<PHINode>(Incr->getOperand(0));
- if (!PHIExpr)
- return false;
- // 1 use for preinc value, the increment.
- if (!PHIExpr->hasOneUse())
- return false;
+/// CountRegisters - Note the given register.
+void LSRInstance::CountRegister(const SCEV *Reg, uint32_t Complexity,
+ size_t LUIdx) {
+ std::pair<RegUsesTy::iterator, bool> Pair =
+ RegUses.insert(std::make_pair(Reg, RegSortData()));
+ RegSortData &BV = Pair.first->second;
+ if (Pair.second) {
+ BV.Index = CurrentArbitraryRegIndex++;
+ BV.MaxComplexity = Complexity;
+ RegSequence.push_back(Reg);
} else {
- assert(isa<PHINode>(CondOp0) &&
- "Unexpected loop exiting counting instruction sequence!");
- PHIExpr = cast<PHINode>(CondOp0);
- // Value tested is preinc. Find the increment.
- // A CmpInst is not a BinaryOperator; we depend on this.
- Instruction::use_iterator UI = PHIExpr->use_begin();
- Incr = dyn_cast<BinaryOperator>(UI);
- if (!Incr)
- Incr = dyn_cast<BinaryOperator>(++UI);
- // One use for postinc value, the phi. Unnecessarily conservative?
- if (!Incr || !Incr->hasOneUse() || Incr->getOpcode() != Instruction::Add)
- return false;
+ BV.MaxComplexity = std::max(BV.MaxComplexity, Complexity);
}
+ BV.Bits.resize(std::max(BV.Bits.size(), LUIdx + 1));
+ BV.Bits.set(LUIdx);
+}
- // Replace the increment with a decrement.
- DEBUG(dbgs() << "LSR: Examining use ");
- DEBUG(WriteAsOperand(dbgs(), CondOp0, /*PrintType=*/false));
- DEBUG(dbgs() << " in Inst: " << *Cond << '\n');
- BinaryOperator *Decr = BinaryOperator::Create(Instruction::Sub,
- Incr->getOperand(0), Incr->getOperand(1), "tmp", Incr);
- Incr->replaceAllUsesWith(Decr);
- Incr->eraseFromParent();
-
- // Substitute endval-startval for the original startval, and 0 for the
- // original endval. Since we're only testing for equality this is OK even
- // if the computation wraps around.
- BasicBlock *Preheader = L->getLoopPreheader();
- Instruction *PreInsertPt = Preheader->getTerminator();
- unsigned InBlock = L->contains(PHIExpr->getIncomingBlock(0)) ? 1 : 0;
- Value *StartVal = PHIExpr->getIncomingValue(InBlock);
- Value *EndVal = Cond->getOperand(1);
- DEBUG(dbgs() << " Optimize loop counting iv to count down ["
- << *EndVal << " .. " << *StartVal << "]\n");
-
- // FIXME: check for case where both are constant.
- Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
- BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub,
- EndVal, StartVal, "tmp", PreInsertPt);
- PHIExpr->setIncomingValue(InBlock, NewStartVal);
- Cond->setOperand(1, Zero);
- DEBUG(dbgs() << " New icmp: " << *Cond << "\n");
+/// CountRegisters - Note which registers are used by the given formula,
+/// updating RegUses.
+void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
+ uint32_t Complexity = F.getComplexity();
+ if (F.ScaledReg)
+ CountRegister(F.ScaledReg, Complexity, LUIdx);
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
+ E = F.BaseRegs.end(); I != E; ++I)
+ CountRegister(*I, Complexity, LUIdx);
+}
- int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
- const SCEV *NewStride = 0;
- bool Found = false;
- for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- const SCEV *OldStride = IU->StrideOrder[i];
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OldStride))
- if (SC->getValue()->getSExtValue() == -SInt) {
- Found = true;
- NewStride = OldStride;
- break;
- }
+/// GenerateSymbolicOffsetReuse - Generate reuse formulae using symbolic
+/// offsets.
+void LSRInstance::GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // We can't add a symbolic offset if the address already contains one.
+ if (Base.AM.BaseGV) return;
+
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *G = Base.BaseRegs[i];
+ GlobalValue *GV = ExtractSymbol(G, SE);
+ if (G->isZero())
+ continue;
+ Formula F = Base;
+ F.AM.BaseGV = GV;
+ if (!isLegalUse(F.AM, LU.Kind, LU.AccessTy, TLI))
+ continue;
+ F.BaseRegs[i] = G;
+ if (LU.InsertFormula(F))
+ CountRegisters(LU.Formulae.back(), LUIdx);
}
+}
- if (!Found)
- NewStride = SE->getIntegerSCEV(-SInt, Stride->getType());
- IU->AddUser(NewStride, CondUse->getOffset(), Cond, Cond->getOperand(0));
- IU->IVUsesByStride[Stride]->removeUser(CondUse);
+/// GenerateICmpZeroScaledReuse - For ICmpZero, check to see if we can scale up
+/// the comparison. For example, x == y -> x*c == y*c.
+void LSRInstance::GenerateICmpZeroScaledReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ if (LU.Kind != LSRUse::ICmpZero) return;
+
+ // Determine the integer type for the base formula.
+ const Type *IntTy = Base.getType();
+ if (!IntTy) return;
+ if (SE.getTypeSizeInBits(IntTy) > 64) return;
+ IntTy = SE.getEffectiveSCEVType(IntTy);
+
+ assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 4>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+ Formula F = Base;
+
+ // Check that the multiplication doesn't overflow.
+ F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs * Factor;
+ if ((int64_t)F.AM.BaseOffs / Factor != F.AM.BaseOffs)
+ continue;
- CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
- Stride = NewStride;
+ // Check that this scale is legal.
+ if (!isLegalUse(F.AM, LU.Kind, LU.AccessTy, TLI))
+ continue;
+
+ const SCEV *FactorS = SE.getSCEV(ConstantInt::get(IntTy, Factor));
- ++NumCountZero;
+ // Check that multiplying with each base register doesn't overflow.
+ for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
+ F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
+ if (getSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
+ goto next;
+ }
- return true;
+ // Check that multiplying with the scaled register doesn't overflow.
+ if (F.ScaledReg) {
+ F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
+ if (getSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
+ continue;
+ }
+
+ // If we make it here and it's legal, add it.
+ if (LU.InsertFormula(F))
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ next:;
+ }
}
-/// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
-/// when to exit the loop is used only for that purpose, try to rearrange things
-/// so it counts down to a test against zero.
-bool LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
- bool ThisChanged = false;
- for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- const SCEV *Stride = IU->StrideOrder[i];
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
- IU->IVUsesByStride.find(Stride);
- assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
- // FIXME: Generalize to non-affine IV's.
- if (!SI->first->isLoopInvariant(L))
+/// GenerateFormulaeFromReplacedBaseReg - If removing base register with
+/// index i from the BaseRegs list and adding the registers in AddOps
+/// to the address forms an interesting formula, pursue it.
+void
+LSRInstance::GenerateFormulaeFromReplacedBaseReg(
+ LSRUse &LU,
+ unsigned LUIdx,
+ const Formula &Base, unsigned i,
+ const SmallVectorImpl<const SCEV *>
+ &AddOps) {
+ if (AddOps.empty()) return;
+
+ Formula F = Base;
+ std::swap(F.BaseRegs[i], F.BaseRegs.back());
+ F.BaseRegs.pop_back();
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = AddOps.begin(),
+ E = AddOps.end(); I != E; ++I)
+ F.BaseRegs.push_back(*I);
+ F.AM.HasBaseReg = !F.BaseRegs.empty();
+ if (LU.InsertFormula(F)) {
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ // Recurse.
+ GenerateReassociationReuse(LU, LUIdx, LU.Formulae.back());
+ }
+}
+
+/// GenerateReassociationReuse - Split out subexpressions from adds and
+/// the bases of addrecs.
+void LSRInstance::GenerateReassociationReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ SmallVector<const SCEV *, 8> AddOps;
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
+ const SCEV *BaseReg = Base.BaseRegs[i];
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BaseReg)) {
+ for (SCEVAddExpr::op_iterator J = Add->op_begin(), JE = Add->op_end();
+ J != JE; ++J) {
+ // Don't pull a constant into a register if the constant could be
+ // folded into an immediate field.
+ if (isAlwaysFoldable(*J, true, LU.Kind, LU.AccessTy, TLI, SE)) continue;
+ SmallVector<const SCEV *, 8> InnerAddOps;
+ for (SCEVAddExpr::op_iterator K = Add->op_begin(); K != JE; ++K)
+ if (K != J)
+ InnerAddOps.push_back(*K);
+ // Splitting a 2-operand add both ways is redundant. Pruning this
+ // now saves compile time.
+ if (InnerAddOps.size() < 2 && next(J) == JE)
+ continue;
+ AddOps.push_back(*J);
+ const SCEV *InnerAdd = SE.getAddExpr(InnerAddOps);
+ AddOps.push_back(InnerAdd);
+ GenerateFormulaeFromReplacedBaseReg(LU, LUIdx, Base, i, AddOps);
+ AddOps.clear();
+ }
+ } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BaseReg)) {
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(AR->getStart())) {
+ for (SCEVAddExpr::op_iterator J = Add->op_begin(), JE = Add->op_end();
+ J != JE; ++J) {
+ // Don't pull a constant into a register if the constant could be
+ // folded into an immediate field.
+ if (isAlwaysFoldable(*J, true, LU.Kind, LU.AccessTy, TLI, SE))
+ continue;
+ SmallVector<const SCEV *, 8> InnerAddOps;
+ for (SCEVAddExpr::op_iterator K = Add->op_begin(); K != JE; ++K)
+ if (K != J)
+ InnerAddOps.push_back(*K);
+ AddOps.push_back(*J);
+ const SCEV *InnerAdd = SE.getAddExpr(InnerAddOps);
+ AddOps.push_back(SE.getAddRecExpr(InnerAdd,
+ AR->getStepRecurrence(SE),
+ AR->getLoop()));
+ GenerateFormulaeFromReplacedBaseReg(LU, LUIdx, Base, i, AddOps);
+ AddOps.clear();
+ }
+ } else if (!isAlwaysFoldable(AR->getStart(), Base.BaseRegs.size() > 1,
+ LU.Kind, LU.AccessTy,
+ TLI, SE)) {
+ AddOps.push_back(AR->getStart());
+ AddOps.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0,
+ BaseReg->getType()),
+ AR->getStepRecurrence(SE),
+ AR->getLoop()));
+ GenerateFormulaeFromReplacedBaseReg(LU, LUIdx, Base, i, AddOps);
+ AddOps.clear();
+ }
+ }
+ }
+}
+
+/// GenerateCombinationReuse - Generate a formula consisting of all of the
+/// loop-dominating registers added into a single register.
+void LSRInstance::GenerateCombinationReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ if (Base.BaseRegs.size() <= 1) return;
+
+ Formula F = Base;
+ F.BaseRegs.clear();
+ SmallVector<const SCEV *, 4> Ops;
+ for (SmallVectorImpl<const SCEV *>::const_iterator
+ I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
+ const SCEV *BaseReg = *I;
+ if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
+ !BaseReg->hasComputableLoopEvolution(L))
+ Ops.push_back(BaseReg);
+ else
+ F.BaseRegs.push_back(BaseReg);
+ }
+ if (Ops.size() > 1) {
+ F.BaseRegs.push_back(SE.getAddExpr(Ops));
+ if (LU.InsertFormula(F))
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ }
+}
+
+/// GenerateScaledReuse - Generate stride factor reuse formulae by making
+/// use of scaled-offset address modes, for example.
+void LSRInstance::GenerateScaledReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // Determine the integer type for the base formula.
+ const Type *IntTy = Base.getType();
+ if (!IntTy) return;
+ IntTy = SE.getEffectiveSCEVType(IntTy);
+
+ // Check each interesting stride.
+ for (SmallSetVector<int64_t, 4>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ int64_t Factor = *I;
+
+ // If this Formula already has a scaled register, we can't add another one.
+ if (Base.AM.Scale != 0)
continue;
- // If stride is a constant and it has an icmpinst use, check if we can
- // optimize the loop to count down.
- if (isa<SCEVConstant>(Stride) && SI->second->Users.size() == 1) {
- Instruction *User = SI->second->Users.begin()->getUser();
- if (!isa<ICmpInst>(User))
- continue;
- const SCEV *CondStride = Stride;
- IVStrideUse *Use = &*SI->second->Users.begin();
- if (!OptimizeLoopCountIVOfStride(CondStride, Use, L))
+ Formula F = Base;
+ F.AM.Scale = Factor;
+ // Check whether this scale is going to be legal.
+ if (!isLegalUse(F.AM, LU.Kind, LU.AccessTy, TLI)) {
+ // As a special-case, handle special out-of-loop Basic users specially.
+ // TODO: Reconsider this special case.
+ if (LU.Kind == LSRUse::Basic &&
+ isLegalUse(F.AM, LSRUse::Special, LU.AccessTy, TLI) &&
+ !L->contains(LU.UserInst))
+ LU.Kind = LSRUse::Special;
+ else
continue;
- ThisChanged = true;
+ }
+ // For each addrec base reg, apply the scale, if possible.
+ for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
+ if (const SCEVAddRecExpr *AR =
+ dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
+ const SCEV *FactorS = SE.getSCEV(ConstantInt::get(IntTy, Factor));
+ // Divide out the factor, ignoring high bits, since we'll be
+ // scaling the value back up in the end.
+ if (const SCEV *Quotient = getSDiv(AR, FactorS, SE, true)) {
+ // TODO: This could be optimized to avoid all the copying.
+ Formula NewF = F;
+ NewF.ScaledReg = Quotient;
+ std::swap(NewF.BaseRegs[i], NewF.BaseRegs.back());
+ NewF.BaseRegs.pop_back();
+ NewF.AM.HasBaseReg = !NewF.BaseRegs.empty();
+ if (LU.InsertFormula(NewF))
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ }
+ }
+ }
+}
+
+/// GenerateTruncateReuse - Generate reuse formulae from different IV types.
+void LSRInstance::GenerateTruncateReuse(LSRUse &LU, unsigned LUIdx,
+ Formula Base) {
+ // This requires TargetLowering to tell us which truncates are free.
+ if (!TLI) return;
+
+ // Don't attempt to truncate symbolic values.
+ if (Base.AM.BaseGV) return;
+
+ // Determine the integer type for the base formula.
+ const Type *DstTy = Base.getType();
+ if (!DstTy) return;
+ DstTy = SE.getEffectiveSCEVType(DstTy);
+
+ for (SmallSetVector<const Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ const Type *SrcTy = *I;
+ if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
+ Formula F = Base;
+ if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
+ for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
+ JE = F.BaseRegs.end(); J != JE; ++J)
+ *J = SE.getAnyExtendExpr(*J, SrcTy);
+ if (LU.InsertFormula(F))
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ }
+ }
+}
+
+namespace {
+
+/// WorkItem - Helper class for GenerateConstantOffsetReuse. It's used to
+/// defer modifications so that the search phase doesn't have to worry about
+/// the data structures moving underneath it.
+struct WorkItem {
+ LSRUse *LU;
+ size_t LUIdx;
+ int64_t Imm;
+ const SCEV *OrigReg;
+
+ WorkItem(LSRUse *U, size_t LI, int64_t I, const SCEV *R)
+ : LU(U), LUIdx(LI), Imm(I), OrigReg(R) {}
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+};
+
+void WorkItem::print(raw_ostream &OS) const {
+ OS << "in use ";
+ LU->print(OS);
+ OS << " (at index " << LUIdx << "), add offset " << Imm
+ << " and compensate by adjusting refences to " << *OrigReg << "\n";
+}
+
+void WorkItem::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+}
+
+/// GenerateConstantOffsetReuse - Look for registers which are a constant
+/// distance apart and try to form reuse opportunities between them.
+void LSRInstance::GenerateConstantOffsetReuse() {
+ // Group the registers by their value without any added constant offset.
+ typedef std::map<int64_t, const SCEV *> ImmMapTy;
+ typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
+ RegMapTy Map;
+ SmallVector<const SCEV *, 8> Sequence;
+ for (SmallVectorImpl<const SCEV *>::iterator I = RegSequence.begin(),
+ E = RegSequence.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ int64_t Imm = ExtractImmediate(Reg, SE);
+ std::pair<RegMapTy::iterator, bool> Pair =
+ Map.insert(std::make_pair(Reg, ImmMapTy()));
+ if (Pair.second)
+ Sequence.push_back(Reg);
+ Pair.first->second.insert(std::make_pair(Imm, *I));
+ }
- // Now check if it's possible to reuse this iv for other stride uses.
- for (unsigned j = 0, ee = IU->StrideOrder.size(); j != ee; ++j) {
- const SCEV *SStride = IU->StrideOrder[j];
- if (SStride == CondStride)
+ // Insert an artificial expression at offset 0 (if there isn't one already),
+ // as this may lead to more reuse opportunities.
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
+ E = Sequence.end(); I != E; ++I)
+ Map.find(*I)->second.insert(ImmMapTy::value_type(0, 0));
+
+ // Now examine each set of registers with the same base value. Build up
+ // a list of work to do and do the work in a separate step so that we're
+ // not adding formulae and register counts while we're searching.
+ SmallVector<WorkItem, 32> WorkItems;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
+ E = Sequence.end(); I != E; ++I) {
+ const SCEV *Reg = *I;
+ const ImmMapTy &Imms = Map.find(Reg)->second;
+ // Examine each offset.
+ for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
+ J != JE; ++J) {
+ const SCEV *OrigReg = J->second;
+ // Skip the artifical register at offset 0.
+ if (!OrigReg) continue;
+
+ int64_t JImm = J->first;
+ const SmallBitVector &Bits = RegUses.find(OrigReg)->second.Bits;
+
+ // Examine each other offset associated with the same register. This is
+ // quadradic in the number of registers with the same base, but it's
+ // uncommon for this to be a large number.
+ for (ImmMapTy::const_iterator M = Imms.begin(); M != JE; ++M) {
+ if (M == J) continue;
+
+ // Compute the difference between the two.
+ int64_t Imm = (uint64_t)JImm - M->first;
+ for (int LUIdx = Bits.find_first(); LUIdx != -1;
+ LUIdx = Bits.find_next(LUIdx))
+ // Make a memo of this use, offset, and register tuple.
+ WorkItems.push_back(WorkItem(&Uses[LUIdx], LUIdx, Imm, OrigReg));
+ }
+ }
+ }
+
+ // Now iterate through the worklist and add new formulae.
+ for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
+ E = WorkItems.end(); I != E; ++I) {
+ const WorkItem &WI = *I;
+ LSRUse &LU = *WI.LU;
+ size_t LUIdx = WI.LUIdx;
+ int64_t Imm = WI.Imm;
+ const SCEV *OrigReg = WI.OrigReg;
+
+ const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
+ const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy,
+ -(uint64_t)Imm));
+
+ for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
+ Formula F = LU.Formulae[L];
+ // Use the immediate in the scaled register.
+ if (F.ScaledReg == OrigReg) {
+ int64_t Offs = (uint64_t)F.AM.BaseOffs +
+ Imm * (uint64_t)F.AM.Scale;
+ // Don't create 50 + reg(-50).
+ if (F.referencesReg(SE.getSCEV(
+ ConstantInt::get(IntTy, -(uint64_t)Offs))))
continue;
- std::map<const SCEV *, IVUsersOfOneStride *>::iterator SII =
- IU->IVUsesByStride.find(SStride);
- assert(SII != IU->IVUsesByStride.end() && "Stride doesn't exist!");
- // FIXME: Generalize to non-affine IV's.
- if (!SII->first->isLoopInvariant(L))
+ Formula NewF = F;
+ NewF.AM.BaseOffs = Offs;
+ if (!isLegalUse(NewF.AM, LU.Kind, LU.AccessTy, TLI))
continue;
- // FIXME: Rewrite other stride using CondStride.
+ const SCEV *Diff = SE.getAddExpr(NegImmS, NewF.ScaledReg);
+ if (Diff->isZero()) continue;
+ NewF.ScaledReg = Diff;
+ if (LU.InsertFormula(NewF))
+ CountRegisters(LU.Formulae.back(), LUIdx);
+ }
+ // Use the immediate in a base register.
+ for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
+ const SCEV *BaseReg = F.BaseRegs[N];
+ if (BaseReg != OrigReg)
+ continue;
+ Formula NewF = F;
+ NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
+ if (!isLegalUse(NewF.AM, LU.Kind, LU.AccessTy, TLI))
+ continue;
+ const SCEV *Diff = SE.getAddExpr(NegImmS, BaseReg);
+ if (Diff->isZero()) continue;
+ // Don't create 50 + reg(-50).
+ if (Diff ==
+ SE.getSCEV(ConstantInt::get(IntTy,
+ -(uint64_t)NewF.AM.BaseOffs)))
+ continue;
+ NewF.BaseRegs[N] = Diff;
+ if (LU.InsertFormula(NewF))
+ CountRegisters(LU.Formulae.back(), LUIdx);
}
}
}
+}
+
+/// GenerateAllReuseFormulae - Generate formulae for each use.
+void
+LSRInstance::GenerateAllReuseFormulae() {
+ SmallVector<Formula, 12> Save;
+ for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
+ LSRUse &LU = Uses[LUIdx];
+
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateSymbolicOffsetReuse(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateICmpZeroScaledReuse(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateReassociationReuse(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateCombinationReuse(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateScaledReuse(LU, LUIdx, LU.Formulae[i]);
+ for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
+ GenerateTruncateReuse(LU, LUIdx, LU.Formulae[i]);
+ }
+
+ GenerateConstantOffsetReuse();
+}
+
+/// GenerateLoopInvariantRegisterUses - Check for other uses of loop-invariant
+/// values which we're tracking. These other uses will pin these values in
+/// registers, making them less profitable for elimination.
+/// TODO: This currently misses non-constant addrec step registers.
+/// TODO: Should this give more weight to users inside the loop?
+void
+LSRInstance::GenerateLoopInvariantRegisterUses() {
+ for (size_t i = 0, e = RegSequence.size(); i != e; ++i)
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(RegSequence[i])) {
+ const Value *V = U->getValue();
+ if (const Instruction *Inst = dyn_cast<Instruction>(V))
+ if (L->contains(Inst)) continue;
+ for (Value::use_const_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ const Instruction *UserInst = dyn_cast<Instruction>(*UI);
+ // Ignore non-instructions.
+ if (!UserInst)
+ continue;
+ // Ignore instructions in other functions (as can happen with
+ // Constants).
+ if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
+ continue;
+ // Ignore instructions not dominated by the loop.
+ const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
+ UserInst->getParent() :
+ cast<PHINode>(UserInst)->getIncomingBlock(
+ PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
+ if (!DT.dominates(L->getHeader(), UseBB))
+ continue;
+ // Ignore uses which are part of other SCEV expressions, to avoid
+ // analyzing them multiple times.
+ if (SE.isSCEVable(UserInst->getType()) &&
+ !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst))))
+ continue;
+ // Ignore icmp instructions which are already being analyzed.
+ if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
+ unsigned OtherIdx = !UI.getOperandNo();
+ Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
+ if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
+ continue;
+ }
- Changed |= ThisChanged;
- return ThisChanged;
+ LSRUse &LU = getNewUse();
+ LU.UserInst = const_cast<Instruction *>(UserInst);
+ LU.OperandValToReplace = UI.getUse();
+ LU.InsertSupplementalFormula(U);
+ CountRegisters(LU.Formulae.back(), Uses.size() - 1);
+ }
+ }
+}
+
+#ifndef NDEBUG
+
+static void debug_winner(SmallVector<LSRUse, 16> const &Uses) {
+ dbgs() << "LSR has selected formulae for each use:\n";
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ dbgs() << " ";
+ LU.print(dbgs());
+ dbgs() << '\n';
+ dbgs() << " ";
+ LU.Formulae.front().print(dbgs());
+ dbgs() << "\n";
+ }
}
-bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
- IU = &getAnalysis<IVUsers>();
- SE = &getAnalysis<ScalarEvolution>();
- Changed = false;
+#endif
+
+LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
+ : IU(P->getAnalysis<IVUsers>()),
+ SE(P->getAnalysis<ScalarEvolution>()),
+ DT(P->getAnalysis<DominatorTree>()),
+ TLI(tli), L(l), Changed(false), CurrentArbitraryRegIndex(0) {
// If LoopSimplify form is not available, stay out of trouble.
- if (!L->getLoopPreheader() || !L->getLoopLatch())
- return false;
+ if (!L->isLoopSimplifyForm()) return;
+
+ // If there's no interesting work to be done, bail early.
+ if (IU.IVUsesByStride.empty()) return;
+
+ DEBUG(dbgs() << "\nLSR on loop ";
+ WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
+ dbgs() << ":\n");
+
+ // Sort the StrideOrder so we process larger strides first.
+ std::stable_sort(IU.StrideOrder.begin(), IU.StrideOrder.end(),
+ StrideCompare(SE));
+
+ /// OptimizeShadowIV - If IV is used in a int-to-float cast
+ /// inside the loop then try to eliminate the cast opeation.
+ OptimizeShadowIV();
+
+ // Change loop terminating condition to use the postinc iv when possible.
+ Instruction *IVIncInsertPos;
+ Changed |= OptimizeLoopTermCond(IVIncInsertPos);
+
+ for (SmallVectorImpl<const SCEV *>::const_iterator SIter =
+ IU.StrideOrder.begin(), SEnd = IU.StrideOrder.end();
+ SIter != SEnd; ++SIter) {
+ const SCEV *Stride = *SIter;
+
+ // Collect interesting types.
+ Types.insert(SE.getEffectiveSCEVType(Stride->getType()));
+
+ // Collect interesting factors.
+ for (SmallVectorImpl<const SCEV *>::const_iterator NewStrideIter =
+ SIter + 1; NewStrideIter != SEnd; ++NewStrideIter) {
+ const SCEV *OldStride = Stride;
+ const SCEV *NewStride = *NewStrideIter;
+
+ if (SE.getTypeSizeInBits(OldStride->getType()) !=
+ SE.getTypeSizeInBits(NewStride->getType())) {
+ if (SE.getTypeSizeInBits(OldStride->getType()) >
+ SE.getTypeSizeInBits(NewStride->getType()))
+ NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
+ else
+ OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
+ }
+ if (const SCEVConstant *Factor =
+ dyn_cast_or_null<SCEVConstant>(getSDiv(NewStride, OldStride,
+ SE, true)))
+ if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
+ Factors.insert(Factor->getValue()->getValue().getSExtValue());
+ }
- if (!IU->IVUsesByStride.empty()) {
- DEBUG(dbgs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
- << "\" ";
- L->print(dbgs()));
+ std::map<const SCEV *, IVUsersOfOneStride *>::const_iterator SI =
+ IU.IVUsesByStride.find(Stride);
+ assert(SI != IU.IVUsesByStride.end() && "Stride doesn't exist!");
+ for (ilist<IVStrideUse>::const_iterator UI = SI->second->Users.begin(),
+ E = SI->second->Users.end(); UI != E; ++UI) {
+ // Record the uses.
+ LSRUse &LU = getNewUse();
+ LU.UserInst = UI->getUser();
+ LU.OperandValToReplace = UI->getOperandValToReplace();
+ if (isAddressUse(LU.UserInst, LU.OperandValToReplace)) {
+ LU.Kind = LSRUse::Address;
+ LU.AccessTy = getAccessType(LU.UserInst);
+ }
+ if (UI->isUseOfPostIncrementedValue())
+ LU.PostIncLoop = L;
+
+ const SCEV *S = IU.getCanonicalExpr(*UI);
+
+ // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
+ // (N - i == 0), and this allows (N - i) to be the expression that we
+ // work with rather than just N or i, so we can consider the register
+ // requirements for both N and i at the same time. Limiting this code
+ // to equality icmps is not a problem because all interesting loops
+ // use equality icmps, thanks to IndVarSimplify.
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(LU.UserInst))
+ if (CI->isEquality()) {
+ // Swap the operands if needed to put the OperandValToReplace on
+ // the left, for consistency.
+ Value *NV = CI->getOperand(1);
+ if (NV == LU.OperandValToReplace) {
+ CI->setOperand(1, CI->getOperand(0));
+ CI->setOperand(0, NV);
+ }
- // Sort the StrideOrder so we process larger strides first.
- std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
- StrideCompare(SE));
+ // x == y --> x - y == 0
+ const SCEV *N = SE.getSCEV(NV);
+ if (N->isLoopInvariant(L)) {
+ LU.Kind = LSRUse::ICmpZero;
+ S = SE.getMinusSCEV(N, S);
+ }
- // Optimize induction variables. Some indvar uses can be transformed to use
- // strides that will be needed for other purposes. A common example of this
- // is the exit test for the loop, which can often be rewritten to use the
- // computation of some other indvar to decide when to terminate the loop.
- OptimizeIndvars(L);
+ // -1 and the negations of all interesting strides (except the
+ // negation of -1) are now also interesting.
+ for (size_t i = 0, e = Factors.size(); i != e; ++i)
+ if (Factors[i] != -1)
+ Factors.insert(-(uint64_t)Factors[i]);
+ Factors.insert(-1);
+ }
- // Change loop terminating condition to use the postinc iv when possible
- // and optimize loop terminating compare. FIXME: Move this after
- // StrengthReduceIVUsersOfStride?
- OptimizeLoopTermCond(L);
+ // Ok, now enumerate all the different formulae we can find to compute
+ // the value for this expression.
+ LU.InsertInitialFormula(S, L, SE, DT);
+ CountRegisters(LU.Formulae.back(), Uses.size() - 1);
+ }
+ }
- // FIXME: We can shrink overlarge IV's here. e.g. if the code has
- // computation in i64 values and the target doesn't support i64, demote
- // the computation to 32-bit if safe.
+ // If all uses use the same type, don't bother looking for truncation-based
+ // reuse.
+ if (Types.size() == 1)
+ Types.clear();
+
+ // Now use the reuse data to generate a bunch of interesting ways
+ // to formulate the values needed for the uses.
+ GenerateAllReuseFormulae();
+
+ // If there are any uses of registers that we're tracking that have escaped
+ // IVUsers' attention, add trivial uses for them, so that the register
+ // voting process takes the into consideration.
+ GenerateLoopInvariantRegisterUses();
+
+ // Sort the formulae. TODO: This is redundantly sorted below.
+ for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(), E = Uses.end();
+ I != E; ++I) {
+ LSRUse &LU = *I;
+ std::stable_sort(LU.Formulae.begin(), LU.Formulae.end(),
+ ComplexitySorter());
+ }
+
+ // Ok, we've now collected all the uses and noted their register uses. The
+ // next step is to start looking at register reuse possibilities.
+ DEBUG(print(dbgs()); dbgs() << '\n');
+
+ // Start by assuming we'll assign each use its own register. This is
+ // sometimes called "full" strength reduction, or "superhero" mode.
+ // Sometimes this is the best solution, but if there are opportunities for
+ // reuse we may find a better solution.
+ Score CurScore;
+ CurScore.RateInitial(Uses, L, SE);
+
+ // Create a sorted list of registers with those with the most uses appearing
+ // earlier in the list. We'll visit them first, as they're the most likely
+ // to represent profitable reuse opportunities.
+ SmallVector<RegCount, 8> RegOrder;
+ for (SmallVectorImpl<const SCEV *>::const_iterator I =
+ RegSequence.begin(), E = RegSequence.end(); I != E; ++I)
+ RegOrder.push_back(RegCount(*I, RegUses.find(*I)->second));
+ std::stable_sort(RegOrder.begin(), RegOrder.end());
+
+ // Visit each register. Determine which ones represent profitable reuse
+ // opportunities and remember them.
+ // TODO: Extract this code into a function.
+ for (SmallVectorImpl<RegCount>::const_iterator I = RegOrder.begin(),
+ E = RegOrder.end(); I != E; ++I) {
+ const SCEV *Reg = I->Reg;
+ const SmallBitVector &Bits = I->Sort.Bits;
+
+ // Registers with only one use don't represent reuse opportunities, so
+ // when we get there, we're done.
+ if (Bits.count() <= 1) break;
+
+ DEBUG(dbgs() << "Reg " << *Reg << ": ";
+ I->Sort.print(dbgs());
+ dbgs() << '\n');
+
+ // Determine the total number of registers will be needed if we make use
+ // of the reuse opportunity represented by the current register.
+ Score NewScore;
+ NewScore.Rate(Reg, Bits, Uses, L, SE);
+
+ // Now decide whether this register's reuse opportunity is an overall win.
+ // Currently the decision is heavily skewed for register pressure.
+ if (!(NewScore < CurScore)) {
+ continue;
+ }
- // FIXME: Attempt to reuse values across multiple IV's. In particular, we
- // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
- // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
- // Need to be careful that IV's are all the same type. Only works for
- // intptr_t indvars.
+ // Ok, use this opportunity.
+ DEBUG(dbgs() << "This candidate has been accepted.\n");
+ CurScore = NewScore;
+
+ // Now that we've selected a new reuse opportunity, delete formulae that
+ // do not participate in that opportunity.
+ for (int j = Bits.find_first(); j != -1; j = Bits.find_next(j)) {
+ LSRUse &LU = Uses[j];
+ for (unsigned k = 0, h = LU.Formulae.size(); k != h; ++k) {
+ Formula &F = LU.Formulae[k];
+ if (!F.referencesReg(Reg)) {
+ std::swap(LU.Formulae[k], LU.Formulae.back());
+ LU.Formulae.pop_back();
+ --k; --h;
+ }
+ }
+ // Also re-sort the list to put the formulae with the fewest registers
+ // at the front.
+ // TODO: Do this earlier, we don't need it each time.
+ std::stable_sort(LU.Formulae.begin(), LU.Formulae.end(),
+ ComplexitySorter());
+ }
+ }
+
+ // Ok, we've now made all our decisions. The first formula for each use
+ // will be used.
+ DEBUG(dbgs() << "Concluding, we need "; CurScore.print(dbgs());
+ dbgs() << ".\n";
+ debug_winner(Uses));
+
+ // Free memory no longer needed.
+ RegOrder.clear();
+ Factors.clear();
+ Types.clear();
+ RegUses.clear();
+ RegSequence.clear();
+
+ // Keep track of instructions we may have made dead, so that
+ // we can remove them after we are done working.
+ SmallVector<WeakVH, 16> DeadInsts;
+
+ SCEVExpander Rewriter(SE);
+ Rewriter.disableCanonicalMode();
+ Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
+
+ // Expand the new value definitions and update the users.
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ // Formulae should be legal.
+ DEBUG(for (SmallVectorImpl<Formula>::const_iterator J = I->Formulae.begin(),
+ JE = I->Formulae.end(); J != JE; ++J)
+ assert(isLegalUse(J->AM, I->Kind, I->AccessTy, TLI) &&
+ "Illegal formula generated!"));
+
+ // Expand the new code and update the user.
+ I->Rewrite(L, Rewriter, DeadInsts, SE, DT, P);
+ Changed = true;
+ }
- // IVsByStride keeps IVs for one particular loop.
- assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
+ // Clean up after ourselves. This must be done before deleting any
+ // instructions.
+ Rewriter.clear();
- StrengthReduceIVUsers(L);
+ Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
+}
- // After all sharing is done, see if we can adjust the loop to test against
- // zero instead of counting up to a maximum. This is usually faster.
- OptimizeLoopCountIV(L);
+void LSRInstance::print(raw_ostream &OS) const {
+ OS << "LSR has identified the following interesting factors and types: ";
+ bool First = true;
- // We're done analyzing this loop; release all the state we built up for it.
- IVsByStride.clear();
+ for (SmallSetVector<int64_t, 4>::const_iterator
+ I = Factors.begin(), E = Factors.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '*' << *I;
+ }
- // Clean up after ourselves
- DeleteTriviallyDeadInstructions();
+ for (SmallSetVector<const Type *, 4>::const_iterator
+ I = Types.begin(), E = Types.end(); I != E; ++I) {
+ if (!First) OS << ", ";
+ First = false;
+ OS << '(' << **I << ')';
}
+ OS << '\n';
+
+ OS << "LSR is examining the following uses, and candidate formulae:\n";
+ for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
+ E = Uses.end(); I != E; ++I) {
+ const LSRUse &LU = *I;
+ dbgs() << " ";
+ LU.print(OS);
+ OS << '\n';
+ for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
+ JE = LU.Formulae.end(); J != JE; ++J) {
+ OS << " ";
+ J->print(OS);
+ OS << "\n";
+ }
+ }
+}
+
+void LSRInstance::dump() const {
+ print(errs()); errs() << '\n';
+}
+
+namespace {
+
+class LoopStrengthReduce : public LoopPass {
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *const TLI;
+
+public:
+ static char ID; // Pass ID, replacement for typeid
+ explicit LoopStrengthReduce(const TargetLowering *tli = NULL);
+
+private:
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+ void getAnalysisUsage(AnalysisUsage &AU) const;
+};
+
+}
+
+char LoopStrengthReduce::ID = 0;
+static RegisterPass<LoopStrengthReduce>
+X("loop-reduce", "Loop Strength Reduction");
+
+Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
+ return new LoopStrengthReduce(TLI);
+}
+
+LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
+ : LoopPass(&ID), TLI(tli) {}
+
+void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
+ // We split critical edges, so we change the CFG. However, we do update
+ // many analyses if they are around.
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved("domfrontier");
+
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<DominatorTree>();
+ AU.addPreserved<DominatorTree>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addRequired<IVUsers>();
+ AU.addPreserved<IVUsers>();
+}
+
+bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
+ bool Changed = false;
+
+ // Run the main LSR transformation.
+ Changed |= LSRInstance(TLI, L, this).getChanged();
// At this point, it is worth checking to see if any recurrence PHIs are also
// dead, so that we can remove them as well.
diff --git a/test/CodeGen/ARM/arm-negative-stride.ll b/test/CodeGen/ARM/arm-negative-stride.ll
index 72ec8efcc4..52ab8717c1 100644
--- a/test/CodeGen/ARM/arm-negative-stride.ll
+++ b/test/CodeGen/ARM/arm-negative-stride.ll
@@ -1,7 +1,32 @@
; RUN: llc < %s -march=arm | FileCheck %s
+; This loop is rewritten with an indvar which counts down, which
+; frees up a register from holding the trip count.
+
define void @test(i32* %P, i32 %A, i32 %i) nounwind {
entry:
+; CHECK: str r1, [{{r.*}}, +{{r.*}}, lsl #2]
+ icmp eq i32 %i, 0 ; <i1>:0 [#uses=1]
+ br i1 %0, label %return, label %bb
+
+bb: ; preds = %bb, %entry
+ %indvar = phi i32 [ 0, %entry ], [ %indvar.next, %bb ] ; <i32> [#uses=2]
+ %i_addr.09.0 = sub i32 %i, %indvar ; <i32> [#uses=1]
+ %tmp2 = getelementptr i32* %P, i32 %i_addr.09.0 ; <i32*> [#uses=1]
+ store i32 %A, i32* %tmp2
+ %indvar.next = add i32 %indvar, 1 ; <i32> [#uses=2]
+ icmp eq i32 %indvar.next, %i ; <i1>:1 [#uses=1]
+ br i1 %1, label %return, label %bb
+
+return: ; preds = %bb, %entry
+ ret void
+}
+
+; This loop has a non-address use of the count-up indvar, so
+; it'll remain. Now the original store uses a negative-stride address.
+
+define void @test_with_forced_iv(i32* %P, i32 %A, i32 %i) nounwind {
+entry:
; CHECK: str r1, [{{r.*}}, -{{r.*}}, lsl #2]
icmp eq i32 %i, 0 ; <i1>:0 [#uses=1]
br i1 %0, label %return, label %bb
@@ -11,6 +36,7 @@ bb: ; preds = %bb, %entry
%i_addr.09.0 = sub i32 %i, %indvar ; <i32> [#uses=1]
%tmp2 = getelementptr i32* %P, i32 %i_addr.09.0 ; <i32*> [#uses=1]
store i32 %A, i32* %tmp2
+ store i32 %indvar, i32* null
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=2]
icmp eq i32 %indvar.next, %i ; <i1>:1 [#uses=1]
br i1 %1, label %return, label %bb
diff --git a/test/CodeGen/ARM/lsr-code-insertion.ll b/test/CodeGen/ARM/lsr-code-insertion.ll
index 507ec2c7bd..1bbb96deee 100644
--- a/test/CodeGen/ARM/lsr-code-insertion.ll
+++ b/test/CodeGen/ARM/lsr-code-insertion.ll
@@ -1,5 +1,5 @@
-; RUN: llc < %s -stats |& grep {40.*Number of machine instrs printed}
-; RUN: llc < %s -stats |& grep {.*Number of re-materialization}
+; RUN: llc < %s -stats |& grep {39.*Number of machine instrs printed}
+; RUN: llc < %s -stats |& not grep {.*Number of re-materialization}
; This test really wants to check that the resultant "cond_true" block only
; has a single store in it, and that cond_true55 only has code to materialize
; the constant and do a store. We do *not* want something like this:
diff --git a/test/CodeGen/ARM/remat.ll b/test/CodeGen/ARM/remat.ll
index 9565c8bca6..9072bcb762 100644
--- a/test/CodeGen/ARM/remat.ll
+++ b/test/CodeGen/ARM/remat.ll
@@ -1,5 +1,4 @@
-; RUN: llc < %s -mtriple=arm-apple-darwin
-; RUN: llc < %s -mtriple=arm-apple-darwin -stats -info-output-file - | grep "Number of re-materialization" | grep 3
+; RUN: llc < %s -mtriple=arm-apple-darwin -stats -info-output-file - | not grep "Number of re-materialization"
%struct.CONTENTBOX = type { i32, i32, i32, i32, i32 }
%struct.LOCBOX = type { i32, i32, i32, i32 }
diff --git a/test/CodeGen/Thumb2/lsr-deficiency.ll b/test/CodeGen/Thumb2/lsr-deficiency.ll
index 7b1b57a786..ac2cd34e4b 100644
--- a/test/CodeGen/Thumb2/lsr-deficiency.ll
+++ b/test/CodeGen/Thumb2/lsr-deficiency.ll
@@ -1,25 +1,29 @@
; RUN: llc < %s -mtriple=thumbv7-apple-darwin10 -relocation-model=pic | FileCheck %s
; rdar://7387640
-; FIXME: We still need to rewrite array reference iv of stride -4 with loop
-; count iv of stride -1.
+; This now reduces to a single induction variable.
+
+; TODO: It still gets a GPR shuffle at the end of the loop
+; This is because something in instruction selection has decided
+; that comparing the pre-incremented value with zero is better
+; than comparing the post-incremented value with -4.
@G = external global i32 ; <i32*> [#uses=2]
@array = external global i32* ; <i32**> [#uses=1]
define arm_apcscc void @t() nounwind optsize {
; CHECK: t:
-; CHECK: mov.w r2, #4000
-; CHECK: movw r3, #1001
+; CHECK: mov.w r2, #1000
entry:
%.pre = load i32* @G, align 4 ; <i32> [#uses=1]
br label %bb
bb: ; preds = %bb, %entry
; CHECK: LBB1_1:
-; CHECK: subs r3, #1
-; CHECK: cmp r3, #0
-; CHECK: sub.w r2, r2, #4
+; CHECK: cmp r2, #0
+; CHECK: sub.w r9, r2, #1
+; CHECK: mov r2, r9
+
%0 = phi i32 [ %.pre, %entry ], [ %3, %bb ] ; <i32> [#uses=1]
%indvar = phi i32 [ 0, %entry ], [ %indvar.next, %bb ] ; <i32> [#uses=2]
%tmp5 = sub i32 1000, %indvar ; <i32> [#uses=1]
diff --git a/test/CodeGen/Thumb2/thumb2-ifcvt1.ll b/test/CodeGen/Thumb2/thumb2-ifcvt1.ll
index 71199abc57..1d267565e0 100644
--- a/test/CodeGen/Thumb2/thumb2-ifcvt1.ll
+++ b/test/CodeGen/Thumb2/thumb2-ifcvt1.ll
@@ -1,6 +1,6 @@
; RUN: llc < %s -mtriple=thumbv7-apple-darwin | FileCheck %s
-define i32 @t1(i32 %a, i32 %b, i32 %c, i32 %d) {
+define i32 @t1(i32 %a, i32 %b, i32 %c, i32 %d) nounwind {
; CHECK: t1:
; CHECK: it ne
; CHECK: cmpne
@@ -20,12 +20,12 @@ cond_next:
}
; FIXME: Check for # of unconditional branch after adding branch folding post ifcvt.
-define i32 @t2(i32 %a, i32 %b) {
+define i32 @t2(i32 %a, i32 %b) nounwind {
entry:
; CHECK: t2:
-; CHECK: ite le
-; CHECK: suble
+; CHECK: ite gt
; CHECK: subgt
+; CHECK: suble
%tmp1434 = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %tmp1434, label %bb17, label %bb.outer
@@ -60,14 +60,14 @@ bb17: ; preds = %cond_false, %cond_true, %entry
@x = external global i32* ; <i32**> [#uses=1]
-define void @foo(i32 %a) {
+define void @foo(i32 %a) nounwind {
entry:
%tmp = load i32** @x ; <i32*> [#uses=1]
store i32 %a, i32* %tmp
ret void
}
-define void @t3(i32 %a, i32 %b) {
+define void @t3(i32 %a, i32 %b) nounwind {
entry:
; CHECK: t3:
; CHECK: it lt
diff --git a/test/CodeGen/X86/2006-05-11-InstrSched.ll b/test/CodeGen/X86/2006-05-11-InstrSched.ll
index bdbe713a29..56d6aa960e 100644
--- a/test/CodeGen/X86/2006-05-11-InstrSched.ll
+++ b/test/CodeGen/X86/2006-05-11-InstrSched.ll
@@ -1,5 +1,5 @@
; RUN: llc < %s -march=x86 -mattr=+sse2 -stats -realign-stack=0 |&\
-; RUN: grep {asm-printer} | grep 31
+; RUN: grep {asm-printer} | grep 34
target datalayout = "e-p:32:32"
define void @foo(i32* %mc, i32* %bp, i32* %ms, i32* %xmb, i32* %mpp, i32* %tpmm, i32* %ip, i32* %tpim, i32* %dpp, i32* %tpdm, i32* %bpi, i32 %M) nounwind {
@@ -40,7 +40,7 @@ cond_true: ; preds = %cond_true, %entry
%tmp137.upgrd.7 = bitcast i32* %tmp137 to <2 x i64>* ; <<2 x i64>*> [#uses=1]
store <2 x i64> %tmp131, <2 x i64>* %tmp137.upgrd.7
%tmp147 = add nsw i32 %tmp.10, 8 ; <i32> [#uses=1]
- %tmp.upgrd.8 = icmp slt i32 %tmp147, %M ; <i1> [#uses=1]
+ %tmp.upgrd.8 = icmp ne i32 %tmp147, %M ; <i1> [#uses=1]
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
br i1 %tmp.upgrd.8, label %cond_true, label %return
diff --git a/test/CodeGen/X86/2007-08-13-SpillerReuse.ll b/test/CodeGen/X86/2007-08-13-SpillerReuse.ll
deleted file mode 100644
index d6ea5109d1..0000000000
--- a/test/CodeGen/X86/2007-08-13-SpillerReuse.ll
+++ /dev/null
@@ -1,102 +0,0 @@
-; RUN: llc < %s -mtriple=i686-apple-darwin | grep "48(%esp)" | count 5
-
- %struct..0anon = type { i32 }
- %struct.rtvec_def = type { i32, [1 x %struct..0anon] }
- %struct.rtx_def = type { i16, i8, i8, [1 x %struct..0anon] }
-@rtx_format = external global [116 x i8*] ; <[116 x i8*]*> [#uses=1]
-@rtx_length = external global [117 x i32] ; <[117 x i32]*> [#uses=1]
-
-declare %struct.rtx_def* @fixup_memory_subreg(%struct.rtx_def*, %struct.rtx_def*, i32)
-
-define %struct.rtx_def* @walk_fixup_memory_subreg(%struct.rtx_def* %x, %struct.rtx_def* %insn) {
-entry:
- %tmp2 = icmp eq %struct.rtx_def* %x, null ; <i1> [#uses=1]
- br i1 %tmp2, label %UnifiedReturnBlock, label %cond_next
-
-cond_next: ; preds = %entry
- %tmp6 = getelementptr %struct.rtx_def* %x, i32 0, i32 0 ; <i16*> [#uses=1]
- %tmp7 = load i16* %tmp6 ; <i16> [#uses=2]
- %tmp78 = zext i16 %tmp7 to i32 ; <i32> [#uses=2]
- %tmp10 = icmp eq i16 %tmp7, 54 ; <i1> [#uses=1]
- br i1 %tmp10, label %cond_true13, label %cond_next32
-
-cond_true13: ; preds = %cond_next
- %tmp15 = getelementptr %struct.rtx_def* %x, i32 0, i32 3 ; <[1 x %struct..0anon]*> [#uses=1]
- %tmp1718 = bitcast [1 x %struct..0anon]* %tmp15 to %struct.rtx_def** ; <%struct.rtx_def**> [#uses=1]
- %tmp19 = load %struct.rtx_def** %tmp1718 ; <%struct.rtx_def*> [#uses=1]
- %tmp20 = getelementptr %struct.rtx_def* %tmp19, i32 0, i32 0 ; <i16*> [#uses=1]
- %tmp21 = load i16* %tmp20 ; <i16> [#uses=1]
- %tmp22 = icmp eq i16 %tmp21, 57 ; <i1> [#uses=1]
- br i1 %tmp22, label %cond_true25, label %cond_next32
-
-cond_true25: ; preds = %cond_true13
- %tmp29 = tail call %struct.rtx_def* @fixup_memory_subreg( %struct.rtx_def* %x, %struct.rtx_def* %insn, i32 1 ) ; <%struct.rtx_def*> [#uses=1]
- ret %struct.rtx_def* %tmp29
-
-cond_next32: ; preds = %cond_true13, %cond_next
- %tmp34 = getelementptr [116 x i8*]* @rtx_format, i32 0, i32 %tmp78 ; <i8**> [#uses=1]
- %tmp35 = load i8** %tmp34, align 4 ; <i8*> [#uses=1]
- %tmp37 = getelementptr [117 x i32]* @rtx_length, i32 0, i32 %tmp78 ; <i32*> [#uses=1]
- %tmp38 = load i32* %tmp37, align 4 ; <i32> [#uses=1]
- %i.011 = add i32 %tmp38, -1 ; <i32> [#uses=2]
- %tmp12513 = icmp sgt i32 %i.011, -1 ; <i1> [#uses=1]
- br i1 %tmp12513, label %bb, label %UnifiedReturnBlock
-
-bb: ; preds = %bb123, %cond_next32
- %indvar = phi i32 [ %indvar.next26, %bb123 ], [ 0, %cond_next32 ] ; <i32> [#uses=2]
- %i.01.0 = sub i32 %i.011, %indvar ; <i32> [#uses=5]
- %tmp42 = getelementptr i8* %tmp35, i32 %i.01.0 ; <i8*> [#uses=2]
- %tmp43 = load i8* %tmp42 ; <i8> [#uses=1]
- switch i8 %tmp43, label %bb123 [
- i8 101, label %cond_true47
- i8 69, label %bb105.preheader
- ]
-
-cond_true47: ; preds = %bb
- %tmp52 = getelementptr %struct.rtx_def* %x, i32 0, i32 3, i32 %i.01.0 ; <%struct..0anon*> [#uses=1]
- %tmp5354 = bitcast %struct..0anon* %tmp52 to %struct.rtx_def** ; <%struct.rtx_def**> [#uses=1]
- %tmp55 = load %struct.rtx_def** %tmp5354 ; <%struct.rtx_def*> [#uses=1]
- %tmp58 = tail call %struct.rtx_def* @walk_fixup_memory_subreg( %struct.rtx_def* %tmp55, %struct.rtx_def* %insn ) ; <%struct.rtx_def*> [#uses=1]
- %tmp62 = getelementptr %struct.rtx_def* %x, i32 0, i32 3, i32 %i.01.0, i32 0 ; <i32*> [#uses=1]
- %tmp58.c = ptrtoint %struct.rtx_def* %tmp58 to i32 ; <i32> [#uses=1]
- store i32 %tmp58.c, i32* %tmp62
- %tmp6816 = load i8* %tmp42 ; <i8> [#uses=1]
- %tmp6917 = icmp eq i8 %tmp6816, 69 ; <i1> [#uses=1]
- br i1 %tmp6917, label %bb105.preheader, label %bb123
-
-bb105.preheader: ; preds = %cond_true47, %bb
- %tmp11020 = getelementptr %struct.rtx_def* %x, i32 0, i32 3, i32 %i.01.0 ; <%struct..0anon*> [#uses=1]
- %tmp11111221 = bitcast %struct..0anon* %tmp11020 to %struct.rtvec_def** ; <%struct.rtvec_def**> [#uses=3]
- %tmp11322 = load %struct.rtvec_def** %tmp11111221 ; <%struct.rtvec_def*> [#uses=1]
- %tmp11423 = getelementptr %struct.rtvec_def* %tmp11322, i32 0, i32 0 ; <i32*> [#uses=1]
- %tmp11524 = load i32* %tmp11423 ; <i32> [#uses=1]
- %tmp11625 = icmp eq i32 %tmp11524, 0 ; <i1> [#uses=1]
- br i1 %tmp11625, label %bb123, label %bb73
-
-bb73: ; preds = %bb73, %bb105.preheader
- %j.019 = phi i32 [ %tmp104, %bb73 ], [ 0, %bb105.preheader ] ; <i32> [#uses=3]
- %tmp81 = load %struct.rtvec_def** %tmp11111221 ; <%struct.rtvec_def*> [#uses=2]
- %tmp92 = getelementptr %struct.rtvec_def* %tmp81, i32 0, i32 1, i32 %j.019 ; <%struct..0anon*> [#uses=1]
- %tmp9394 = bitcast %struct..0anon* %tmp92 to %struct.rtx_def** ; <%struct.rtx_def**> [#uses=1]
- %tmp95 = load %struct.rtx_def** %tmp9394 ; <%struct.rtx_def*> [#uses=1]
- %tmp98 = tail call %struct.rtx_def* @walk_fixup_memory_subreg( %struct.rtx_def* %tmp95, %struct.rtx_def* %insn ) ; <%struct.rtx_def*> [#uses=1]
- %tmp101 = getelementptr %struct.rtvec_def* %tmp81, i32 0, i32 1, i32 %j.019, i32 0 ; <i32*> [#uses=1]
- %tmp98.c = ptrtoint %struct.rtx_def* %tmp98 to i32 ; <i32> [#uses=1]
- store i32 %tmp98.c, i32* %tmp101
- %tmp104 = add i32 %j.019, 1 ; <i32> [#uses=2]
- %tmp113 = load %struct.rtvec_def** %tmp11111221 ; <%struct.rtvec_def*> [#uses=1]
- %tmp114 = getelementptr %struct.rtvec_def* %tmp113, i32 0, i32 0 ; <i32*> [#uses=1]
- %tmp115 = load i32* %tmp114 ; <i32> [#uses=1]
- %tmp116 = icmp ult i32 %tmp104, %tmp115 ; <i1> [#uses=1]
- br i1 %tmp116, label %bb73, label %bb123
-
-bb123: ; preds = %bb73, %bb105.preheader, %cond_true47, %bb
- %i.0 = add i32 %i.01.0, -1 ; <i32> [#uses=1]
- %tmp125 = icmp sgt i32 %i.0, -1 ; <i1> [#uses=1]
- %indvar.next26 = add i32 %indvar, 1 ; <i32> [#uses=1]
- br i1 %tmp125, label %bb, label %UnifiedReturnBlock
-
-UnifiedReturnBlock: ; preds = %bb123, %cond_next32, %entry
- %UnifiedRetVal = phi %struct.rtx_def* [ null, %entry ], [ %x, %cond_next32 ], [ %x, %bb123 ] ; <%struct.rtx_def*> [#uses=1]
- ret %struct.rtx_def* %UnifiedRetVal
-}
diff --git a/test/CodeGen/X86/2007-11-30-LoadFolding-Bug.ll b/test/CodeGen/X86/2007-11-30-LoadFolding-Bug.ll
index 721d4c945b..8e315f4d80 100644
--- a/test/CodeGen/X86/2007-11-30-LoadFolding-Bug.ll
+++ b/test/CodeGen/X86/2007-11-30-LoadFolding-Bug.ll
@@ -35,7 +35,7 @@ cond_next36.i: ; preds = %cond_next.i
bb.i28.i: ; preds = %bb.i28.i, %cond_next36.i
; CHECK: %bb.i28.i
; CHECK: addl $2
-; CHECK: addl $2
+; CHECK: addl $-2
%j.0.reg2mem.0.i16.i = phi i32 [ 0, %cond_next36.i ], [ %indvar.next39.i, %bb.i28.i ] ; <i32> [#uses=2]
%din_addr.1.reg2mem.0.i17.i = phi double [ 0.000000e+00, %cond_next36.i ], [ %tmp16.i25.i, %bb.i28.i ] ; <double> [#uses=1]
%tmp1.i18.i = fptosi double %din_addr.1.reg2mem.0.i17.i to i32 ; <i32> [#uses=2]
diff --git a/test/CodeGen/X86/2009-09-10-SpillComments.ll b/test/CodeGen/X86/2009-09-10-SpillComments.ll
index 1dd9990e71..f9ca861c55 100644
--- a/test/CodeGen/X86/2009-09-10-SpillComments.ll
+++ b/test/CodeGen/X86/2009-09-10-SpillComments.ll
@@ -1,5 +1,11 @@
; RUN: llc < %s -mtriple=x86_64-unknown-linux | FileCheck %s
+; This test shouldn't require spills.
+
+; CHECK: subq $8, %rsp
+; CHECK-NOT: $rsp
+; CHECK: addq $8, %rsp
+
%struct..0anon = type { i32 }
%struct.rtvec_def = type { i32, [1 x %struct..0anon] }
%struct.rtx_def = type { i16, i8, i8, [1 x %struct..0anon] }
@@ -10,9 +16,6 @@ declare %struct.rtx_def* @fixup_memory_subreg(%struct.rtx_def*, %struct.rtx_def*
define %struct.rtx_def* @walk_fixup_memory_subreg(%struct.rtx_def* %x, %struct.rtx_def* %insn) {
entry:
-; CHECK: Spill
-; CHECK: Folded Spill
-; CHECK: Reload
%tmp2 = icmp eq %struct.rtx_def* %x, null ; <i1> [#uses=1]
br i1 %tmp2, label %UnifiedReturnBlock, label %cond_next
diff --git a/test/CodeGen/X86/full-lsr.ll b/test/CodeGen/X86/full-lsr.ll
index 68575bc401..3bd58b65be 100644
--- a/test/CodeGen/X86/full-lsr.ll
+++ b/test/CodeGen/X86/full-lsr.ll
@@ -1,6 +1,12 @@
-; RUN: llc < %s -march=x86 -enable-full-lsr >%t
-; RUN: grep {addl \\\$4,} %t | count 3
-; RUN: not grep {,%} %t
+; RUN: llc < %s -march=x86 >%t
+
+; TODO: Enhance full lsr mode to get this:
+; RUNX: grep {addl \\\$4,} %t | count 3
+; RUNX: not grep {,%} %t
+
+; For now, it should find this, which is still pretty good:
+; RUN: not grep {addl \\\$4,} %t
+; RUN: grep {,%} %t | count 6
define void @foo(float* nocapture %A, float* nocapture %B, float* nocapture %C, i32 %N) nounwind {
entry:
diff --git a/test/CodeGen/X86/iv-users-in-other-loops.ll b/test/CodeGen/X86/iv-users-in-other-loops.ll
index c695c29e06..0410bc0d9a 100644
--- a/test/CodeGen/X86/iv-users-in-other-loops.ll
+++ b/test/CodeGen/X86/iv-users-in-other-loops.ll
@@ -1,11 +1,11 @@
; RUN: llc < %s -march=x86-64 -o %t
-; RUN: grep inc %t | count 1
+; RUN: not grep inc %t
; RUN: grep dec %t | count 2
-; RUN: grep addq %t | count 13
+; RUN: grep addq %t | count 10
; RUN: not grep addb %t
; RUN: grep leaq %t | count 9
-; RUN: grep leal %t | count 3
-; RUN: grep movq %t | count 5
+; RUN: grep leal %t | count 2
+; RUN: grep movq %t | count 10
; IV users in each of the loops from other loops shouldn't cause LSR
; to insert new induction variables. Previously it would create a
diff --git a/test/CodeGen/X86/loop-strength-reduce4.ll b/test/CodeGen/X86/loop-strength-reduce4.ll
index 07e46eca75..6c0eb8c0df 100644
--- a/test/CodeGen/X86/loop-strength-reduce4.ll
+++ b/test/CodeGen/X86/loop-strength-reduce4.ll
@@ -1,5 +1,19 @@
-; RUN: llc < %s -march=x86 | grep cmp | grep 64
-; RUN: llc < %s -march=x86 | not grep inc
+; RUN: llc < %s -march=x86 -relocation-model=static -mtriple=i686-apple-darwin | FileCheck %s -check-prefix=STATIC
+; RUN: llc < %s -march=x86 -relocation-model=pic | FileCheck %s -check-prefix=PIC
+
+; By starting the IV at -64 instead of 0, a cmp is eliminated,
+; as the flags from the add can be used directly.
+
+; STATIC: movl $-64, %ecx
+
+; STATIC: movl %eax, _state+76(%ecx)
+; STATIC: addl $16, %ecx
+; STATIC: jne
+
+; In PIC mode the symbol can't be folded, so the change-compare-stride
+; trick applies.
+
+; PIC: cmpl $64
@state = external global [0 x i32] ; <[0 x i32]*> [#uses=4]
@S = external global [0 x i32] ; <[0 x i32]*> [#uses=4]
diff --git a/test/CodeGen/X86/loop-strength-reduce8.ll b/test/CodeGen/X86/loop-strength-reduce8.ll
index e14cd8a99e..6b2247d1d6 100644
--- a/test/CodeGen/X86/loop-strength-reduce8.ll
+++ b/test/CodeGen/X86/loop-strength-reduce8.ll
@@ -1,4 +1,10 @@
-; RUN: llc < %s -mtriple=i386-apple-darwin | grep leal | not grep 16
+; RUN: llc < %s -mtriple=i386-apple-darwin | FileCheck %s
+
+; CHECK: leal 16(%eax), %edx
+; CHECK: align
+; CHECK: addl $4, %edx
+; CHECK: decl %ecx
+; CHECK: jne LBB1_2
%struct.CUMULATIVE_ARGS = type { i32, i32, i32, i32, i32, i32, i32 }
%struct.bitmap_element = type { %struct.bitmap_element*, %struct.bitmap_element*, i32, [2 x i64] }
diff --git a/test/CodeGen/X86/lsr-reuse.ll b/test/CodeGen/X86/lsr-reuse.ll
new file mode 100644
index 0000000000..a1919bab38
--- /dev/null
+++ b/test/CodeGen/X86/lsr-reuse.ll
@@ -0,0 +1,159 @@
+; RUN: llc < %s -march=x86-64 | FileCheck %s
+target datalayout = "e-p:64:64:64"
+target triple = "x86_64-unknown-unknown"
+
+; Full strength reduction reduces register pressure from 5 to 4 here.
+
+; CHECK: full_me:
+; CHECK: movsd (%rsi), %xmm0
+; CHECK: mulsd (%rdx), %xmm0
+; CHECK: movsd %xmm0, (%rdi)
+; CHECK: addq $8, %rsi
+; CHECK: addq $8, %rdx
+; CHECK: addq $8, %rdi
+; CHECK: decq %rcx
+; CHECK: jne
+
+define void @full_me(double* nocapture %A, double* nocapture %B, double* nocapture %C, i64 %n) nounwind {
+entry:
+ %t0 = icmp sgt i64 %n, 0
+ br i1 %t0, label %loop, label %return
+
+loop:
+ %i = phi i64 [ %i.next, %loop ], [ 0, %entry ]
+ %Ai = getelementptr inbounds double* %A, i64 %i
+ %Bi = getelementptr inbounds double* %B, i64 %i
+ %Ci = getelementptr inbounds double* %C, i64 %i
+ %t1 = load double* %Bi
+ %t2 = load double* %Ci
+ %m = fmul double %t1, %t2
+ store double %m, double* %Ai
+ %i.next = add nsw i64 %i, 1
+ %exitcond = icmp eq i64 %i.next, %n
+ br i1 %exitcond, label %return, label %loop
+
+return:
+ ret void
+}
+
+; In this test, the counting IV exit value is used, so full strength reduction
+; would not reduce register pressure. IndVarSimplify ought to simplify such
+; cases away, but it's useful here to verify that LSR's register pressure
+; heuristics are working as expected.
+
+; CHECK: count_me_0:
+; CHECK: movsd (%rsi,%rax,8), %xmm0
+; CHECK: mulsd (%rdx,%rax,8), %xmm0
+; CHECK: movsd %xmm0, (%rdi,%rax,8)
+; CHECK: incq %rax
+; CHECK: cmpq %rax, %rcx
+; CHECK: jne
+
+define i64 @count_me_0(double* nocapture %A, double* nocapture %B, double* nocapture %C, i64 %n) nounwind {
+entry:
+ %t0 = icmp sgt i64 %n, 0
+ br i1 %t0, label %loop, label %return
+
+loop:
+ %i = phi i64 [ %i.next, %loop ], [ 0, %entry ]
+ %Ai = getelementptr inbounds double* %A, i64 %i
+ %Bi = getelementptr inbounds double* %B, i64 %i
+ %Ci = getelementptr inbounds double* %C, i64 %i
+ %t1 = load double* %Bi
+ %t2 = load double* %Ci
+ %m = fmul double %t1, %t2
+ store double %m, double* %Ai
+ %i.next = add nsw i64 %i, 1
+ %exitcond = icmp eq i64 %i.next, %n
+ br i1 %exitcond, label %return, label %loop
+
+return:
+ %q = phi i64 [ 0, %entry ], [ %i.next, %loop ]
+ ret i64 %q
+}
+
+; In this test, the trip count value is used, so full strength reduction
+; would not reduce register pressure.
+; (though it would reduce register pressure inside the loop...)
+
+; CHECK: count_me_1:
+; CHECK: movsd (%rsi,%rax,8), %xmm0
+; CHECK: mulsd (%rdx,%rax,8), %xmm0
+; CHECK: movsd %xmm0, (%rdi,%rax,8)
+; CHECK: incq %rax
+; CHECK: cmpq %rax, %rcx
+; CHECK: jne
+
+define i64 @count_me_1(double* nocapture %A, double* nocapture %B, double* nocapture %C, i64 %n) nounwind {
+entry:
+ %t0 = icmp sgt i64 %n, 0
+ br i1 %t0, label %loop, label %return
+
+loop:
+ %i = phi i64 [ %i.next, %loop ], [ 0, %entry ]
+ %Ai = getelementptr inbounds double* %A, i64 %i
+ %Bi = getelementptr inbounds double* %B, i64 %i
+ %Ci = getelementptr inbounds double* %C, i64 %i
+ %t1 = load double* %Bi
+ %t2 = load double* %Ci
+ %m = fmul double %t1, %t2
+ store double %m, double* %Ai
+ %i.next = add nsw i64 %i, 1
+ %exitcond = icmp eq i64 %i.next, %n
+ br i1 %exitcond, label %return, label %loop
+
+return:
+ %q = phi i64 [ 0, %entry ], [ %n, %loop ]
+ ret i64 %q
+}
+
+; This should be fully strength-reduced to reduce register pressure, however
+; the current heuristics get distracted by all the reuse with the stride-1
+; induction variable first.
+
+; But even so, be clever and start the stride-1 variable at a non-zero value
+; to eliminate an in-loop immediate value.
+
+; CHECK: count_me_2:
+; CHECK: movl $5, %eax
+; CHECK: align
+; CHECK: BB4_1:
+; CHECK: movsd (%rdi,%rax,8), %xmm0
+; CHECK: addsd (%rsi,%rax,8), %xmm0
+; CHECK: movsd %xmm0, (%rdx,%rax,8)
+; CHECK: movsd 40(%rdi,%rax,8), %xmm0
+; CHECK: addsd 40(%rsi,%rax,8), %xmm0
+; CHECK: movsd %xmm0, 40(%rdx,%rax,8)
+; CHECK: incq %rax
+; CHECK: cmpq $5005, %rax
+; CHECK: jne
+
+define void @count_me_2(double* nocapture %A, double* nocapture %B, double* nocapture %C) nounwind {
+entry:
+ br label %loop
+
+loop:
+ %i = phi i64 [ 0, %entry ], [ %i.next, %loop ]
+ %i5 = add i64 %i, 5
+ %Ai = getelementptr double* %A, i64 %i5
+ %t2 = load double* %Ai
+ %Bi = getelementptr double* %B, i64 %i5
+ %t4 = load double* %Bi
+ %t5 = fadd double %t2, %t4
+ %Ci = getelementptr double* %C, i64 %i5
+ store double %t5, double* %Ci
+ %i10 = add i64 %i, 10
+ %Ai10 = getelementptr double* %A, i64 %i10
+ %t9 = load double* %Ai10
+ %Bi10 = getelementptr double* %B, i64 %i10
+ %t11 = load double* %Bi10
+ %t12 = fadd double %t9, %t11
+ %Ci10 = getelementptr double* %C, i64 %i10
+ store double %t12, double* %Ci10
+ %i.next = add i64 %i, 1
+ %exitcond = icmp eq i64 %i.next, 5000
+ br i1 %exitcond, label %return, label %loop
+
+return:
+ ret void
+}
diff --git a/test/CodeGen/X86/masked-iv-safe.ll b/test/CodeGen/X86/masked-iv-safe.ll
index bc493bd8f7..7111d687ed 100644
--- a/test/CodeGen/X86/masked-iv-safe.ll
+++ b/test/CodeGen/X86/masked-iv-safe.ll
@@ -4,9 +4,9 @@
; RUN: not grep sar %t
; RUN: not grep shl %t
; RUN: grep add %t | count 2
-; RUN: grep inc %t | count 4
+; RUN: grep inc %t | count 3
; RUN: grep dec %t | count 2
-; RUN: grep lea %t | count 2
+; RUN: grep lea %t | count 3
; Optimize away zext-inreg and sext-inreg on the loop induction
; variable using trip-count information.
@@ -127,6 +127,9 @@ return:
ret void
}
+; TODO: If we could handle all the loads and stores as post-inc users, we could
+; use {-1,+,1} in the induction variable register, and we'd get another inc,
+; one fewer add, and a comparison with zero.
define void @another_count_up(double* %d, i64 %n) nounwind {
entry:
br label %loop
diff --git a/test/CodeGen/X86/pr3495-2.ll b/test/CodeGen/X86/pr3495-2.ll
index 1372a1522b..71aa5a0488 100644
--- a/test/CodeGen/X86/pr3495-2.ll
+++ b/test/CodeGen/X86/pr3495-2.ll
@@ -1,5 +1,6 @@
; RUN: llc < %s -march=x86 -relocation-model=pic -disable-fp-elim -stats |& grep {Number of reloads omited}
+target datalayout = "e-p:32:32:32"
target triple = "i386-apple-darwin9.6"
%struct.constraintVCGType = type { i32, i32, i32, i32 }
%struct.nodeVCGType = type { %struct.constraintVCGType*, i32, i32, i32, %struct.constraintVCGType*, i32, i32, i32 }
diff --git a/test/CodeGen/X86/remat-mov-0.ll b/test/CodeGen/X86/remat-mov-0.ll
index c4f768ca52..5fb445c935 100644
--- a/test/CodeGen/X86/remat-mov-0.ll
+++ b/test/CodeGen/X86/remat-mov-0.ll
@@ -1,13 +1,33 @@
-; RUN: llc < %s -march=x86-64 | grep {xorl %edi, %edi} | count 4
+; RUN: llc < %s -march=x86-64 | FileCheck %s
; CodeGen should remat the zero instead of spilling it.
declare void @foo(i64 %p)
+; CHECK: bar:
+; CHECK: xorl %edi, %edi
+; CHECK: xorl %edi, %edi
define void @bar() nounwind {
call void @foo(i64 0)
call void @foo(i64 0)
- call void @foo(i64 0)
- call void @foo(i64 0)
ret void
}
+
+; CHECK: bat:
+; CHECK: movq $-1, %rdi
+; CHECK: movq $-1, %rdi
+define void @bat() nounwind {
+ call void @foo(i64 -1)
+ call void @foo(i64 -1)
+ ret void
+}
+
+; CHECK: bau:
+; CHECK: movl $1, %edi
+; CHECK: movl $1, %edi
+define void @bau() nounwind {
+ call void @foo(i64 1)
+ call void @foo(i64 1)
+ ret void
+}
+
diff --git a/test/CodeGen/X86/remat-mov-1.ll b/test/CodeGen/X86/remat-mov-1.ll
deleted file mode 100644
index d71b7a5b91..0000000000
--- a/test/CodeGen/X86/remat-mov-1.ll
+++ /dev/null
@@ -1,40 +0,0 @@
-; RUN: llc < %s -march=x86 | grep -- -1 | grep mov | count 2
-
- %struct.FILE = type { i8*, i32, i32, i16, i16, %struct.__sbuf, i32, i8*, i32 (i8*)*, i32 (i8*, i8*, i32)*, i64 (i8*, i64, i32)*, i32 (i8*, i8*, i32)*, %struct.__sbuf, %struct.__sFILEX*, i32, [3 x i8], [1 x i8], %struct.__sbuf, i32, i64 }
- %struct.ImgT = type { i8, i8*, i8*, %struct.FILE*, i32, i32, i32, i32, i8*, double*, float*, float*, float*, i32*, double, double, i32*, double*, i32*, i32* }
- %struct._CompT = type { i32, i32, i32, i32, i32, i32, i32, i32, i32, float, float, i8, %struct._PixT*, %struct._CompT*, i8, %struct._CompT* }
- %struct._PixT = type { i32, i32, %struct._PixT* }
- %struct.__sFILEX = type opaque
- %struct.__sbuf = type { i8*, i32 }
-
-declare fastcc void @MergeComponents(%struct._CompT*, %struct._CompT*, %struct._CompT*, %struct._CompT**, %struct.ImgT*) nounwind
-
-define fastcc void @MergeToLeft(%struct._CompT* %comp, %struct._CompT** %head, %struct.ImgT* %img) nounwind {
-entry:
- br label %bb208
-
-bb105: ; preds = %bb200
- br i1 false, label %bb197, label %bb149
-
-bb149: ; preds = %bb105
- %tmp151 = getelementptr %struct._CompT* %comp, i32 0, i32 0 ; <i32*> [#uses=1]
- br label %bb193
-
-bb193: ; preds = %bb184, %bb149
- %tmp196 = load i32* %tmp151, align 4 ; <i32> [#uses=1]
- br label %bb197
-
-bb197: ; preds = %bb193, %bb105
- %last_comp.0 = phi i32 [ %tmp196, %bb193 ], [ 0, %bb105 ] ; <i32> [#uses=0]
- %indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
- br label %bb200
-
-bb200: ; preds = %bb208, %bb197
- %indvar = phi i32 [ 0, %bb208 ], [ %indvar.next, %bb197 ] ; <i32> [#uses=2]
- %xm.0 = sub i32 %indvar, 0 ; <i32> [#uses=1]
- %tmp202 = icmp slt i32 %xm.0, 1 ; <i1> [#uses=1]
- br i1 %tmp202, label %bb105, label %bb208
-
-bb208: ; preds = %bb200, %entry
- br label %bb200
-}
diff --git a/test/CodeGen/X86/subreg-to-reg-5.ll b/test/CodeGen/X86/subreg-to-reg-5.ll
deleted file mode 100644
index ba4c307d10..0000000000
--- a/test/CodeGen/X86/subreg-to-reg-5.ll
+++ /dev/null
@@ -1,35 +0,0 @@
-; RUN: llc < %s -march=x86-64 > %t
-; RUN: grep addl %t
-; RUN: not egrep {movl|movq} %t
-
-define float @foo(float* %B) nounwind {
-entry:
- br label %bb2
-
-bb2: ; preds = %bb3, %entry
- %B_addr.0.rec = phi i64 [ %indvar.next154, %bb3 ], [ 0, %entry ] ; <i64> [#uses=2]
- %z = icmp slt i64 %B_addr.0.rec, 20000
- br i1 %z, label %bb3, label %bb4
-
-bb3: ; preds = %bb2
- %indvar.next154 = add i64 %B_addr.0.rec, 1 ; <i64> [#uses=1]
- br label %bb2
-
-bb4: ; preds = %bb2
- %B_addr.0 = getelementptr float* %B, i64 %B_addr.0.rec ; <float*> [#uses=1]
- %t1 = ptrtoint float* %B_addr.0 to i64 ; <i64> [#uses=1]
- %t2 = and i64 %t1, 4294967295 ; <i64> [#uses=1]
- %t3 = icmp eq i64 %t2, 0 ; <i1> [#uses=1]
- br i1 %t3, label %bb5, label %bb10.preheader
-
-bb10.preheader: ; preds = %bb4
- br label %bb9
-
-bb5: ; preds = %bb4
- ret float 7.0
-
-bb9: ; preds = %bb10.preheader
- %t5 = getelementptr float* %B, i64 0 ; <float*> [#uses=1]
- %t7 = load float* %t5 ; <float> [#uses=1]
- ret float %t7
-}
diff --git a/test/Transforms/IndVarSimplify/gep-with-mul-base.ll b/test/Transforms/IndVarSimplify/gep-with-mul-base.ll
index 7809594076..19d54ff2a2 100644
--- a/test/Transforms/IndVarSimplify/gep-with-mul-base.ll
+++ b/test/Transforms/IndVarSimplify/gep-with-mul-base.ll
@@ -1,6 +1,7 @@
; RUN: opt < %s -indvars -S > %t
-; RUN: grep add %t | count 8
-; RUN: grep mul %t | count 7
+; RUN: grep add %t | count 6
+; RUN: grep sub %t | count 2
+; RUN: grep mul %t | count 6
define void @foo(i64 %n, i64 %m, i64 %o, double* nocapture %p) nounwind {
entry:
diff --git a/test/Transforms/LoopStrengthReduce/2008-08-06-CmpStride.ll b/test/Transforms/LoopStrengthReduce/2008-08-06-CmpStride.ll
index 7c7a21c013..99cb8569b3 100644
--- a/test/Transforms/LoopStrengthReduce/2008-08-06-CmpStride.ll
+++ b/test/Transforms/LoopStrengthReduce/2008-08-06-CmpStride.ll
@@ -1,5 +1,4 @@
-; RUN: opt < %s -loop-reduce -S | grep ugt
-; PR2535
+; RUN: llc -march=x86-64 < %s -o - | grep {cmpl \\$\[1\], %}
@.str = internal constant [4 x i8] c"%d\0A\00"
@@ -16,7 +15,7 @@ forbody:
%add166 = or i32 %mul15, 1 ; <i32> [#uses=1] *
call i32 (i8*, ...)* @printf( i8* noalias getelementptr ([4 x i8]* @.str, i32 0, i32 0), i32 %add166 ) nounwind
%inc = add i32 %i.0, 1 ; <i32> [#uses=3]
- %cmp = icmp ult i32 %inc, 1027 ; <i1> [#uses=1]
+ %cmp = icmp ne i32 %inc, 1027 ; <i1> [#uses=1]
br i1 %cmp, label %forbody, label %afterfor
afterfor: ; preds = %forcond
diff --git a/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-0.ll b/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-0.ll
index 36941ad6d3..d9abc8ba66 100644
--- a/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-0.ll
+++ b/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-0.ll
@@ -1,10 +1,9 @@
-; RUN: llc %s -o - --x86-asm-syntax=att | grep {cmpl \$4}
+; RUN: llc < %s -o - | grep {testl %ecx, %ecx}
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
target triple = "x86_64-apple-darwin9"
-; This is like change-compare-stride-trickiness-1.ll except the comparison
-; happens before the relevant use, so the comparison stride can't be
-; easily changed.
+; The comparison happens before the relevant use, but it can still be rewritten
+; to compare with zero.
define void @foo() nounwind {
entry:
diff --git a/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-1.ll b/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-1.ll
index 8a3978bb2e..ea8a259ecd 100644
--- a/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-1.ll
+++ b/test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-1.ll
@@ -1,10 +1,10 @@
-; RUN: llc %s -o - --x86-asm-syntax=att | grep {cmpq \$8}
+; RUN: llc %s -o - --x86-asm-syntax=att | grep {cmp. \$8}
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
target triple = "x86_64-apple-darwin9"
-; This is like change-compare-stride-trickiness-0.ll except the comparison
-; happens after the relevant use, so the comparison stride can be
-; easily changed.
+; The comparison happens after the relevant use, so the stride can easily
+; be changed. The comparison can be done in a narrower mode than the
+; induction variable.
define void @foo() nounwind {
entry:
diff --git a/test/Transforms/LoopStrengthReduce/count-to-zero.ll b/test/Transforms/LoopStrengthReduce/count-to-zero.ll
index 8cc3b5c103..feb79f8a0c 100644
--- a/test/Transforms/LoopStrengthReduce/count-to-zero.ll
+++ b/test/Transforms/LoopStrengthReduce/count-to-zero.ll
@@ -19,7 +19,7 @@ bb3: ; preds = %bb1
%tmp4 = add i32 %c_addr.1, -1 ; <i32> [#uses=1]
%c_addr.1.be = select i1 %tmp2, i32 %tmp3, i32 %tmp4 ; <i32> [#uses=1]
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
-; CHECK: sub i32 %lsr.iv, 1
+; CHECK: add i32 %lsr.iv, -1
br label %bb6
bb6: ; preds = %bb3, %entry
diff --git a/test/Transforms/LoopStrengthReduce/icmp_use_postinc.ll b/test/Transforms/LoopStrengthReduce/icmp_use_postinc.ll
deleted file mode 100644
index 4ad5d1478d..0000000000
--- a/test/Transforms/LoopStrengthReduce/icmp_use_postinc.ll
+++ /dev/null
@@ -1,27 +0,0 @@
-; RUN: opt < %s -loop-reduce -S | FileCheck %s
-
-define i32 @main(i32 %argc, i8** nocapture %argv) nounwind ssp {
-entry:
- br i1 undef, label %bb4.preheader, label %bb.nph8
-
-bb4.preheader: ; preds = %entry
- br label %bb4
-
-bb1: ; preds = %bb4
- br i1 undef, label %bb.nph8, label %bb3
-
-bb3: ; preds = %bb1
- %phitmp = add i32 %indvar, 1 ; <i32> [#uses=1]
- br label %bb4
-
-bb4: ; preds = %bb3, %bb4.preheader
-; CHECK: %lsr.iv = phi
-; CHECK: %lsr.iv.next = add i32 %lsr.iv, 1
-; CHECK: %0 = icmp slt i32 %lsr.iv.next, %argc
- %indvar = phi i32 [ 1, %bb4.preheader ], [ %phitmp, %bb3 ] ; <i32> [#uses=2]
- %0 = icmp slt i32 %indvar, %argc ; <i1> [#uses=1]
- br i1 %0, label %bb1, label %bb.nph8
-
-bb.nph8: ; preds = %bb4, %bb1, %entry
- unreachable
-}