summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile.rules5
-rw-r--r--lib/Target/ARM/ARMAddressingModes.h20
-rw-r--r--lib/Target/ARM/ARMInstrFormats.td43
-rw-r--r--lib/Target/ARM/ARMInstrNEON.td495
-rw-r--r--lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp46
-rw-r--r--lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp433
-rw-r--r--lib/Target/ARM/AsmPrinter/ARMInstPrinter.h40
-rw-r--r--lib/Target/ARM/Disassembler/ARMDisassembler.cpp513
-rw-r--r--lib/Target/ARM/Disassembler/ARMDisassembler.h71
-rw-r--r--lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp3351
-rw-r--r--lib/Target/ARM/Disassembler/ARMDisassemblerCore.h301
-rw-r--r--lib/Target/ARM/Disassembler/Makefile17
-rw-r--r--lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc2158
-rw-r--r--lib/Target/ARM/Makefile5
-rw-r--r--lib/Target/ARM/Thumb2ITBlockPass.cpp8
-rw-r--r--test/CodeGen/ARM/2009-10-27-double-align.ll4
-rw-r--r--test/CodeGen/ARM/2009-10-30.ll2
-rw-r--r--test/CodeGen/ARM/arm-negative-stride.ll2
-rw-r--r--test/CodeGen/ARM/globals.ll4
-rw-r--r--test/CodeGen/ARM/ldrd.ll4
-rw-r--r--test/CodeGen/ARM/str_pre-2.ll2
-rw-r--r--test/CodeGen/ARM/tls2.ll4
-rw-r--r--test/CodeGen/Thumb2/ldr-str-imm12.ll8
-rw-r--r--test/CodeGen/Thumb2/thumb2-ldr.ll2
-rw-r--r--test/CodeGen/Thumb2/thumb2-ldrh.ll2
-rw-r--r--test/CodeGen/Thumb2/thumb2-str.ll2
-rw-r--r--test/CodeGen/Thumb2/thumb2-str_pre.ll4
-rw-r--r--test/CodeGen/Thumb2/thumb2-strb.ll2
-rw-r--r--test/CodeGen/Thumb2/thumb2-strh.ll2
-rw-r--r--utils/TableGen/DisassemblerEmitter.cpp8
-rw-r--r--utils/TableGen/RISCDisassemblerEmitter.cpp1743
-rw-r--r--utils/TableGen/RISCDisassemblerEmitter.h48
-rw-r--r--utils/TableGen/TableGen.cpp8
33 files changed, 9189 insertions, 168 deletions
diff --git a/Makefile.rules b/Makefile.rules
index 20e642a450..1e3194f78e 100644
--- a/Makefile.rules
+++ b/Makefile.rules
@@ -1614,6 +1614,11 @@ $(ObjDir)/%GenIntrinsics.inc.tmp : %.td $(ObjDir)/.dir
$(Echo) "Building $(<F) intrinsics information with tblgen"
$(Verb) $(TableGen) -gen-tgt-intrinsic -o $(call SYSPATH, $@) $<
+$(ObjDir)/ARMDisassemblerTables.inc.tmp : ARM.td $(ObjDir)/.dir
+ $(Echo) "Building ARM disassembly tables with tblgen"
+ $(Verb) $(TableGen) -gen-risc-disassembler -o $(call SYSPATH, $@) $<
+
+
clean-local::
-$(Verb) $(RM) -f $(INCFiles)
diff --git a/lib/Target/ARM/ARMAddressingModes.h b/lib/Target/ARM/ARMAddressingModes.h
index 9e086ca5c5..1798768ea4 100644
--- a/lib/Target/ARM/ARMAddressingModes.h
+++ b/lib/Target/ARM/ARMAddressingModes.h
@@ -35,6 +35,10 @@ namespace ARM_AM {
add = '+', sub = '-'
};
+ static inline const char *getAddrOpcStr(AddrOpc Op) {
+ return Op == sub ? "-" : "";
+ }
+
static inline const char *getShiftOpcStr(ShiftOpc Op) {
switch (Op) {
default: assert(0 && "Unknown shift opc!");
@@ -127,6 +131,20 @@ namespace ARM_AM {
return (Imm >> 8) * 2;
}
+ /// getSOImmValOneRotate - Try to handle Imm with an immediate shifter
+ /// operand, computing the rotate amount to use. If this immediate value
+ /// cannot be handled with a single shifter-op, return 0.
+ static inline unsigned getSOImmValOneRotate(unsigned Imm) {
+ // A5.2.4 Constants with multiple encodings
+ // The lowest unsigned value of rotation wins!
+ for (unsigned R = 1; R <= 15; ++R)
+ if ((Imm & rotr32(~255U, 2*R)) == 0)
+ return 2*R;
+
+ // Failed to find a suitable rotate amount.
+ return 0;
+ }
+
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
/// computing the rotate amount to use. If this immediate value cannot be
/// handled with a single shifter-op, determine a good rotate amount that will
@@ -179,7 +197,7 @@ namespace ARM_AM {
// of zero.
if ((Arg & ~255U) == 0) return Arg;
- unsigned RotAmt = getSOImmValRotate(Arg);
+ unsigned RotAmt = getSOImmValOneRotate(Arg);
// If this cannot be handled with a single shifter_op, bail out.
if (rotr32(~255U, RotAmt) & Arg)
diff --git a/lib/Target/ARM/ARMInstrFormats.td b/lib/Target/ARM/ARMInstrFormats.td
index 258a96b921..52553f5477 100644
--- a/lib/Target/ARM/ARMInstrFormats.td
+++ b/lib/Target/ARM/ARMInstrFormats.td
@@ -1464,6 +1464,29 @@ class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
// ARM NEON Instruction templates.
//
+// NSFormat specifies further details of a NEON instruction. This is used by
+// the disassembler to classify NEONFrm instructions for disassembly purpose.
+class NSFormat<bits<5> val> {
+ bits<5> Value = val;
+}
+def NSFormatNone : NSFormat<0>;
+def VLDSTLaneFrm : NSFormat<1>;
+def VLDSTLaneDblFrm : NSFormat<2>;
+def VLDSTRQFrm : NSFormat<3>;
+def NVdImmFrm : NSFormat<4>;
+def NVdVmImmFrm : NSFormat<5>;
+def NVdVmImmVCVTFrm : NSFormat<6>;
+def NVdVmImmVDupLaneFrm : NSFormat<7>;
+def NVdVmImmVSHLLFrm : NSFormat<8>;
+def NVectorShuffleFrm : NSFormat<9>;
+def NVectorShiftFrm : NSFormat<10>;
+def NVectorShift2Frm : NSFormat<11>;
+def NVdVnVmImmFrm : NSFormat<12>;
+def NVdVnVmImmVectorShiftFrm : NSFormat<13>;
+def NVdVnVmImmVectorExtractFrm : NSFormat<14>;
+def NVdVnVmImmMulScalarFrm : NSFormat<15>;
+def VTBLFrm : NSFormat<16>;
+
class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
string opc, string dt, string asm, string cstr, list<dag> pattern>
: InstARM<am, Size4Bytes, im, NEONFrm, NeonDomain, cstr, itin> {
@@ -1474,6 +1497,8 @@ class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
!strconcat("\t", asm));
let Pattern = pattern;
list<Predicate> Predicates = [HasNEON];
+ NSFormat NSF = NSFormatNone; // For disassembly.
+ bits<5> NSForm = NSFormatNone.Value; // For disassembly.
}
// Same as NeonI except it does not have a "data type" specifier.
@@ -1485,6 +1510,8 @@ class NeonXI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
let AsmString = !strconcat(!strconcat(opc, "${p}"), !strconcat("\t", asm));
let Pattern = pattern;
list<Predicate> Predicates = [HasNEON];
+ NSFormat NSF = NSFormatNone; // For disassembly.
+ bits<5> NSForm = NSFormatNone.Value; // For disassembly.
}
class NI<dag oops, dag iops, InstrItinClass itin, string opc, string asm,
@@ -1497,6 +1524,8 @@ class NI4<dag oops, dag iops, InstrItinClass itin, string opc,
string asm, list<dag> pattern>
: NeonXI<oops, iops, AddrMode4, IndexModeNone, itin, opc, asm, "",
pattern> {
+ let NSF = VLDSTRQFrm; // For disassembly.
+ let NSForm = VLDSTRQFrm.Value; // For disassembly.
}
class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
@@ -1509,6 +1538,8 @@ class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
let Inst{21-20} = op21_20;
let Inst{11-8} = op11_8;
let Inst{7-4} = op7_4;
+ let NSF = VLDSTLaneFrm; // For disassembly.
+ let NSForm = VLDSTLaneFrm.Value; // For disassembly.
}
class NDataI<dag oops, dag iops, InstrItinClass itin,
@@ -1538,6 +1569,8 @@ class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6,
let Inst{6} = op6;
let Inst{5} = op5;
let Inst{4} = op4;
+ let NSF = NVdImmFrm; // For disassembly.
+ let NSForm = NVdImmFrm.Value; // For disassembly.
}
// NEON 2 vector register format.
@@ -1553,6 +1586,8 @@ class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
let Inst{11-7} = op11_7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// Same as N2V except it doesn't have a datatype suffix.
@@ -1568,6 +1603,8 @@ class N2VX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
let Inst{11-7} = op11_7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// NEON 2 vector register with immediate.
@@ -1581,6 +1618,8 @@ class N2VImm<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
let Inst{7} = op7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// NEON 3 vector register format.
@@ -1594,6 +1633,8 @@ class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4,
let Inst{11-8} = op11_8;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVnVmImmFrm; // For disassembly.
+ let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
}
// Same as N3VX except it doesn't have a data type suffix.
@@ -1607,6 +1648,8 @@ class N3VX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4
let Inst{11-8} = op11_8;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVnVmImmFrm; // For disassembly.
+ let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
}
// NEON VMOVs between scalar and core registers.
diff --git a/lib/Target/ARM/ARMInstrNEON.td b/lib/Target/ARM/ARMInstrNEON.td
index 8fee6fa952..da2babf05d 100644
--- a/lib/Target/ARM/ARMInstrNEON.td
+++ b/lib/Target/ARM/ARMInstrNEON.td
@@ -213,7 +213,10 @@ def VLD2q32 : VLD2Q<0b1000, "vld2", "32">;
class VLD2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b10,0b1001,op7_4, (outs DPR:$dst1, DPR:$dst2),
(ins addrmode6:$addr), IIC_VLD2,
- OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []>;
+ OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD2d8D : VLD2Ddbl<0b0000, "vld2", "8">;
def VLD2d16D : VLD2Ddbl<0b0100, "vld2", "16">;
@@ -228,7 +231,10 @@ class VLD3WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b10,0b0101,op7_4, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, GPR:$wb),
(ins addrmode6:$addr), IIC_VLD3,
OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD3d8 : VLD3D<0b0000, "vld3", "8">;
def VLD3d16 : VLD3D<0b0100, "vld3", "16">;
@@ -260,7 +266,10 @@ class VLD4WB<bits<4> op7_4, string OpcodeStr, string Dt>
(outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
(ins addrmode6:$addr), IIC_VLD4,
OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3, $dst4\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD4d8 : VLD4D<0b0000, "vld4", "8">;
def VLD4d16 : VLD4D<0b0100, "vld4", "16">;
@@ -297,12 +306,28 @@ def VLD2LNd16 : VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 0; }
def VLD2LNd32 : VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 0; }
// vld2 to double-spaced even registers.
-def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
-def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
+def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vld2 to double-spaced odd registers.
-def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
-def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
+def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VLD3LN : Vector Load (single 3-element structure to one lane)
class VLD3LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -318,7 +343,11 @@ def VLD3LNd16 : VLD3LN<0b0110, "vld3", "16"> { let Inst{5-4} = 0b00; }
def VLD3LNd32 : VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b000; }
// vld3 to double-spaced even registers.
-def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> { let Inst{5-4} = 0b10; }
+def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD3LNq32a: VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b100; }
// vld3 to double-spaced odd registers.
@@ -340,12 +369,28 @@ def VLD4LNd16 : VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 0; }
def VLD4LNd32 : VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 0; }
// vld4 to double-spaced even registers.
-def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
-def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
+def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vld4 to double-spaced odd registers.
-def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
-def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
+def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VLD1DUP : Vector Load (single element to all lanes)
// VLD2DUP : Vector Load (single 2-element structure to all lanes)
@@ -433,7 +478,10 @@ def VST2q32 : VST2Q<0b1000, "vst2", "32">;
class VST2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0, 0b00, 0b1001, op7_4, (outs),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2), IIC_VST,
- OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []>;
+ OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST2d8D : VST2Ddbl<0b0000, "vst2", "8">;
def VST2d16D : VST2Ddbl<0b0100, "vst2", "16">;
@@ -448,7 +496,10 @@ class VST3WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b00,0b0101,op7_4, (outs GPR:$wb),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3), IIC_VST,
OpcodeStr, Dt, "\\{$src1, $src2, $src3\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST3d8 : VST3D<0b0000, "vst3", "8">;
def VST3d16 : VST3D<0b0100, "vst3", "16">;
@@ -478,7 +529,10 @@ class VST4WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b00,0b0001,op7_4, (outs GPR:$wb),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
IIC_VST, OpcodeStr, Dt, "\\{$src1, $src2, $src3, $src4\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST4d8 : VST4D<0b0000, "vst4", "8">;
def VST4d16 : VST4D<0b0100, "vst4", "16">;
@@ -515,12 +569,28 @@ def VST2LNd16 : VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 0; }
def VST2LNd32 : VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 0; }
// vst2 to double-spaced even registers.
-def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
-def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
+def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst2 to double-spaced odd registers.
-def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
-def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
+def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VST3LN : Vector Store (single 3-element structure from one lane)
class VST3LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -535,12 +605,28 @@ def VST3LNd16 : VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b00; }
def VST3LNd32 : VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b000; }
// vst3 to double-spaced even registers.
-def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
-def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
+def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> {
+ let Inst{6-4} = 0b100;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst3 to double-spaced odd registers.
-def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
-def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
+def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> {
+ let Inst{6-4} = 0b100;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VST4LN : Vector Store (single 4-element structure from one lane)
class VST4LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -556,12 +642,28 @@ def VST4LNd16 : VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 0; }
def VST4LNd32 : VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 0; }
// vst4 to double-spaced even registers.
-def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
-def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
+def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst4 to double-spaced odd registers.
-def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
-def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
+def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
} // mayStore = 1, hasExtraSrcRegAllocReq = 1
@@ -668,12 +770,18 @@ class N2VDShuffle<bits<2> op19_18, bits<5> op11_7, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$dst1, DPR:$dst2),
(ins DPR:$src1, DPR:$src2), IIC_VPERMD,
OpcodeStr, Dt, "$dst1, $dst2",
- "$src1 = $dst1, $src2 = $dst2", []>;
+ "$src1 = $dst1, $src2 = $dst2", []> {
+ let NSF = NVectorShuffleFrm; // For disassembly.
+ let NSForm = NVectorShuffleFrm.Value; // For disassembly.
+}
class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
InstrItinClass itin, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$dst1, QPR:$dst2),
(ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$dst1, $dst2",
- "$src1 = $dst1, $src2 = $dst2", []>;
+ "$src1 = $dst1, $src2 = $dst2", []> {
+ let NSF = NVectorShuffleFrm; // For disassembly.
+ let NSForm = NVectorShuffleFrm.Value; // For disassembly.
+}
// Basic 3-register operations: single-, double- and quad-register.
class N3VS<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -715,6 +823,8 @@ class N3VDSL<bits<2> op21_20, bits<4> op11_8,
(Ty (ShOp (Ty DPR:$src1),
(Ty (NEONvduplane (Ty DPR_VFP2:$src2), imm:$lane)))))]>{
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp>
@@ -725,6 +835,8 @@ class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
(Ty (ShOp (Ty DPR:$src1),
(Ty (NEONvduplane (Ty DPR_8:$src2), imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -756,6 +868,8 @@ class N3VQSL<bits<2> op21_20, bits<4> op11_8,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode ShOp>
@@ -767,6 +881,8 @@ class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
(ResTy (NEONvduplane (OpTy DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
// Basic 3-register intrinsics, both double- and quad-register.
@@ -789,6 +905,8 @@ class N3VDIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (NEONvduplane (Ty DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt, ValueType Ty, Intrinsic IntOp>
@@ -800,6 +918,8 @@ class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (NEONvduplane (Ty DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -822,6 +942,8 @@ class N3VQIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
@@ -834,6 +956,8 @@ class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (NEONvduplane (OpTy DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
// Multiply-Add/Sub operations: single-, double- and quad-register.
@@ -864,7 +988,10 @@ class N3VDMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$src2,
(Ty (NEONvduplane (Ty DPR_VFP2:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType Ty, SDNode MulOp, SDNode ShOp>
@@ -876,7 +1003,10 @@ class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$src2,
(Ty (NEONvduplane (Ty DPR_8:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty,
@@ -897,7 +1027,10 @@ class N3VQMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$src2,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy,
@@ -910,7 +1043,10 @@ class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$src2,
(ResTy (NEONvduplane (OpTy DPR_8:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
// Neon 3-argument intrinsics, both double- and quad-register.
// The destination register is also used as the first source operand register.
@@ -996,7 +1132,10 @@ class N3VLIntSL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
[(set (ResTy QPR:$dst),
(ResTy (IntOp (OpTy DPR:$src1),
(OpTy (NEONvduplane (OpTy DPR_VFP2:$src2),
- imm:$lane)))))]>;
+ imm:$lane)))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
@@ -1006,7 +1145,10 @@ class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
[(set (ResTy QPR:$dst),
(ResTy (IntOp (OpTy DPR:$src1),
(OpTy (NEONvduplane (OpTy DPR_8:$src2),
- imm:$lane)))))]>;
+ imm:$lane)))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
// Wide 3-register intrinsics.
class N3VWInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -1055,6 +1197,10 @@ class N2VQPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
OpcodeStr, Dt, "$dst, $src2", "$src1 = $dst",
[(set QPR:$dst, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$src2))))]>;
+// This is a big let * in block to mark these instructions NVectorShiftFrm to
+// help the disassembler.
+let NSF = NVectorShiftFrm, NSForm = NVectorShiftFrm.Value in {
+
// Shift by immediate,
// both double- and quad-register.
class N2VDSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
@@ -1072,16 +1218,6 @@ class N2VQSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
OpcodeStr, Dt, "$dst, $src, $SIMM", "",
[(set QPR:$dst, (Ty (OpNode (Ty QPR:$src), (i32 imm:$SIMM))))]>;
-// Long shift by immediate.
-class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
- string OpcodeStr, string Dt,
- ValueType ResTy, ValueType OpTy, SDNode OpNode>
- : N2VImm<op24, op23, op11_8, op7, op6, op4,
- (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
- OpcodeStr, Dt, "$dst, $src, $SIMM", "",
- [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
- (i32 imm:$SIMM))))]>;
-
// Narrow shift by immediate.
class N2VNSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
@@ -1124,8 +1260,26 @@ class N2VQShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
OpcodeStr, Dt, "$dst, $src2, $SIMM", "$src1 = $dst",
[(set QPR:$dst, (Ty (ShOp QPR:$src1, QPR:$src2, (i32 imm:$SIMM))))]>;
+} // End of "let NSF = NVectorShiftFrm, ..."
+
+// Long shift by immediate.
+class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VImm<op24, op23, op11_8, op7, op6, op4,
+ (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
+ OpcodeStr, Dt, "$dst, $src, $SIMM", "",
+ [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
+ (i32 imm:$SIMM))))]> {
+ // This has a different interpretation of the shift amount encoding than
+ // NVectorShiftFrm.
+ let NSF = NVectorShift2Frm; // For disassembly.
+ let NSForm = NVectorShift2Frm.Value; // For disassembly.
+}
+
// Convert, with fractional bits immediate,
// both double- and quad-register.
+let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
class N2VCvtD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
@@ -1140,6 +1294,7 @@ class N2VCvtQ<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
(outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM), IIC_VUNAQ,
OpcodeStr, Dt, "$dst, $src, $SIMM", "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src), (i32 imm:$SIMM))))]>;
+}
//===----------------------------------------------------------------------===//
// Multiclasses
@@ -1350,6 +1505,60 @@ multiclass N3VInt_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
v2i64, v2i64, IntOp, Commutable>;
}
+// Same as N3VInt_QHSD, except they're for Vector Shift (Register) Instructions.
+// D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
+// This helps the disassembler.
+let NSF = NVdVnVmImmVectorShiftFrm, NSForm = NVdVnVmImmVectorShiftFrm.Value in {
+multiclass N3VInt_HS2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0> {
+ // 64-bit vector types.
+ def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i16, v4i16, IntOp, Commutable>;
+ def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i32, v2i32, IntOp, Commutable>;
+
+ // 128-bit vector types.
+ def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i16, v8i16, IntOp, Commutable>;
+ def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i32, v4i32, IntOp, Commutable>;
+}
+multiclass N3VInt_QHS2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0>
+ : N3VInt_HS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i8, v8i8, IntOp, Commutable>;
+ def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v16i8, v16i8, IntOp, Commutable>;
+}
+multiclass N3VInt_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0>
+ : N3VInt_QHS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v1i64, v1i64, IntOp, Commutable>;
+ def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i64, v2i64, IntOp, Commutable>;
+}
+}
// Neon Narrowing 3-register vector intrinsics,
// source operand element sizes of 16, 32 and 64 bits:
@@ -1619,6 +1828,47 @@ multiclass N2VSh_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// imm6 = xxxxxx
}
+// Same as N2VSh_QHSD, except the instructions have a differnt interpretation of
+// the shift amount. This helps the disassembler.
+let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
+multiclass N2VSh_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, itin,
+ OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, itin,
+ OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
+ // imm6 = xxxxxx
+}
+}
// Neon Shift-Accumulate vector operations,
// element sizes of 8, 16, 32 and 64 bits:
@@ -1699,6 +1949,47 @@ multiclass N2VShIns_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// imm6 = xxxxxx
}
+// Same as N2VShIns_QHSD, except the instructions have a differnt interpretation
+// of the shift amount. This helps the disassembler.
+let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
+multiclass N2VShIns_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr, SDNode ShOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "8", v8i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "16", v4i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "32", v2i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4,
+ OpcodeStr, "64", v1i64, ShOp>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "8", v16i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "16", v8i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "32", v4i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4,
+ OpcodeStr, "64", v2i64, ShOp>;
+ // imm6 = xxxxxx
+}
+}
+
// Neon Shift Long operations,
// element sizes of 8, 16, 32 bits:
multiclass N2VLSh_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
@@ -2329,18 +2620,21 @@ def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1,
// Vector Shifts.
// VSHL : Vector Shift
-defm VSHLs : N3VInt_QHSD<0, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
- IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
-defm VSHLu : N3VInt_QHSD<1, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
- IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
+defm VSHLs : N3VInt_QHSD2<0,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
+defm VSHLu : N3VInt_QHSD2<1,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
// VSHL : Vector Shift Left (Immediate)
-defm VSHLi : N2VSh_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VSHLi : N2VSh_QHSD2<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
// VSHR : Vector Shift Right (Immediate)
defm VSHRs : N2VSh_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s", NEONvshrs>;
defm VSHRu : N2VSh_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u", NEONvshru>;
// VSHLL : Vector Shift Left Long
+// (disassembly note: this has a different interpretation of the shift amont)
defm VSHLLs : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s", NEONvshlls>;
+// (disassembly note: this has a different interpretation of the shift amont)
defm VSHLLu : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u", NEONvshllu>;
// VSHLL : Vector Shift Left Long (with maximum shift count)
@@ -2350,6 +2644,8 @@ class N2VLShMax<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
: N2VLSh<op24, op23, op11_8, op7, op6, op4, OpcodeStr, Dt,
ResTy, OpTy, OpNode> {
let Inst{21-16} = op21_16;
+ let NSF = NVdVmImmVSHLLFrm; // For disassembly.
+ let NSForm = NVdVmImmVSHLLFrm.Value; // For disassembly.
}
def VSHLLi8 : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8",
v8i16, v8i8, NEONvshlli>;
@@ -2363,10 +2659,10 @@ defm VSHRN : N2VNSh_HSD<0,1,0b1000,0,0,1, IIC_VSHLiD, "vshrn", "i",
NEONvshrn>;
// VRSHL : Vector Rounding Shift
-defm VRSHLs : N3VInt_QHSD<0,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vrshl", "s", int_arm_neon_vrshifts,0>;
-defm VRSHLu : N3VInt_QHSD<1,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vrshl", "u", int_arm_neon_vrshiftu,0>;
+defm VRSHLs : N3VInt_QHSD2<0,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q,"vrshl", "s", int_arm_neon_vrshifts,0>;
+defm VRSHLu : N3VInt_QHSD2<1,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q,"vrshl", "u", int_arm_neon_vrshiftu,0>;
// VRSHR : Vector Rounding Shift Right
defm VRSHRs : N2VSh_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s", NEONvrshrs>;
defm VRSHRu : N2VSh_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u", NEONvrshru>;
@@ -2376,15 +2672,18 @@ defm VRSHRN : N2VNSh_HSD<0, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vrshrn", "i",
NEONvrshrn>;
// VQSHL : Vector Saturating Shift
-defm VQSHLs : N3VInt_QHSD<0,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
-defm VQSHLu : N3VInt_QHSD<1,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
+defm VQSHLs : N3VInt_QHSD2<0,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
+defm VQSHLu : N3VInt_QHSD2<1,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
// VQSHL : Vector Saturating Shift Left (Immediate)
-defm VQSHLsi : N2VSh_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
-defm VQSHLui : N2VSh_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLsi : N2VSh_QHSD2<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLui : N2VSh_QHSD2<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
// VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned)
-defm VQSHLsu : N2VSh_QHSD<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLsu : N2VSh_QHSD2<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
// VQSHRN : Vector Saturating Shift Right and Narrow
defm VQSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s",
@@ -2397,12 +2696,12 @@ defm VQSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 0, 1, IIC_VSHLi4D, "vqshrun", "s",
NEONvqshrnsu>;
// VQRSHL : Vector Saturating Rounding Shift
-defm VQRSHLs : N3VInt_QHSD<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqrshl", "s",
- int_arm_neon_vqrshifts, 0>;
-defm VQRSHLu : N3VInt_QHSD<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqrshl", "u",
- int_arm_neon_vqrshiftu, 0>;
+defm VQRSHLs : N3VInt_QHSD2<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl", "s",
+ int_arm_neon_vqrshifts, 0>;
+defm VQRSHLu : N3VInt_QHSD2<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl", "u",
+ int_arm_neon_vqrshiftu, 0>;
// VQRSHRN : Vector Saturating Rounding Shift Right and Narrow
defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s",
@@ -2422,7 +2721,8 @@ defm VRSRAs : N2VShAdd_QHSD<0, 1, 0b0011, 1, "vrsra", "s", NEONvrshrs>;
defm VRSRAu : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshru>;
// VSLI : Vector Shift Left and Insert
-defm VSLI : N2VShIns_QHSD<1, 1, 0b0101, 1, "vsli", NEONvsli>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VSLI : N2VShIns_QHSD2<1, 1, 0b0101, 1, "vsli", NEONvsli>;
// VSRI : Vector Shift Right and Insert
defm VSRI : N2VShIns_QHSD<1, 1, 0b0100, 1, "vsri", NEONvsri>;
@@ -2518,10 +2818,13 @@ def VSWPq : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 1, 0,
// VMOV : Vector Move (Register)
+// Mark these instructions as 2-register instructions to help the disassembler.
+let NSF = NVdVmImmFrm, NSForm = NVdVmImmFrm.Value in {
def VMOVDneon: N3VX<0, 0, 0b10, 0b0001, 0, 1, (outs DPR:$dst), (ins DPR:$src),
IIC_VMOVD, "vmov", "$dst, $src", "", []>;
def VMOVQ : N3VX<0, 0, 0b10, 0b0001, 1, 1, (outs QPR:$dst), (ins QPR:$src),
IIC_VMOVD, "vmov", "$dst, $src", "", []>;
+}
// VMOV : Vector Move (Immediate)
@@ -2762,6 +3065,7 @@ def VDUPfq : NVDup<0b11101010, 0b1011, 0b00, (outs QPR:$dst), (ins GPR:$src),
// VDUP : Vector Duplicate Lane (from scalar to all elements)
+let NSF = NVdVmImmVDupLaneFrm, NSForm = NVdVmImmVDupLaneFrm.Value in {
class VDUPLND<bits<2> op19_18, bits<2> op17_16,
string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, op17_16, 0b11000, 0, 0,
@@ -2775,6 +3079,7 @@ class VDUPLNQ<bits<2> op19_18, bits<2> op17_16, string OpcodeStr, string Dt,
(outs QPR:$dst), (ins DPR:$src, nohash_imm:$lane), IIC_VMOVD,
OpcodeStr, Dt, "$dst, $src[$lane]", "",
[(set QPR:$dst, (ResTy (NEONvduplane (OpTy DPR:$src), imm:$lane)))]>;
+}
// Inst{19-16} is partially specified depending on the element size.
@@ -2843,24 +3148,37 @@ defm VMOVLu : N2VLInt_QHS<0b11,0b10100,0,1, "vmovl", "u",
// Vector Conversions.
+let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
+class N2VDX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VD<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
+ ResTy, OpTy, OpNode>;
+class N2VQX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VQ<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
+ ResTy, OpTy, OpNode>;
+}
+
// VCVT : Vector Convert Between Floating-Point and Integers
-def VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
- v2i32, v2f32, fp_to_sint>;
-def VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
- v2i32, v2f32, fp_to_uint>;
-def VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
- v2f32, v2i32, sint_to_fp>;
-def VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
- v2f32, v2i32, uint_to_fp>;
-
-def VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
- v4i32, v4f32, fp_to_sint>;
-def VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
- v4i32, v4f32, fp_to_uint>;
-def VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
- v4f32, v4i32, sint_to_fp>;
-def VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
- v4f32, v4i32, uint_to_fp>;
+def VCVTf2sd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v2i32, v2f32, fp_to_sint>;
+def VCVTf2ud : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v2i32, v2f32, fp_to_uint>;
+def VCVTs2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v2f32, v2i32, sint_to_fp>;
+def VCVTu2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v2f32, v2i32, uint_to_fp>;
+
+def VCVTf2sq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v4i32, v4f32, fp_to_sint>;
+def VCVTf2uq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v4i32, v4f32, fp_to_uint>;
+def VCVTs2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v4f32, v4i32, sint_to_fp>;
+def VCVTu2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v4f32, v4i32, uint_to_fp>;
// VCVT : Vector Convert Between Floating-Point and Fixed-Point.
def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
@@ -2945,6 +3263,8 @@ def VREV16q8 : VREV16Q<0b00, "vrev16", "8", v16i8>;
// VEXT : Vector Extract
+let NSF = NVdVnVmImmVectorExtractFrm,
+ NSForm = NVdVnVmImmVectorExtractFrm.Value in {
class VEXTd<string OpcodeStr, string Dt, ValueType Ty>
: N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$dst),
(ins DPR:$lhs, DPR:$rhs, i32imm:$index), IIC_VEXTD,
@@ -2958,6 +3278,7 @@ class VEXTq<string OpcodeStr, string Dt, ValueType Ty>
OpcodeStr, Dt, "$dst, $lhs, $rhs, $index", "",
[(set QPR:$dst, (Ty (NEONvext (Ty QPR:$lhs),
(Ty QPR:$rhs), imm:$index)))]>;
+}
def VEXTd8 : VEXTd<"vext", "8", v8i8>;
def VEXTd16 : VEXTd<"vext", "16", v4i16>;
@@ -3001,6 +3322,8 @@ def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip", "32">;
// Vector Table Lookup and Table Extension.
+let NSF = VTBLFrm, NSForm = VTBLFrm.Value in {
+
// VTBL : Vector Table Lookup
def VTBL1
: N3V<1,1,0b11,0b1000,0,0, (outs DPR:$dst),
@@ -3057,6 +3380,8 @@ def VTBX4
DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src)))]>;
} // hasExtraSrcRegAllocReq = 1
+} // End of "let NSF = VTBLFrm, ..."
+
//===----------------------------------------------------------------------===//
// NEON instructions for single-precision FP math
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
index 4a4437ed21..ea299a06a9 100644
--- a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
+++ b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
@@ -120,7 +120,7 @@ namespace {
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
- void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum) {}
+ void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
void printCPSOptionOperand(const MachineInstr *MI, int OpNum) {}
@@ -431,16 +431,16 @@ void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
- if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
+ if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
- << (char)ARM_AM::getAM2Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
- << (char)ARM_AM::getAM2Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
@@ -458,12 +458,12 @@ void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
- << (char)ARM_AM::getAM2Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< ImmOffs;
return;
}
- O << (char)ARM_AM::getAM2Op(MO2.getImm())
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
@@ -490,7 +490,7 @@ void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
- << (char)ARM_AM::getAM3Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
<< ImmOffs;
O << "]";
}
@@ -508,7 +508,7 @@ void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
- << (char)ARM_AM::getAM3Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
<< ImmOffs;
}
@@ -558,7 +558,7 @@ void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
- << (char)ARM_AM::getAM5Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
@@ -594,7 +594,7 @@ void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
- O << "[pc, +" << getRegisterName(MO1.getReg()) << "]";
+ O << "[pc, " << getRegisterName(MO1.getReg()) << "]";
}
void
@@ -617,10 +617,11 @@ void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
+ unsigned CondBit0 = Mask >> 4 & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
- bool T = (Mask & (1 << Pos)) == 0;
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
O << 't';
else
@@ -652,7 +653,7 @@ ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
if (MO3.getReg())
O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm())
- O << ", #+" << ImmOffs * Scale;
+ O << ", #" << ImmOffs * Scale;
O << "]";
}
@@ -674,7 +675,7 @@ void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
- O << ", #+" << ImmOffs*4;
+ O << ", #" << ImmOffs*4;
O << "]";
}
@@ -710,7 +711,7 @@ void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
- O << ", #+" << OffImm;
+ O << ", #" << OffImm;
O << "]";
}
@@ -726,7 +727,7 @@ void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
- O << ", #+" << OffImm;
+ O << ", #" << OffImm;
O << "]";
}
@@ -742,7 +743,7 @@ void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
if (OffImm < 0)
O << ", #-" << -OffImm * 4;
else if (OffImm > 0)
- O << ", #+" << OffImm * 4;
+ O << ", #" << OffImm * 4;
O << "]";
}
@@ -754,7 +755,18 @@ void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
- O << "#+" << OffImm;
+ O << "#" << OffImm;
+}
+
+void ARMAsmPrinter::printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI,
+ int OpNum) {
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << "#" << OffImm * 4;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
diff --git a/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp b/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
index d4b213a21d..f8235c95b8 100644
--- a/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
+++ b/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
@@ -28,7 +28,165 @@ using namespace llvm;
#undef MachineInstr
#undef ARMAsmPrinter
-void ARMInstPrinter::printInst(const MCInst *MI) { printInstruction(MI); }
+static unsigned NextReg(unsigned Reg) {
+ switch (Reg) {
+ case ARM::D0:
+ return ARM::D1;
+ case ARM::D1:
+ return ARM::D2;
+ case ARM::D2:
+ return ARM::D3;
+ case ARM::D3:
+ return ARM::D4;
+ case ARM::D4:
+ return ARM::D5;
+ case ARM::D5:
+ return ARM::D6;
+ case ARM::D6:
+ return ARM::D7;
+ case ARM::D7:
+ return ARM::D8;
+ case ARM::D8:
+ return ARM::D9;
+ case ARM::D9:
+ return ARM::D10;
+ case ARM::D10:
+ return ARM::D11;
+ case ARM::D11:
+ return ARM::D12;
+ case ARM::D12:
+ return ARM::D13;
+ case ARM::D13:
+ return ARM::D14;
+ case ARM::D14:
+ return ARM::D15;
+ case ARM::D15:
+ return ARM::D16;
+ case ARM::D16:
+ return ARM::D17;
+ case ARM::D17:
+ return ARM::D18;
+ case ARM::D18:
+ return ARM::D19;
+ case ARM::D19:
+ return ARM::D20;
+ case ARM::D20:
+ return ARM::D21;
+ case ARM::D21:
+ return ARM::D22;
+ case ARM::D22:
+ return ARM::D23;
+ case ARM::D23:
+ return ARM::D24;
+ case ARM::D24:
+ return ARM::D25;
+ case ARM::D25:
+ return ARM::D26;
+ case ARM::D26:
+ return ARM::D27;
+ case ARM::D27:
+ return ARM::D28;
+ case ARM::D28:
+ return ARM::D29;
+ case ARM::D29:
+ return ARM::D30;
+ case ARM::D30:
+ return ARM::D31;
+
+ default:
+ assert(0 && "Unexpected register enum");
+ }
+}
+
+void ARMInstPrinter::printInst(const MCInst *MI) {
+ // Check for MOVs and print canonical forms, instead.
+ if (MI->getOpcode() == ARM::MOVs) {
+ const MCOperand &Dst = MI->getOperand(0);
+ const MCOperand &MO1 = MI->getOperand(1);
+ const MCOperand &MO2 = MI->getOperand(2);
+ const MCOperand &MO3 = MI->getOperand(3);
+
+ O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
+ printSBitModifierOperand(MI, 6);
+ printPredicateOperand(MI, 4);
+
+ O << '\t' << getRegisterName(Dst.getReg())
+ << ", " << getRegisterName(MO1.getReg());
+
+ if (ARM_AM::getSORegShOp(MO3.getImm()) == ARM_AM::rrx)
+ return;
+
+ O << ", ";
+
+ if (MO2.getReg()) {
+ O << getRegisterName(MO2.getReg());
+ assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
+ } else {
+ O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
+ }
+ return;
+ }
+
+ // A8.6.123 PUSH
+ if ((MI->getOpcode() == ARM::STM || MI->getOpcode() == ARM::t2STM_UPD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const unsigned IdxOffset = MI->getOpcode() == ARM::STM ? 0 : 1;
+ const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
+ if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::db) {
+ O << '\t' << "push";
+ printPredicateOperand(MI, IdxOffset + 2);
+ O << '\t';
+ printRegisterList(MI, IdxOffset + 4);
+ return;
+ }
+ }
+
+ // A8.6.122 POP
+ if ((MI->getOpcode() == ARM::LDM || MI->getOpcode() == ARM::t2LDM_UPD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const unsigned IdxOffset = MI->getOpcode() == ARM::LDM ? 0 : 1;
+ const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
+ if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::ia) {
+ O << '\t' << "pop";
+ printPredicateOperand(MI, IdxOffset + 2);
+ O << '\t';
+ printRegisterList(MI, IdxOffset + 4);
+ return;
+ }
+ }
+
+ // A8.6.355 VPUSH
+ if ((MI->getOpcode() == ARM::VSTMS || MI->getOpcode() == ARM::VSTMD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const MCOperand &MO1 = MI->getOperand(1);
+ if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::db) {
+ O << '\t' << "vpush";
+ printPredicateOperand(MI, 2);
+ O << '\t';
+ printRegisterList(MI, 4);
+ return;
+ }
+ }
+
+ // A8.6.354 VPOP
+ if ((MI->getOpcode() == ARM::VLDMS || MI->getOpcode() == ARM::VLDMD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const MCOperand &MO1 = MI->getOperand(1);
+ if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::ia) {
+ O << '\t' << "vpop";
+ printPredicateOperand(MI, 2);
+ O << '\t';
+ printRegisterList(MI, 4);
+ return;
+ }
+ }
+
+ printInstruction(MI);
+ }
void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
const char *Modifier) {
@@ -36,6 +194,9 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
if (Op.isReg()) {
unsigned Reg = Op.getReg();
if (Modifier && strcmp(Modifier, "dregpair") == 0) {
+ O << '{' << getRegisterName(Reg) << ", "
+ << getRegisterName(NextReg(Reg)) << '}';
+#if 0
// FIXME: Breaks e.g. ARM/vmul.ll.
assert(0);
/*
@@ -44,6 +205,7 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
O << '{'
<< getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
<< '}';*/
+#endif
} else if (Modifier && strcmp(Modifier, "lane") == 0) {
assert(0);
/*
@@ -56,7 +218,9 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
O << getRegisterName(Reg);
}
} else if (Op.isImm()) {
- assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
+ bool isCallOp = Modifier && !strcmp(Modifier, "call");
+ assert(isCallOp ||
+ ((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported"));
O << '#' << Op.getImm();
} else {
assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
@@ -142,17 +306,17 @@ void ARMInstPrinter::printAddrMode2Operand(const MCInst *MI, unsigned Op) {
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
- if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
+ if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
- << (char)ARM_AM::getAM2Op(MO3.getImm())
- << ARM_AM::getAM2Offset(MO3.getImm());
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
+ << ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
- << (char)ARM_AM::getAM2Op(MO3.getImm())
- << getRegisterName(MO2.getReg());
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
+ << getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
@@ -169,11 +333,14 @@ void ARMInstPrinter::printAddrMode2OffsetOperand(const MCInst *MI,
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
- O << '#' << (char)ARM_AM::getAM2Op(MO2.getImm()) << ImmOffs;
+ O << '#'
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
+ << ImmOffs;
return;
}
- O << (char)ARM_AM::getAM2Op(MO2.getImm()) << getRegisterName(MO1.getReg());
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
+ << getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
@@ -196,8 +363,8 @@ void ARMInstPrinter::printAddrMode3Operand(const MCInst *MI, unsigned OpNum) {
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
- << (char)ARM_AM::getAM3Op(MO3.getImm())
- << ImmOffs;
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
+ << ImmOffs;
O << ']';
}
@@ -214,9 +381,9 @@ void ARMInstPrinter::printAddrMode3OffsetOperand(const MCInst *MI,
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
- O << "#"
- << (char)ARM_AM::getAM3Op(MO2.getImm())
- << ImmOffs;
+ O << '#'
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
+ << ImmOffs;
}
@@ -264,7 +431,7 @@ void ARMInstPrinter::printAddrMode5Operand(const MCInst *MI, unsigned OpNum,
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
- << (char)ARM_AM::getAM5Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
@@ -303,14 +470,56 @@ void ARMInstPrinter::printBitfieldInvMaskImmOperand (const MCInst *MI,
void ARMInstPrinter::printRegisterList(const MCInst *MI, unsigned OpNum) {
O << "{";
- // Always skip the first operand, it's the optional (and implicit writeback).
- for (unsigned i = OpNum+1, e = MI->getNumOperands(); i != e; ++i) {
- if (i != OpNum+1) O << ", ";
+ for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
+ if (i != OpNum) O << ", ";
O << getRegisterName(MI->getOperand(i).getReg());
}
O << "}";
}
+void ARMInstPrinter::printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned option = Op.getImm();
+ unsigned mode = option & 31;
+ bool changemode = option >> 5 & 1;
+ unsigned AIF = option >> 6 & 7;
+ unsigned imod = option >> 9 & 3;
+ if (imod == 2)
+ O << "ie";
+ else if (imod == 3)
+ O << "id";
+ O << '\t';
+ if (imod > 1) {
+ if (AIF & 4) O << 'a';
+ if (AIF & 2) O << 'i';
+ if (AIF & 1) O << 'f';
+ if (AIF > 0 && changemode) O << ", ";
+ }
+ if (changemode)
+ O << '#' << mode;
+}
+
+void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned Mask = Op.getImm();
+ if (Mask) {
+ O << '_';
+ if (Mask & 8) O << 'f';
+ if (Mask & 4) O << 's';
+ if (Mask & 2) O << 'x';
+ if (Mask & 1) O << 'c';
+ }
+}
+
+void ARMInstPrinter::printNegZeroOperand(const MCInst *MI, unsigned OpNum){
+ const MCOperand &Op = MI->getOperand(OpNum);
+ O << '#';
+ if (Op.getImm() < 0)
+ O << '-' << (-Op.getImm() - 1);
+ else
+ O << Op.getImm();
+}
+
void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
@@ -352,3 +561,191 @@ void ARMInstPrinter::printPCLabel(const MCInst *MI, unsigned OpNum) {
void ARMInstPrinter::printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum) {
O << "#" << MI->getOperand(OpNum).getImm() * 4;
}
+
+void ARMInstPrinter::printThumbITMask(const MCInst *MI, unsigned OpNum) {
+ // (3 - the number of trailing zeros) is the number of then / else.
+ unsigned Mask = MI->getOperand(OpNum).getImm();
+ unsigned CondBit0 = Mask >> 4 & 1;
+ unsigned NumTZ = CountTrailingZeros_32(Mask);
+ assert(NumTZ <= 3 && "Invalid IT mask!");
+ for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
+ if (T)
+ O << 't';
+ else
+ O << 'e';
+ }
+}
+
+void ARMInstPrinter::printThumbAddrModeRROperand(const MCInst *MI, unsigned Op)
+{
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << "[" << getRegisterName(MO1.getReg());
+ O << ", " << getRegisterName(MO2.getReg()) << "]";
+}
+
+void ARMInstPrinter::printThumbAddrModeRI5Operand(const MCInst *MI, unsigned Op,
+ unsigned Scale) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, Op);
+ return;
+ }
+
+ O << "[" << getRegisterName(MO1.getReg());
+ if (MO3.getReg())
+ O << ", " << getRegisterName(MO3.getReg());
+ else if (unsigned ImmOffs = MO2.getImm())
+ O << ", #" << ImmOffs * Scale;
+ O << "]";
+}
+
+void ARMInstPrinter::printThumbAddrModeS1Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 1);
+}
+
+void ARMInstPrinter::printThumbAddrModeS2Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 2);
+}
+
+void ARMInstPrinter::printThumbAddrModeS4Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 4);
+}
+
+void ARMInstPrinter::printThumbAddrModeSPOperand(const MCInst *MI,unsigned Op) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << "[" << getRegisterName(MO1.getReg());
+ if (unsigned ImmOffs = MO2.getImm())
+ O << ", #" << ImmOffs*4;
+ O << "]";
+}
+
+void ARMInstPrinter::printTBAddrMode(const MCInst *MI, unsigned OpNum) {
+ O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
+ if (MI->getOpcode() == ARM::t2TBH)
+ O << ", lsl #1";
+ O << ']';
+}
+
+// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
+// register with shift forms.
+// REG 0 0 - e.g. R5
+// REG IMM, SH_OPC - e.g. R5, LSL #3
+void ARMInstPrinter::printT2SOOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ unsigned Reg = MO1.getReg();
+ O << getRegisterName(Reg);
+
+ // Print the shift opc.
+ O << ", "
+ << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
+ << " ";
+
+ assert(MO2.isImm() && "Not a valid t2_so_reg value!");
+ O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
+}
+
+void ARMInstPrinter::printT2AddrModeImm12Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ unsigned OffImm = MO2.getImm();
+ if (OffImm) // Don't print +0.
+ O << ", #" << OffImm;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm();
+ // Don't print +0.
+ if (OffImm < 0)
+ O << ", #-" << -OffImm;
+ else if (OffImm > 0)
+ O << ", #" << OffImm;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8s4Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << ", #-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << ", #" << OffImm * 4;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8OffsetOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm();
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm;
+ else if (OffImm > 0)
+ O << "#" << OffImm;
+}
+
+void ARMInstPrinter::printT2AddrModeImm8s4OffsetOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << "#" << OffImm * 4;
+}
+
+void ARMInstPrinter::printT2AddrModeSoRegOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+ const MCOperand &MO3 = MI->getOperand(OpNum+2);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ assert(MO2.getReg() && "Invalid so_reg load / store address!");
+ O << ", " << getRegisterName(MO2.getReg());
+
+ unsigned ShAmt = MO3.getImm();
+ if (ShAmt) {
+ assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
+ O << ", lsl #" << ShAmt;
+ }
+ O << "]";
+}
+
+void ARMInstPrinter::printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum) {
+ O << '#' << MI->getOperand(OpNum).getImm();
+}
+
+void ARMInstPrinter::printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum) {
+ O << '#' << MI->getOperand(OpNum).getImm();
+}
+
diff --git a/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h b/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
index 9a3cbc3f5d..ceb641d95b 100644
--- a/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
+++ b/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
@@ -54,26 +54,26 @@ public:
void printBitfieldInvMaskImmOperand(const MCInst *MI, unsigned OpNum);
void printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum);
- void printThumbITMask(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum) {}
+ void printThumbITMask(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum);
void printThumbAddrModeRI5Operand(const MCInst *MI, unsigned OpNum,
- unsigned Scale) {}
- void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum) {}
+ unsigned Scale);
+ void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum);
- void printT2SOOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum) {}
+ void printT2SOOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum);
- void printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {}
- void printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {}
- void printNegZeroOperand(const MCInst *MI, unsigned OpNum) {}
+ void printCPSOptionOperand(const MCInst *MI, unsigned OpNum);
+ void printMSRMaskOperand(const MCInst *MI, unsigned OpNum);
+ void printNegZeroOperand(const MCInst *MI, unsigned OpNum);
void printPredicateOperand(const MCInst *MI, unsigned OpNum);
void printMandatoryPredicateOperand(const MCInst *MI, unsigned OpNum);
void printSBitModifierOperand(const MCInst *MI, unsigned OpNum);
@@ -82,10 +82,10 @@ public:
const char *Modifier);
void printJTBlockOperand(const MCInst *MI, unsigned OpNum) {}
void printJT2BlockOperand(const MCInst *MI, unsigned OpNum) {}
- void printTBAddrMode(const MCInst *MI, unsigned OpNum) {}
+ void printTBAddrMode(const MCInst *MI, unsigned OpNum);
void printNoHashImmediate(const MCInst *MI, unsigned OpNum);
- void printVFPf32ImmOperand(const MCInst *MI, int OpNum) {}
- void printVFPf64ImmOperand(const MCInst *MI, int OpNum) {}
+ void printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum);
+ void printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum);
void printHex8ImmOperand(const MCInst *MI, int OpNum) {}
void printHex16ImmOperand(const MCInst *MI, int OpNum) {}
void printHex32ImmOperand(const MCInst *MI, int OpNum) {}
diff --git a/lib/Target/ARM/Disassembler/ARMDisassembler.cpp b/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
new file mode 100644
index 0000000000..52010cd057
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
@@ -0,0 +1,513 @@
+//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code to translate the data produced by the decoder into MCInsts.
+// Documentation for the disassembler can be found in ARMDisassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm-disassembler"
+
+#include "ARMDisassembler.h"
+#include "ARMDisassemblerCore.h"
+
+#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+/// ARMDisassemblerTables.inc - ARMDisassemblerTables.inc is tblgen'ed from
+/// RISCDisassemblerEmitter.cpp TableGen backend. It contains:
+///
+/// o Mappings from opcode to ARM/Thumb instruction format
+///
+/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
+/// for an ARM instruction.
+///
+/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
+/// function for a Thumb instruction.
+///
+#include "../ARMGenDisassemblerTables.inc"
+
+namespace llvm {
+
+namespace ARMDisassembler {
+
+/// showBitVector - Use the raw_ostream to log a diagnostic message describing
+/// the inidividual bits of the instruction. This is a sample output:
+///
+/// 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+/// -------------------------------------------------------------------------------------------------
+/// | 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0|
+/// -------------------------------------------------------------------------------------------------
+///
+static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
+ os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 \n";
+ os << "-------------------------------------------------------------------------------------------------\n";
+ os << '|';
+ for (unsigned i = 32; i != 0; --i) {
+ if (insn >> (i - 1) & 0x01)
+ os << " 1";
+ else
+ os << " 0";
+ os << (i%4 == 1 ? '|' : ':');
+ }
+ os << '\n';
+ os << "-------------------------------------------------------------------------------------------------\n";
+ os << '\n';
+}
+
+/// decodeARMInstruction is a decorator function which tries special cases of
+/// instruction matching before calling the auto-generated decoder function.
+static unsigned decodeARMInstruction(uint32_t &insn) {
+ if (slice(insn, 31, 28) == 15)
+ goto AutoGenedDecoder;
+
+ // Special case processing, if any, goes here....
+
+ // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
+ // The insufficient encoding information of the combined instruction confuses
+ // the decoder wrt BFC/BFI. Therefore, we try to recover here.
+ // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
+ // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
+ if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
+ if (slice(insn, 3, 0) == 15)
+ return ARM::BFC;
+ else
+ return ARM::BFI;
+ }
+
+ // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
+ // As a result, the decoder fails to decode UMULL properly.
+ if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
+ return ARM::UMULL;
+ }
+
+ // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
+ // As a result, the decoder fails to decode SBFX properly.
+ if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
+ return ARM::SBFX;
+
+ // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
+ // As a result, the decoder fails to decode UBFX properly.
+ if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
+ return ARM::UBFX;
+
+ // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
+ // As a result, the decoder fails to deocode SSAT properly.
+ if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
+ return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr;
+
+ // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
+ // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
+ if (slice(insn, 27, 24) == 0) {
+ switch (slice(insn, 21, 20)) {
+ case 2:
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ return ARM::STRHT;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 3:
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ return ARM::LDRHT;
+ case 13:
+ return ARM::LDRSBT;
+ case 15:
+ return ARM::LDRSHT;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+ // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
+ // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
+ // properly.
+ if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
+ unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::STRH;
+ case 3: // Pre-indexed
+ return ARM::STRH_PRE;
+ case 0: // Post-indexed
+ return ARM::STRH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 13:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRD;
+ case 3: // Pre-indexed
+ return ARM::LDRD_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRD_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 15:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::STRD;
+ case 3: // Pre-indexed
+ return ARM::STRD_PRE;
+ case 0: // Post-indexed
+ return ARM::STRD_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+ // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
+ // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
+ // properly.
+ if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
+ unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRH;
+ case 3: // Pre-indexed
+ return ARM::LDRH_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 13:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRSB;
+ case 3: // Pre-indexed
+ return ARM::LDRSB_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRSB_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 15:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRSH;
+ case 3: // Pre-indexed
+ return ARM::LDRSH_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRSH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+AutoGenedDecoder:
+ // Calling the auto-generated decoder function.
+ return decodeInstruction(insn);
+}
+
+// Helper function for special case handling of LDR (literal) and friends.
+// See, for example, A6.3.7 Load word: Table A6-18 Load word.
+// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
+// before passing it on.
+static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return Opcode; // Return unmorphed opcode.
+
+ case ARM::t2LDRDi8:
+ return ARM::t2LDRDpci;
+
+ case ARM::t2LDR_POST: case ARM::t2LDR_PRE:
+ case ARM::t2LDRi12: case ARM::t2LDRi8:
+ case ARM::t2LDRs:
+ return ARM::t2LDRpci;
+
+ case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE:
+ case ARM::t2LDRBi12: case ARM::t2LDRBi8:
+ case ARM::t2LDRBs:
+ return ARM::t2LDRBpci;
+
+ case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE:
+ case ARM::t2LDRHi12: case ARM::t2LDRHi8:
+ case ARM::t2LDRHs:
+ return ARM::t2LDRHpci;
+
+ case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSBi12: case ARM::t2LDRSBi8:
+ case ARM::t2LDRSBs:
+ return ARM::t2LDRSBpci;
+
+ case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSHi12: case ARM::t2LDRSHi8:
+ case ARM::t2LDRSHs:
+ return ARM::t2LDRSHpci;
+ }
+}
+
+/// decodeThumbSideEffect is a decorator function which can potentially twiddle
+/// the instruction or morph the returned opcode under Thumb2.
+///
+/// First it checks whether the insn is a NEON or VFP instr; if true, bit
+/// twiddling could be performed on insn to turn it into an ARM NEON/VFP
+/// equivalent instruction and decodeInstruction is called with the transformed
+/// insn.
+///
+/// Next, there is special handling for Load byte/halfword/word instruction by
+/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
+/// Thumb2 instruction. See comments below for further details.
+///
+/// Finally, one last check is made to see whether the insn is a NEON/VFP and
+/// decodeInstruction(insn) is invoked on the original insn.
+///
+/// Otherwise, decodeThumbInstruction is called with the original insn.
+static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) {
+ if (IsThumb2) {
+ uint16_t op1 = slice(insn, 28, 27);
+ uint16_t op2 = slice(insn, 26, 20);
+
+ // A6.3 32-bit Thumb instruction encoding
+ // Table A6-9 32-bit Thumb instruction encoding
+
+ // The coprocessor instructions of interest are transformed to their ARM
+ // equivalents.
+
+ // --------- Transform Begin Marker ---------
+ if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
+ // A7.4 Advanced SIMD data-processing instructions
+ // U bit of Thumb corresponds to Inst{24} of ARM.
+ uint16_t U = slice(op1, 1, 1);
+
+ // Inst{28-24} of ARM = {1,0,0,1,U};
+ uint16_t bits28_24 = 9 << 1 | U;
+ DEBUG(showBitVector(errs(), insn));
+ setSlice(insn, 28, 24, bits28_24);
+ return decodeInstruction(insn);
+ }
+
+ if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
+ // A7.7 Advanced SIMD element or structure load/store instructions
+ // Inst{27-24} of Thumb = 0b1001
+ // Inst{27-24} of ARM = 0b0100
+ DEBUG(showBitVector(errs(), insn));
+ setSlice(insn, 27, 24, 4);
+ return decodeInstruction(insn);
+ }
+ // --------- Transform End Marker ---------
+
+ // See, for example, A6.3.7 Load word: Table A6-18 Load word.
+ // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
+ // before passing it on to our delegate.
+ if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
+ && slice(insn, 19, 16) == 15)
+ return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
+
+ // One last check for NEON/VFP instructions.
+ if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
+ return decodeInstruction(insn);
+
+ // Fall through.
+ }
+
+ return decodeThumbInstruction(insn);
+}
+
+static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2PLDi12: case ARM::t2PLDi8:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ case ARM::t2PLIi12: case ARM::t2PLIi8:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return true;
+ }
+}
+
+static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return 0;
+ case ARM::t2PLDi12: case ARM::t2PLDi8:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ return ARM::t2PLDpci;
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ return ARM::t2PLDWpci;
+ case ARM::t2PLIi12: case ARM::t2PLIi8:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return ARM::t2PLIpci;
+ }
+}
+
+//
+// Public interface for the disassembler
+//
+
+bool ARMDisassembler::getInstruction(MCInst &MI,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os) const {
+ // The machine instruction.
+ uint32_t insn;
+
+ // We want to read exactly 4 bytes of data.
+ if (Region.readBytes(Address, 4, (uint8_t*)&insn, NULL) == -1)
+ return false;
+
+ unsigned Opcode = decodeARMInstruction(insn);
+ ARMFormat Format = ARMFormats[Opcode];
+ NSFormat NSF = NSFormats[Opcode];
+ Size = 4;
+
+ DEBUG({
+ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
+ << " Format=" << stringForARMFormat(Format) << " NSFormat="
+ << stringForNSFormat(NSF) << '\n';
+ showBitVector(errs(), insn);
+ });
+
+ AbstractARMMCBuilder *Builder =
+ ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
+
+ if (!Builder)
+ return false;
+
+ if (!Builder->Build(MI, insn))
+ return false;
+
+ delete Builder;
+
+ return true;
+}
+
+bool ThumbDisassembler::getInstruction(MCInst &MI,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os) const {
+ // The machine instruction.
+ uint32_t insn = 0;
+ uint32_t insn1 = 0;
+
+ // A6.1 Thumb instruction set encoding
+ //
+ // If bits [15:11] of the halfword being decoded take any of the following
+ // values, the halfword is the first halfword of a 32-bit instruction:
+ // o 0b11101
+ // o 0b11110
+ // o 0b11111.
+ //
+ // Otherwise, the halfword is a 16-bit instruction.
+
+ // Read 2 bytes of data first.
+ if (Region.readBytes(Address, 2, (uint8_t*)&insn, NULL) == -1)
+ return false;
+
+ unsigned bits15_11 = slice(insn, 15, 11);
+ bool IsThumb2 = false;
+
+ // 32-bit instructions if the bits [15:11] of the halfword matches
+ // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
+ if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
+ IsThumb2 = true;
+ if (Region.readBytes(Address + 2, 2, (uint8_t*)&insn1, NULL) == -1)
+ return false;
+ insn = (insn << 16 | insn1);
+ }
+
+ // The insn could potentially be bit-twiddled in order to be decoded as an ARM
+ // NEON/VFP opcode. In such case, the modified insn is later disassembled as
+ // an ARM NEON/VFP instruction.
+ //
+ // This is a short term solution for lack of encoding bits specified for the
+ // Thumb2 NEON/VFP instructions. The long term solution could be adding some
+ // infrastructure to have each instruction support more than one encodings.
+ // Which encoding is used would be based on which subtarget the compiler/
+ // disassembler is working with at the time. This would allow the sharing of
+ // the NEON patterns between ARM and Thumb2, as well as potential greater
+ // sharing between the regular ARM instructions and the 32-bit wide Thumb2
+ // instructions as well.
+ unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
+
+ // A8.6.117/119/120/121.
+ // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
+ if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
+ Opcode = T2Morph2Preload2PCI(Opcode);
+
+ ARMFormat Format = ARMFormats[Opcode];
+ NSFormat NSF = NSFormats[Opcode];
+ Size = IsThumb2 ? 4 : 2;
+
+ DEBUG({
+ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
+ << " Format=" << stringForARMFormat(Format) << " NSFormat="
+ << stringForNSFormat(NSF) << '\n';
+ showBitVector(errs(), insn);
+ });
+
+ AbstractARMMCBuilder *Builder =
+ ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
+
+ if (!Builder)
+ return false;
+
+ if (!Builder->Build(MI, insn))
+ return false;
+
+ delete Builder;
+
+ return true;
+}
+
+} // namespace ARM Disassembler
+
+static const MCDisassembler *createARMDisassembler(const Target &T) {
+ return new ARMDisassembler::ARMDisassembler;
+}
+
+static const MCDisassembler *createThumbDisassembler(const Target &T) {
+ return new ARMDisassembler::ThumbDisassembler;
+}
+
+extern "C" void LLVMInitializeARMDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheARMTarget,
+ createARMDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
+ createThumbDisassembler);
+}
+
+} // namespace llvm
diff --git a/lib/Target/ARM/Disassembler/ARMDisassembler.h b/lib/Target/ARM/Disassembler/ARMDisassembler.h
new file mode 100644
index 0000000000..85bc8b3d2c
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/ARMDisassembler.h
@@ -0,0 +1,71 @@
+//===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMDISASSEMBLER_H
+#define ARMDISASSEMBLER_H
+
+#include "llvm/MC/MCDisassembler.h"
+
+namespace llvm {
+
+class MCInst;
+class MemoryObject;
+class raw_ostream;
+
+namespace ARMDisassembler {
+
+/// ARMDisassembler - ARM disassembler for all ARM platforms.
+class ARMDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ARMDisassembler() :
+ MCDisassembler() {
+ }
+
+ ~ARMDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ bool getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream) const;
+private:
+};
+
+/// ThumbDisassembler - Thumb disassembler for all ARM platforms.
+class ThumbDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ThumbDisassembler() :
+ MCDisassembler() {
+ }
+
+ ~ThumbDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ bool getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream) const;
+private:
+};
+
+} // namespace ARMDisassembler
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
new file mode 100644
index 0000000000..c38a606c0a
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
@@ -0,0 +1,3351 @@
+//===- ARMDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code to represent the core concepts of Builder, Builder Factory,
+// as well as the Algorithm to solve the problem of disassembling an ARM instr.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMAddressingModes.h"
+#include "ARMDisassemblerCore.h"
+#include <map>
+
+/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const
+/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s
+/// describing the operand info for each ARMInsts[i].
+///
+/// Together with an instruction's encoding format, we can take advantage of the
+/// NumOperands and the OpInfo fields of the target instruction description in
+/// the quest to build out the MCOperand list for an MCInst.
+///
+/// The general guideline is that with a known format, the number of dst and src
+/// operands are well-known. The dst is built first, followed by the src
+/// operand(s). The operands not yet used at this point are for the Implicit
+/// Uses and Defs by this instr. For the Uses part, the pred:$p operand is
+/// defined with two components:
+///
+/// def pred { // Operand PredicateOperand
+/// ValueType Type = OtherVT;
+/// string PrintMethod = "printPredicateOperand";
+/// string AsmOperandLowerMethod = ?;
+/// dag MIOperandInfo = (ops i32imm, CCR);
+/// AsmOperandClass ParserMatchClass = ImmAsmOperand;
+/// dag DefaultOps = (ops (i32 14), (i32 zero_reg));
+/// }
+///
+/// which is manifested by the TargetOperandInfo[] of:
+///
+/// { 0, 0|(1<<TOI::Predicate), 0 },
+/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 }
+///
+/// So the first predicate MCOperand corresponds to the immediate part of the
+/// ARM condition field (Inst{31-28}), and the second predicate MCOperand
+/// corresponds to a register kind of ARM::CPSR.
+///
+/// For the Defs part, in the simple case of only cc_out:$s, we have:
+///
+/// def cc_out { // Operand OptionalDefOperand
+/// ValueType Type = OtherVT;
+/// string PrintMethod = "printSBitModifierOperand";
+/// string AsmOperandLowerMethod = ?;
+/// dag MIOperandInfo = (ops CCR);
+/// AsmOperandClass ParserMatchClass = ImmAsmOperand;
+/// dag DefaultOps = (ops (i32 zero_reg));
+/// }
+///
+/// which is manifested by the one TargetOperandInfo of:
+///
+/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 }
+///
+/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR.
+#include "ARMGenInstrInfo.inc"
+
+using namespace llvm;
+
+const char *ARMUtils::OpcodeName(unsigned Opcode) {
+ return ARMInsts[Opcode].Name;
+}
+
+// There is a more efficient way than the following. It is fragile, though.
+// See the code snippet after this function.
+static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister,
+ bool DRegPair = false) {
+
+ if (DRegPair && RegClassID == ARM::QPRRegClassID) {
+ // LLVM expects { Dd, Dd+1 } to form a super register; this is not specified
+ // in the ARM Architecture Manual as far as I understand it (A8.6.307).
+ // Therefore, we morph the RegClassID to be the sub register class and don't
+ // subsequently transform the RawRegister encoding when calculating RegNum.
+ //
+ // See also ARMinstPrinter::printOperand() wrt "dregpair" modifier part
+ // where this workaround is meant for.
+ RegClassID = ARM::DPRRegClassID;
+ }
+
+ // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm().
+ unsigned RegNum =
+ RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister;
+
+ switch (RegNum) {
+ default:
+ break;
+ case 0:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D0;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q0;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0;
+ }
+ break;
+ case 1:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D1;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q1;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1;
+ }
+ break;
+ case 2:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D2;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q2;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2;
+ }
+ break;
+ case 3:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D3;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q3;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3;
+ }
+ break;
+ case 4:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D4;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4;
+ }
+ break;
+ case 5:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D5;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5;
+ }
+ break;
+ case 6:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D6;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6;
+ }
+ break;
+ case 7:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D7;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7;
+ }
+ break;
+ case 8:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R8;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8;
+ case ARM::QPRRegClassID: return ARM::Q8;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8;
+ }
+ break;
+ case 9:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R9;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9;
+ case ARM::QPRRegClassID: return ARM::Q9;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9;
+ }
+ break;
+ case 10:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R10;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10;
+ case ARM::QPRRegClassID: return ARM::Q10;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10;
+ }
+ break;
+ case 11:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R11;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11;
+ case ARM::QPRRegClassID: return ARM::Q11;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11;
+ }
+ break;
+ case 12:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R12;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12;
+ case ARM::QPRRegClassID: return ARM::Q12;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12;
+ }
+ break;
+ case 13:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::SP;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13;
+ case ARM::QPRRegClassID: return ARM::Q13;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13;
+ }
+ break;
+ case 14:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::LR;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14;
+ case ARM::QPRRegClassID: return ARM::Q14;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14;
+ }
+ break;
+ case 15:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::PC;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15;
+ case ARM::QPRRegClassID: return ARM::Q15;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15;
+ }
+ break;
+ case 16:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D16;
+ case ARM::SPRRegClassID: return ARM::S16;
+ }
+ break;
+ case 17:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D17;
+ case ARM::SPRRegClassID: return ARM::S17;
+ }
+ break;
+ case 18:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D18;
+ case ARM::SPRRegClassID: return ARM::S18;
+ }
+ break;
+ case 19:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D19;
+ case ARM::SPRRegClassID: return ARM::S19;
+ }
+ break;
+ case 20:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D20;
+ case ARM::SPRRegClassID: return ARM::S20;
+ }
+ break;
+ case 21:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D21;
+ case ARM::SPRRegClassID: return ARM::S21;
+ }
+ break;
+ case 22:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D22;
+ case ARM::SPRRegClassID: return ARM::S22;
+ }
+ break;
+ case 23:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D23;
+ case ARM::SPRRegClassID: return ARM::S23;
+ }
+ break;
+ case 24:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D24;
+ case ARM::SPRRegClassID: return ARM::S24;
+ }
+ break;
+ case 25:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D25;
+ case ARM::SPRRegClassID: return ARM::S25;
+ }
+ break;
+ case 26:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D26;
+ case ARM::SPRRegClassID: return ARM::S26;
+ }
+ break;
+ case 27:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D27;
+ case ARM::SPRRegClassID: return ARM::S27;
+ }
+ break;
+ case 28:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D28;
+ case ARM::SPRRegClassID: return ARM::S28;
+ }
+ break;
+ case 29:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D29;
+ case ARM::SPRRegClassID: return ARM::S29;
+ }
+ break;
+ case 30:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D30;
+ case ARM::SPRRegClassID: return ARM::S30;
+ }
+ break;
+ case 31:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D31;
+ case ARM::SPRRegClassID: return ARM::S31;
+ }
+ break;
+ }
+ llvm_unreachable("Invalid (RegClassID, RawRegister) combination");
+}
+
+// This is efficient but fragile.
+/*
+// See ARMGenRegisterInfo.h.inc for more info.
+static const TargetRegisterClass* const ARMRegisterClasses[] = {
+ NULL,
+ &ARM::CCRRegClass, // CCRRegClassID = 1,
+ &ARM::DPRRegClass, // DPRRegClassID = 2,
+ &ARM::DPR_8RegClass, // DPR_8RegClassID = 3,
+ &ARM::DPR_VFP2RegClass, // DPR_VFP2RegClassID = 4,
+ &ARM::GPRRegClass, // GPRRegClassID = 5,
+ &ARM::QPRRegClass, // QPRRegClassID = 6,
+ &ARM::QPR_8RegClass, // QPR_8RegClassID = 7,
+ &ARM::QPR_VFP2RegClass, // QPR_VFP2RegClassID = 8,
+ &ARM::SPRRegClass, // SPRRegClassID = 9,
+ &ARM::SPR_8RegClass, // SPR_8RegClassID = 10,
+ &ARM::SPR_INVALIDRegClass, // SPR_INVALIDRegClassID = 11,
+ &ARM::tGPRRegClass, // tGPRRegClassID = 12
+};
+
+// Return the register enum given register class id and raw register value.
+static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister) {
+ assert(RegClassID < array_lengthof(ARMRegisterClasses) &&
+ "Register Class ID out of range");
+ return ARMRegisterClasses[RegClassID]->getRegister(RawRegister);
+}
+*/
+
+/// DisassembleFP - DisassembleFP points to a function that disassembles an insn
+/// and builds the MCOperand list upon disassembly. It returns false on failure
+/// or true on success. The number of operands added is updated upon success.
+typedef bool (*DisassembleFP)(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded);
+
+///////////////////////////////
+// //
+// Utility Functions //
+// //
+///////////////////////////////
+
+// Extract/Decode Rd: Inst{15-12}.
+static inline unsigned decodeRd(uint32_t insn) {
+ return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask;
+}
+
+// Extract/Decode Rn: Inst{19-16}.
+static inline unsigned decodeRn(uint32_t insn) {
+ return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask;
+}
+
+// Extract/Decode Rm: Inst{3-0}.
+static inline unsigned decodeRm(uint32_t insn) {
+ return (insn & ARMII::GPRRegMask);
+}
+
+// Extract/Decode Rs: Inst{11-8}.
+static inline unsigned decodeRs(uint32_t insn) {
+ return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask;
+}
+
+static inline unsigned getCondField(uint32_t insn) {
+ return (insn >> ARMII::CondShift);
+}
+
+static inline unsigned getIBit(uint32_t insn) {
+ return (insn >> ARMII::I_BitShift) & 1;
+}
+
+static inline unsigned getAM3IBit(uint32_t insn) {
+ return (insn >> ARMII::AM3_I_BitShift) & 1;
+}
+
+static inline unsigned getPBit(uint32_t insn) {
+ return (insn >> ARMII::P_BitShift) & 1;
+}
+
+static inline unsigned getUBit(uint32_t insn) {
+ return (insn >> ARMII::U_BitShift) & 1;
+}
+
+static inline unsigned getPUBits(uint32_t insn) {
+ return (insn >> ARMII::U_BitShift) & 3;
+}
+
+static inline unsigned getSBit(uint32_t insn) {
+ return (insn >> ARMII::S_BitShift) & 1;
+}
+
+static inline unsigned getWBit(uint32_t insn) {
+ return (insn >> ARMII::W_BitShift) & 1;
+}
+
+static inline unsigned getDBit(uint32_t insn) {
+ return (insn >> ARMII::D_BitShift) & 1;
+}
+
+static inline unsigned getNBit(uint32_t insn) {
+ return (insn >> ARMII::N_BitShift) & 1;
+}
+
+static inline unsigned getMBit(uint32_t insn) {
+ return (insn >> ARMII::M_BitShift) & 1;
+}
+
+namespace {
+// Sign extend 5 bit number x to r.
+// Usage: int r = signextend<signed int, 5>(x);
+template <typename T, unsigned B> inline T signextend(const T x) {
+ struct {T x:B;} s;
+ return s.x = x;
+}
+}
+
+// See A8.4 Shifts applied to a register.
+// A8.4.2 Register controlled shifts.
+//
+// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits
+// into llvm enums for shift opcode.
+//
+// A8-12: DecodeRegShift()
+static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) {
+ switch (bits) {
+ default: assert(0 && "No such value");
+ case 0: return ARM_AM::lsl;
+ case 1: return ARM_AM::lsr;
+ case 2: return ARM_AM::asr;
+ case 3: return ARM_AM::ror;
+ }
+}
+
+// See A8.4 Shifts applied to a register.
+// A8.4.1 Constant shifts.
+//
+// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5
+// encodings into the intended ShiftOpc and shift amount.
+//
+// A8-11: DecodeImmShift()
+static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) {
+ // If type == 0b11 and imm5 == 0, we have an rrx, instead.
+ if (ShOp == ARM_AM::ror && ShImm == 0)
+ ShOp = ARM_AM::rrx;
+ // If (lsr or asr) and imm5 == 0, shift amount is 32.
+ if ((ShOp == ARM_AM::lsr || ShOp == ARM_AM::asr) && ShImm == 0)
+ ShImm = 32;
+}
+
+// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding
+// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode.
+static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) {
+ switch (bits) {
+ default: assert(0 && "No such value");
+ case 1: return ARM_AM::ia; // P=0 U=1
+ case 3: return ARM_AM::ib; // P=1 U=1
+ case 0: return ARM_AM::da; // P=0 U=0
+ case 2: return ARM_AM::db; // P=1 U=0
+ }
+}
+
+////////////////////////////////////////////
+// //
+// Disassemble function definitions //
+// //
+////////////////////////////////////////////
+
+/// There is a separate Disassemble*Frm function entry for disassembly of an ARM
+/// instr into a list of MCOperands in the appropriate order, with possible dst,
+/// followed by possible src(s).
+///
+/// The processing of the predicate, and the 'S' modifier bit, if MI modifies
+/// the CPSR, is factored into ARMBasicMCBuilder's class method named
+/// TryPredicateAndSBitModifier.
+
+static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Opcode == ARM::Int_MemBarrierV7 || Opcode == ARM::Int_SyncBarrierV7)
+ return true;
+
+ assert(0 && "Unexpected pseudo instruction!");
+ return false;
+}
+
+// Multiply Instructions.
+// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS:
+// Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12}
+//
+// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT:
+// Rd{19-16} Rn{3-0} Rm{11-8}
+//
+// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT:
+// RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8}
+//
+// The mapping of the multiply registers to the "regular" ARM registers, where
+// there are convenience decoder functions, is:
+//
+// Inst{15-12} => Rd
+// Inst{19-16} => Rn
+// Inst{3-0} => Rm
+// Inst{11-8} => Rs
+static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm");
+ assert(NumOps >= 3
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ // Instructions with two destination registers have RdLo{15-12} first.
+ if (NumDefs == 2) {
+ assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // The destination register: RdHi{19-16} or Rd{19-16}.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // The two src regsiters: Rn{3-0}, then Rm{11-8}.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ OpIdx += 3;
+
+ // Many multiply instructions (e.g., MLA) have three src registers.
+ // The third register operand is Ra{15-12}.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Helper routines for disassembly of coprocessor instructions.
+
+static bool LdStCopOpcode(unsigned Opcode) {
+ if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) ||
+ (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE))
+ return true;
+ return false;
+}
+static bool CoprocessorOpcode(unsigned Opcode) {
+ if (LdStCopOpcode(Opcode))
+ return true;
+
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::CDP: case ARM::CDP2:
+ case ARM::MCR: case ARM::MCR2: case ARM::MRC: case ARM::MRC2:
+ case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2:
+ return true;
+ }
+}
+static inline unsigned GetCoprocessor(uint32_t insn) {
+ return slice(insn, 11, 8);
+}
+static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) {
+ return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21);
+}
+static inline unsigned GetCopOpc2(uint32_t insn) {
+ return slice(insn, 7, 5);
+}
+static inline unsigned GetCopOpc(uint32_t insn) {
+ return slice(insn, 7, 4);
+}
+// Most of the operands are in immediate forms, except Rd and Rn, which are ARM
+// core registers.
+//
+// CDP, CDP2: cop opc1 CRd CRn CRm opc2
+//
+// MCR, MCR2, MRC, MRC2: cop opc1 Rd CRn CRm opc2
+//
+// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm
+//
+// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00
+// and friends
+// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00
+// and friends
+// <-- addrmode2 -->
+//
+// LDC_OPTION: cop CRd Rn imm8
+// and friends
+// STC_OPTION: cop CRd Rn imm8
+// and friends
+//
+static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 5);
+
+ unsigned &OpIdx = NumOpsAdded;
+ bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 ||
+ Opcode == ARM::MRRC || Opcode == ARM::MRRC2);
+ // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}).
+ bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2);
+ bool LdStCop = LdStCopOpcode(Opcode);
+
+ OpIdx = 0;
+
+ MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn)));
+
+ if (LdStCop) {
+ // Unindex if P:W = 0b00 --> _OPTION variant
+ unsigned PW = getPBit(insn) << 1 | getWBit(insn);
+
+ MI.addOperand(MCOperand::CreateImm(decodeRd(insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (PW) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2,
+ ARM_AM::no_shift);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ OpIdx = 5;
+ } else {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0)));
+ OpIdx = 4;
+ }
+ } else {
+ MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn)
+ : GetCopOpc1(insn, NoGPR)));
+
+ MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn))
+ : MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(OneCopOpc ? MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn)))
+ : MCOperand::CreateImm(decodeRn(insn)));
+
+ MI.addOperand(MCOperand::CreateImm(decodeRm(insn)));
+
+ OpIdx = 5;
+
+ if (!OneCopOpc) {
+ MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// Branch Instructions.
+// BLr9: SignExtend(Imm24:'00', 32)
+// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1
+// SMC: ZeroExtend(imm4, 32)
+// SVC: ZeroExtend(Imm24, 32)
+//
+// Various coprocessor instructions are assigned BrFrm arbitrarily.
+// Delegates to DisassembleCoprocessor() helper function.
+//
+// MRS/MRSsys: Rd
+// MSR/MSRsys: Rm mask=Inst{19-16}
+// BXJ: Rm
+// MSRi/MSRsysi: so_imm
+// SRSW/SRS: addrmode4:$addr mode_imm
+// RFEW/RFE: addrmode4:$addr Rn
+static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (CoprocessorOpcode(Opcode))
+ return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ // MRS and MRSsys take one GPR reg Rd.
+ if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // BXJ takes one GPR reg Rm.
+ if (Opcode == ARM::BXJ) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // MSR and MSRsys take one GPR reg Rm, followed by the mask.
+ if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // MSRi and MSRsysi take one so_imm operand, followed by the mask.
+ if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) {
+ // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
+ // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
+ // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
+ unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
+ unsigned Imm = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // SRSW and SRS requires addrmode4:$addr for ${addr:submode}, followed by the
+ // mode immediate (Inst{4-0}).
+ if (Opcode == ARM::SRSW || Opcode == ARM::SRS ||
+ Opcode == ARM::RFEW || Opcode == ARM::RFE) {
+ // ARMInstPrinter::printAddrMode4Operand() prints special mode string
+ // if the base register is SP; so don't set ARM::SP.
+ MI.addOperand(MCOperand::CreateReg(0));
+ bool WB = (Opcode == ARM::SRSW);
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ if (Opcode == ARM::SRSW || Opcode == ARM::SRS)
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 3;
+ return true;
+ }
+
+ assert(Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred
+ || Opcode == ARM::SMC || Opcode == ARM::SVC);
+
+ assert(NumOps >= 1 && OpInfo[0].RegClass == 0);
+
+ int Imm32 = 0;
+ if (Opcode == ARM::SMC) {
+ // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}.
+ Imm32 = slice(insn, 3, 0);
+ } else if (Opcode == ARM::SVC) {
+ // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}.
+ Imm32 = slice(insn, 23, 0);
+ } else {
+ // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}.
+ unsigned Imm26 = slice(insn, 23, 0) << 2;
+ Imm32 = signextend<signed int, 26>(Imm26);
+
+ // When executing an ARM instruction, PC reads as the address of the current
+ // instruction plus 8. The assembler subtracts 8 from the difference
+ // between the branch instruction and the target address, disassembler has
+ // to add 8 to compensate.
+ Imm32 += 8;
+ }
+
+ MI.addOperand(MCOperand::CreateImm(Imm32));
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+// Misc. Branch Instructions.
+// BR_JTadd, BR_JTr, BR_JTm
+// BLXr9, BXr9
+// BRIND, BX_RET
+static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // BX_RET has only two predicate operands, do an early return.
+ if (Opcode == ARM::BX_RET)
+ return true;
+
+ // BLXr9 and BRIND take one GPR reg.
+ if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) {
+ assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ OpIdx = 1;
+ return true;
+ }
+
+ // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs.
+ if (Opcode == ARM::BR_JTadd) {
+ // InOperandList with GPR:$target and GPR:$idx regs.
+
+ assert(NumOps == 4);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 4;
+ return true;
+ }
+
+ // BR_JTr is a MOV with Rd = PC, and Rm as the source register.
+ if (Opcode == ARM::BR_JTr) {
+ // InOperandList with GPR::$target reg.
+
+ assert(NumOps == 3);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 3;
+ return true;
+ }
+
+ // BR_JTm is an LDR with Rt = PC.
+ if (Opcode == ARM::BR_JTm) {
+ // This is the reg/reg form, with base reg followed by +/- reg shop imm.
+ // See also ARMAddressingModes.h (Addressing Mode #2).
+
+ assert(NumOps == 5 && getIBit(insn) == 1);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+
+ // Disassemble the offset reg (Rm), shift type, and immediate shift length.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 5;
+ return true;
+ }
+
+ assert(0 && "Unexpected BrMiscFrm Opcode");
+ return false;
+}
+
+static inline uint32_t getBFCInvMask(uint32_t insn) {
+ uint32_t lsb = slice(insn, 11, 7);
+ uint32_t msb = slice(insn, 20, 16);
+ uint32_t Val = 0;
+ assert(lsb <= msb && "Encoding error: lsb > msb");
+ for (uint32_t i = lsb; i <= msb; ++i)
+ Val |= (1 << i);
+ return ~Val;
+}
+
+static inline bool SaturateOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::SSATlsl: case ARM::SSATasr: case ARM::SSAT16:
+ case ARM::USATlsl: case ARM::USATasr: case ARM::USAT16:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline unsigned decodeSaturatePos(unsigned Opcode, uint32_t insn) {
+ switch (Opcode) {
+ case ARM::SSATlsl:
+ case ARM::SSATasr:
+ return slice(insn, 20, 16) + 1;
+ case ARM::SSAT16:
+ return slice(insn, 19, 16) + 1;
+ case ARM::USATlsl:
+ case ARM::USATasr:
+ return slice(insn, 20, 16);
+ case ARM::USAT16:
+ return slice(insn, 19, 16);
+ default:
+ llvm_unreachable("Invalid opcode passed in");
+ return 0;
+ }
+}
+
+// A major complication is the fact that some of the saturating add/subtract
+// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm.
+// They are QADD, QDADD, QDSUB, and QSUB.
+static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isUnary = isUnaryDP(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Disassemble register def if there is one.
+ if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // Now disassemble the src operands.
+ if (OpIdx >= NumOps)
+ return false;
+
+ // SSAT/SSAT16/USAT/USAT16 has imm operand after Rd.
+ if (SaturateOpcode(Opcode)) {
+ MI.addOperand(MCOperand::CreateImm(decodeSaturatePos(Opcode, insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (Opcode == ARM::SSAT16 || Opcode == ARM::USAT16) {
+ OpIdx += 2;
+ return true;
+ }
+
+ // For SSAT operand reg (Rm) has been disassembled above.
+ // Now disassemble the shift amount.
+
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShAmt = slice(insn, 11, 7);
+
+ // A8.6.183. Possible ASR shift amount of 32...
+ if (Opcode == ARM::SSATasr && ShAmt == 0)
+ ShAmt = 32;
+
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+
+ OpIdx += 3;
+ return true;
+ }
+
+ // Special-case handling of BFC/BFI/SBFX/UBFX.
+ if (Opcode == ARM::BFC || Opcode == ARM::BFI) {
+ // TIED_TO operand skipped for BFC and Inst{3-0} (Reg) for BFI.
+ MI.addOperand(MCOperand::CreateReg(Opcode == ARM::BFC ? 0
+ : getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(getBFCInvMask(insn)));
+ OpIdx += 2;
+ return true;
+ }
+ if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7)));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1));
+ OpIdx += 3;
+ return true;
+ }
+
+ bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD ||
+ Opcode == ARM::QDSUB || Opcode == ARM::QSUB);
+
+ // BinaryDP has an Rn operand.
+ if (!isUnary) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ RmRn ? decodeRm(insn) : decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // If this is a two-address operand, skip it, e.g., MOVCCr operand 1.
+ if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Now disassemble operand 2.
+ if (OpIdx >= NumOps)
+ return false;
+
+ if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ // We have a reg/reg form.
+ // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are
+ // routed here as well.
+ // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form");
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ RmRn? decodeRn(insn) : decodeRm(insn))));
+ ++OpIdx;
+ } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) {
+ // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}).
+ assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
+ unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0);
+ MI.addOperand(MCOperand::CreateImm(Imm16));
+ ++OpIdx;
+ } else {
+ // We have a reg/imm form.
+ // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
+ // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
+ // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
+ assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
+ unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
+ unsigned Imm = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isUnary = isUnaryDP(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Disassemble register def if there is one.
+ if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the src operands.
+ if (OpIdx >= NumOps)
+ return false;
+
+ // BinaryDP has an Rn operand.
+ if (!isUnary) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // If this is a two-address operand, skip it, e.g., MOVCCs operand 1.
+ if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Disassemble operand 2, which consists of three components.
+ if (OpIdx + 2 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+2].RegClass == 0));
+
+ // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1.
+ unsigned Rs = slice(insn, 4, 4);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ if (Rs) {
+ // Register-controlled shifts: [Rm, Rs, shift].
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0)));
+ } else {
+ // Constant shifts: [Rm, reg0, shift_imm].
+ MI.addOperand(MCOperand::CreateReg(0)); // NoRegister
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm)));
+ }
+ OpIdx += 3;
+
+ return true;
+}
+
+static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isPrePost = isPrePostLdSt(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
+
+ // Operand 0 of a pre- and post-indexed store is the address base writeback.
+ if (isPrePost && isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the dst/src operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // After dst of a pre- and post-indexed load is the address base writeback.
+ if (isPrePost && !isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the base operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ // For reg/reg form, base reg is followed by +/- reg shop imm.
+ // For immediate form, it is followed by +/- imm12.
+ // See also ARMAddressingModes.h (Addressing Mode #2).
+ if (OpIdx + 1 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == 0));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ if (getIBit(insn) == 0) {
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Disassemble the 12-bit immediate offset.
+ unsigned Imm12 = slice(insn, 11, 0);
+ unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ } else {
+ // Disassemble the offset reg (Rm), shift type, and immediate shift length.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+ }
+ OpIdx += 2;
+
+ return true;
+}
+
+static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+
+static bool HasDualReg(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST:
+ case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST:
+ return true;
+ }
+}
+
+static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isPrePost = isPrePostLdSt(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
+
+ // Operand 0 of a pre- and post-indexed store is the address base writeback.
+ if (isPrePost && isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ bool DualReg = HasDualReg(Opcode);
+
+ // Disassemble the dst/src operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Fill in LDRD and STRD's second operand.
+ if (DualReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn) + 1)));
+ ++OpIdx;
+ }
+
+ // After dst of a pre- and post-indexed load is the address base writeback.
+ if (isPrePost && !isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the base operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ // For reg/reg form, base reg is followed by +/- reg.
+ // For immediate form, it is followed by +/- imm8.
+ // See also ARMAddressingModes.h (Addressing Mode #3).
+ if (OpIdx + 1 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == 0));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ if (getAM3IBit(insn) == 1) {
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Disassemble the 8-bit immediate offset.
+ unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF;
+ unsigned Imm4L = insn & 0xF;
+ unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ } else {
+ // Disassemble the offset reg (Rm).
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ }
+ OpIdx += 2;
+
+ return true;
+}
+
+static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+
+// The algorithm for disassembly of LdStMulFrm is different from others because
+// it explicitly populates the two predicate operands after operand 0 (the base)
+// and operand 1 (the AM4 mode imm). After operand 3, we need to populate the
+// reglist with each affected register encoded as an MCOperand.
+static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps == 5 && "LdStMulFrm expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ // Handling the two predicate operands before the reglist.
+ int64_t CondVal = insn >> ARMII::CondShift;
+ MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+
+ OpIdx = 4;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = insn & ((1 << 16) - 1);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// LDREX, LDREXB, LDREXH: Rd Rn
+// LDREXD: Rd Rd+1 Rn
+// STREX, STREXB, STREXH: Rd Rm Rn
+// STREXD: Rd Rm Rm+1 Rn
+//
+// SWP, SWPB: Rd Rm Rn
+static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool isStore = slice(insn, 20, 20) == 0;
+ bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD);
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Store register Exclusive needs a source operand.
+ if (isStore) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn)+1)));
+ ++OpIdx;
+ }
+ } else if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn)+1)));
+ ++OpIdx;
+ }
+
+ // Finally add the pointer operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// Misc. Arithmetic Instructions.
+// CLZ: Rd Rm
+// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5
+// RBIT, REV, REV16, REVSH: Rd Rm
+static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ assert(NumOps >= 4);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ // If there is still an operand info left which is an immediate operand, add
+ // an additional imm5 LSL/ASR operand.
+ if (ThreeReg && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Extract the 5-bit immediate field Inst{11-7}.
+ unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F;
+ MI.addOperand(MCOperand::CreateImm(ShiftAmt));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Extend instructions.
+// SXT* and UXT*: Rd [Rn] Rm [rot_imm].
+// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the
+// three register operand form. Otherwise, Rn=0b1111 and only Rm is used.
+static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ // If there is still an operand info left which is an immediate operand, add
+ // an additional rotate immediate operand.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Extract the 2-bit rotate field Inst{11-10}.
+ unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3;
+ // Rotation by 8, 16, or 24 bits.
+ MI.addOperand(MCOperand::CreateImm(rot << 3));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+/////////////////////////////////////
+// //
+// Utility Functions For VFP //
+// //
+/////////////////////////////////////
+
+// Extract/Decode Dd/Sd:
+//
+// SP => d = UInt(Vd:D)
+// DP => d = UInt(D:Vd)
+static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn))
+ : (decodeRd(insn) | getDBit(insn) << 4);
+}
+
+// Extract/Decode Dn/Sn:
+//
+// SP => n = UInt(Vn:N)
+// DP => n = UInt(N:Vn)
+static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn))
+ : (decodeRn(insn) | getNBit(insn) << 4);
+}
+
+// Extract/Decode Dm/Sm:
+//
+// SP => m = UInt(Vm:M)
+// DP => m = UInt(M:Vm)
+static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn))
+ : (decodeRm(insn) | getMBit(insn) << 4);
+}
+
+// A7.5.1
+#if 0
+static uint64_t VFPExpandImm(unsigned char byte, unsigned N) {
+ assert(N == 32 || N == 64);
+
+ uint64_t Result;
+ unsigned bit6 = slice(byte, 6, 6);
+ if (N == 32) {
+ Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19;
+ if (bit6)
+ Result |= 0x1f << 25;
+ else
+ Result |= 0x1 << 30;
+ } else {
+ Result = (uint64_t)slice(byte, 7, 7) << 63 |
+ (uint64_t)slice(byte, 5, 0) << 48;
+ if (bit6)
+ Result |= 0xffL << 54;
+ else
+ Result |= 0x1L << 62;
+ }
+ return Result;
+}
+#endif
+
+// VFP Unary Format Instructions:
+//
+// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero
+// VCVTDS, VCVTSD: converts between double-precision and single-precision
+// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers.
+static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ bool isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
+ ++OpIdx;
+
+ // Early return for compare with zero instructions.
+ if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS
+ || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS)
+ return true;
+
+ RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
+ ++OpIdx;
+
+ return true;
+}
+
+// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs.
+// Some of them have operand constraints which tie the first operand in the
+// InOperandList to that of the dst. As far as asm printing is concerned, this
+// tied_to operand is simply skipped.
+static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3");
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ bool isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
+ ++OpIdx;
+
+ // Skip tied_to operand constraint.
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ assert(NumOps >= 4);
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRn(insn, isSP))));
+ ++OpIdx;
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A8.6.295 vcvt (floating-point <-> integer)
+// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS
+// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S
+//
+// A8.6.297 vcvt (floating-point and fixed-point)
+// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i))
+static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2");
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297
+ bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297
+ unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ if (fixed_point) {
+ // A8.6.297
+ assert(NumOps >= 3);
+ int size = slice(insn, 7, 7) == 0 ? 16 : 32;
+ int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5));
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClassID,
+ decodeVFPRd(insn, SP))));
+
+ assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1);
+ MI.addOperand(MI.getOperand(0));
+
+ assert(OpInfo[2].RegClass == 0 && !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef());
+ MI.addOperand(MCOperand::CreateImm(fbits));
+
+ NumOpsAdded = 3;
+ } else {
+ // A8.6.295
+ // The Rd (destination) and Rm (source) bits have different interpretations
+ // depending on their single-precisonness.
+ unsigned d, m;
+ if (slice(insn, 18, 18) == 1) { // to_integer operation
+ d = decodeVFPRd(insn, true /* Is Single Precision */);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::SPRRegClassID, d)));
+ m = decodeVFPRm(insn, SP);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, m)));
+ } else {
+ d = decodeVFPRd(insn, SP);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, d)));
+ m = decodeVFPRm(insn, true /* Is Single Precision */);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::SPRRegClassID, m)));
+ }
+ NumOpsAdded = 2;
+ }
+
+ return true;
+}
+
+// VMOVRS - A8.6.330
+// Rt => Rd; Sn => UInt(Vn:N)
+static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2");
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ decodeVFPRn(insn, true))));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// VMOVRRD - A8.6.332
+// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
+//
+// VMOVRRS - A8.6.331
+// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
+static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ OpIdx = 2;
+
+ if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
+ unsigned Sm = decodeVFPRm(insn, true);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm)));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm+1)));
+ OpIdx += 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::DPRRegClassID,
+ decodeVFPRm(insn, false))));
+ ++OpIdx;
+ }
+ return true;
+}
+
+// VMOVSR - A8.6.330
+// Rt => Rd; Sn => UInt(Vn:N)
+static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2");
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ decodeVFPRn(insn, true))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// VMOVDRR - A8.6.332
+// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
+//
+// VMOVRRS - A8.6.331
+// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
+static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
+ unsigned Sm = decodeVFPRm(insn, true);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm)));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm+1)));
+ OpIdx += 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::DPRRegClassID,
+ decodeVFPRm(insn, false))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ OpIdx += 2;
+ return true;
+}
+
+// VFP Load/Store Instructions.
+// VLDRD, VLDRS, VSTRD, VSTRS
+static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3");
+
+ bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS) ? true : false;
+ unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ // Extract Dd/Sd for operand 0.
+ unsigned RegD = decodeVFPRd(insn, isSPVFP);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, RegD)));
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ // Next comes the AM5 Opcode.
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ unsigned char Imm8 = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8)));
+
+ NumOpsAdded = 3;
+
+ return true;
+}
+
+// VFP Load/Store Multiple Instructions.
+// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and
+// operand 1 (the AM5 mode imm) is followed by two predicate operands. It is
+// followed by a reglist of either DPR(s) or SPR(s).
+//
+// VLDMD, VLDMS, VSTMD, VSTMS
+static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps == 5 && "VFPLdStMulFrm expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ // Next comes the AM5 Opcode.
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ unsigned char Imm8 = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(SubMode, WB, Imm8)));
+
+ // Handling the two predicate operands before the reglist.
+ int64_t CondVal = insn >> ARMII::CondShift;
+ MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+
+ OpIdx = 4;
+
+ bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VSTMS) ? true : false;
+ unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ // Extract Dd/Sd.
+ unsigned RegD = decodeVFPRd(insn, isSPVFP);
+
+ // Fill the variadic part of reglist.
+ unsigned Regs = isSPVFP ? Imm8 : Imm8/2;
+ for (unsigned i = 0; i < Regs; ++i) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID,
+ RegD + i)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Misc. VFP Instructions.
+// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand)
+// FCONSTD (DPR and a VFPf64Imm operand)
+// FCONSTS (SPR and a VFPf32Imm operand)
+// VMRS/VMSR (GPR operand)
+static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ if (Opcode == ARM::FMSTAT)
+ return true;
+
+ assert(NumOps >= 2);
+
+ unsigned RegEnum = 0;
+ switch (OpInfo[0].RegClass) {
+ case ARM::DPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::DPRRegClassID, decodeVFPRd(insn, false));
+ break;
+ case ARM::SPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::SPRRegClassID, decodeVFPRd(insn, true));
+ break;
+ case ARM::GPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::GPRRegClassID, decodeRd(insn));
+ break;
+ default:
+ llvm_unreachable("Invalid reg class id");
+ }
+
+ MI.addOperand(MCOperand::CreateReg(RegEnum));
+ ++OpIdx;
+
+ // Extract/decode the f64/f32 immediate.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // The asm syntax specifies the before-expanded <imm>.
+ // Not VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0),
+ // Opcode == ARM::FCONSTD ? 64 : 32)
+ MI.addOperand(MCOperand::CreateImm(slice(insn,19,16)<<4 | slice(insn,3,0)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.cpp.inc file.
+#include "ThumbDisassemblerCore.cpp.inc"
+
+/////////////////////////////////////////////////////
+// //
+// Utility Functions For ARM Advanced SIMD //
+// //
+/////////////////////////////////////////////////////
+
+// The following NEON namings are based on A8.6.266 VABA, VABAL. Notice that
+// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL.
+
+// A7.3 Register encoding
+
+// Extract/Decode NEON D/Vd:
+//
+// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for
+// doubleword, Dd = UInt(D:Vd). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// D = Inst{22}, Vd = Inst{15-12}
+static unsigned decodeNEONRd(uint32_t insn) {
+ return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask;
+}
+
+// Extract/Decode NEON N/Vn:
+//
+// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for
+// doubleword, Dn = UInt(N:Vn). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// N = Inst{7}, Vn = Inst{19-16}
+static unsigned decodeNEONRn(uint32_t insn) {
+ return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask;
+}
+
+// Extract/Decode NEON M/Vm:
+//
+// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for
+// doubleword, Dm = UInt(M:Vm). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// M = Inst{5}, Vm = Inst{3-0}
+static unsigned decodeNEONRm(uint32_t insn) {
+ return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask;
+}
+
+namespace {
+enum ElemSize {
+ ESizeNA = 0,
+ ESize8 = 8,
+ ESize16 = 16,
+ ESize32 = 32,
+ ESize64 = 64
+};
+} // End of unnamed namespace
+
+// size field -> Inst{11-10}
+// index_align field -> Inst{7-4}
+//
+// The Lane Index interpretation depends on the Data Size:
+// 8 (encoded as size = 0b00) -> Index = index_align[3:1]
+// 16 (encoded as size = 0b01) -> Index = index_align[3:2]
+// 32 (encoded as size = 0b10) -> Index = index_align[3]
+//
+// Ref: A8.6.317 VLD4 (single 4-element structure to one lane).
+static unsigned decodeLaneIndex(uint32_t insn) {
+ unsigned size = insn >> 10 & 3;
+ assert(size == 0 || size == 1 || size == 2);
+
+ unsigned index_align = insn >> 4 & 0xF;
+ return (index_align >> 1) >> size;
+}
+
+// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4)
+// op = Inst{5}, cmode = Inst{11-8}
+// i = Inst{24} (ARM architecture)
+// imm3 = Inst{18-16}, imm4 = Inst{3-0}
+// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions.
+static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) {
+ unsigned char cmode = (insn >> 8) & 0xF;
+ unsigned char Imm8 = ((insn >> 24) & 1) << 7 |
+ ((insn >> 16) & 7) << 4 |
+ (insn & 0xF);
+ uint64_t Imm64 = 0;
+
+ switch (esize) {
+ case ESize8:
+ Imm64 = Imm8;
+ break;
+ case ESize16:
+ Imm64 = Imm8 << 8*(cmode >> 1 & 1);
+ break;
+ case ESize32: {
+ if (cmode == 12)
+ Imm64 = (Imm8 << 8) | 0xFF;
+ else if (cmode == 13)
+ Imm64 = (Imm8 << 16) | 0xFFFF;
+ else {
+ // Imm8 to be shifted left by how many bytes...
+ Imm64 = Imm8 << 8*(cmode >> 1 & 3);
+ }
+ break;
+ }
+ case ESize64: {
+ for (unsigned i = 0; i < 8; ++i)
+ if ((Imm8 >> i) & 1)
+ Imm64 |= 0xFF << 8*i;
+ break;
+ }
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+
+ return Imm64;
+}
+
+// A8.6.339 VMUL, VMULL (by scalar)
+// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7
+// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15
+static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize16:
+ return insn & 7;
+ case ESize32:
+ return insn & 0xF;
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+}
+
+// A8.6.339 VMUL, VMULL (by scalar)
+// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7
+// ESize32 => index = Inst{5} (M) D0-D15
+static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize16:
+ return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1);
+ case ESize32:
+ return (insn >> 5) & 1;
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+}
+
+// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
+// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}.
+static unsigned decodeVCVTFractionBits(uint32_t insn) {
+ return 64 - ((insn >> 16) & 0x3F);
+}
+
+// A8.6.302 VDUP (scalar)
+// ESize8 => index = Inst{19-17}
+// ESize16 => index = Inst{19-18}
+// ESize32 => index = Inst{19}
+static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize8:
+ return (insn >> 17) & 7;
+ case ESize16:
+ return (insn >> 18) & 3;
+ case ESize32:
+ return (insn >> 19) & 1;
+ default:
+ assert(0 && "Unspecified element size!");
+ return 0;
+ }
+}
+
+// A8.6.328 VMOV (ARM core register to scalar)
+// A8.6.329 VMOV (scalar to ARM core register)
+// ESize8 => index = Inst{21:6-5}
+// ESize16 => index = Inst{21:6}
+// ESize32 => index = Inst{21}
+static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize8:
+ return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3);
+ case ESize16:
+ return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1);
+ case ESize32:
+ return ((insn >> 21) & 1);
+ default:
+ assert(0 && "Unspecified element size!");
+ return 0;
+ }
+}
+
+// Imm6 = Inst{21-16}, L = Inst{7}
+//
+// NormalShift == true (A8.6.376 VRSHR, A8.6.368 VQSHRN):
+// case L:imm6 of
+// '0001xxx' => esize = 8; shift_amount = 16 - imm6
+// '001xxxx' => esize = 16; shift_amount = 32 - imm6
+// '01xxxxx' => esize = 32; shift_amount = 64 - imm6
+// '1xxxxxx' => esize = 64; shift_amount = 64 - imm6
+//
+// NormalShift == false (A8.6.367 VQSHL, A8.6.387 VSLI):
+// case L:imm6 of
+// '0001xxx' => esize = 8; shift_amount = imm6 - 8
+// '001xxxx' => esize = 16; shift_amount = imm6 - 16
+// '01xxxxx' => esize = 32; shift_amount = imm6 - 32
+// '1xxxxxx' => esize = 64; shift_amount = imm6
+//
+static unsigned decodeNVSAmt(uint32_t insn, bool NormalShift) {
+ ElemSize esize = ESizeNA;
+ unsigned L = (insn >> 7) & 1;
+ unsigned imm6 = (insn >> 16) & 0x3F;
+ if (L == 0) {
+ if (imm6 >> 3 == 1)
+ esize = ESize8;
+ else if (imm6 >> 4 == 1)
+ esize = ESize16;
+ else if (imm6 >> 5 == 1)
+ esize = ESize32;
+ else
+ assert(0 && "Wrong encoding of Inst{7:21-16}!");
+ } else
+ esize = ESize64;
+
+ if (NormalShift)
+ return esize == ESize64 ? (esize - imm6) : (2*esize - imm6);
+ else
+ return esize == ESize64 ? imm6 : (imm6 - esize);
+}
+
+// A8.6.305 VEXT
+// Imm4 = Inst{11-8}
+static unsigned decodeN3VImm(uint32_t insn) {
+ return (insn >> 8) & 0xF;
+}
+
+static bool DisassembleNSFormatNone(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ assert(0 && "Unexpected NEON Sub-Format of NSFormatNone");
+ return false;
+}
+
+// VLD*
+// D[d] D[d2] ... R[addr] [TIED_TO] R[update] AM6 align(ignored)
+// VLD*LN*
+// D[d] D[d2] ... R[addr] R[update] AM6 align(ignored) TIED_TO ... imm(idx)
+// VST*
+// R[addr] [TIED_TO] R[update] AM6 align(ignored) D[d] D[d2] ...
+// VST*LN*
+// R[addr] R[update] AM6 align(ignored) D[d] D[d2] ... [imm(idx)]
+//
+// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it.
+static bool DisassembleVLDSTLane0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ // At least one DPR register plus addressing mode #6.
+ assert(NumOps >= 5);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // We have homogeneous NEON registers for Load/Store.
+ unsigned RegClass = 0;
+
+ // Double-spaced registers have increments of 2.
+ unsigned Inc = DblSpaced ? 2 : 1;
+
+ unsigned Rn = decodeRn(insn);
+ unsigned Rm = decodeRm(insn);
+ unsigned Rd = decodeNEONRd(insn);
+
+ // A7.7.1 Advanced SIMD addressing mode.
+ bool WB = Rm != 15;
+
+ // LLVM Addressing Mode #6.
+ unsigned RmEnum = 0;
+ if (WB && Rm != 13)
+ RmEnum = getRegisterEnum(ARM::GPRRegClassID, Rm);
+
+ if (Store) {
+ // Consume AddrMode6 (possible TIED_TO Rn), the DPR/QPR's, then possible
+ // lane index.
+ assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(RmEnum));
+ ++OpIdx;
+ assert(OpIdx < NumOps &&
+ OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
+ MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
+ OpIdx += 2;
+
+ assert(OpIdx < NumOps &&
+ (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
+ OpInfo[OpIdx].RegClass == ARM::QPRRegClassID));
+
+ RegClass = OpInfo[OpIdx].RegClass;
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ if (Opcode >= ARM::VST1q16 && Opcode <= ARM::VST1q8)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
+ Rd += Inc;
+ ++OpIdx;
+ }
+
+ // Handle possible lane index.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
+ ++OpIdx;
+ }
+
+ } else {
+ // Consume the DPR/QPR's, AddrMode6 (possible TIED_TO Rn), possible TIED_TO
+ // DPR/QPR's (ignored), then possible lane index.
+ RegClass = OpInfo[0].RegClass;
+
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ if (Opcode >= ARM::VLD1q16 && Opcode <= ARM::VLD1q8)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
+ Rd += Inc;
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(RmEnum));
+ ++OpIdx;
+ assert(OpIdx < NumOps &&
+ OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
+ MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
+ OpIdx += 2;
+
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1);
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Handle possible lane index.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// A7.7
+// If L (Inst{21}) == 0, store instructions.
+// DblSpaced = false.
+static bool DisassembleVLDSTLane(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ slice(insn, 21, 21) == 0, false);
+}
+// A7.7
+// If L (Inst{21}) == 0, store instructions.
+// DblSpaced = true.
+static bool DisassembleVLDSTLaneDbl(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ slice(insn, 21, 21) == 0, true);
+}
+
+// VLDRQ (vldmia), VSTRQ (vstmia)
+// Qd Rn imm (AM4)
+static bool DisassembleVLDSTRQ(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::QPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == 0);
+
+ // Qd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::QPRRegClassID,
+ decodeNEONRd(insn), true)));
+
+ // Rn = Inst{19-16} => ARM Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // Next comes the AM4 Opcode.
+ assert(Opcode == ARM::VLDRQ || Opcode == ARM::VSTRQ);
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ NumOpsAdded = 3;
+ return true;
+}
+
+// VMOV (immediate)
+// Qd/Dd imm
+static bool DisassembleNVdImm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == 0));
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[0].RegClass,
+ decodeNEONRd(insn))));
+
+ ElemSize esize = ESizeNA;
+ switch (Opcode) {
+ case ARM::VMOVv8i8:
+ case ARM::VMOVv16i8:
+ esize = ESize8;
+ break;
+ case ARM::VMOVv4i16:
+ case ARM::VMOVv8i16:
+ esize = ESize16;
+ break;
+ case ARM::VMOVv2i32:
+ case ARM::VMOVv4i32:
+ esize = ESize32;
+ break;
+ case ARM::VMOVv1i64:
+ case ARM::VMOVv2i64:
+ esize = ESize64;
+ default:
+ assert(0 && "Unreachable code!");
+ return false;
+ }
+
+ // One register and a modified immediate value.
+ // Add the imm operand.
+ MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize)));
+
+ NumOpsAdded = 2;
+ return true;
+}
+
+namespace {
+enum N2VFlag {
+ N2V_None,
+ N2V_VectorDupLane,
+ N2V_VectorShiftLeftLong,
+ N2V_VectorConvert_Between_Float_Fixed
+};
+} // End of unnamed namespace
+
+// Vector Convert [between floating-point and fixed-point]
+// Qd/Dd Qm/Dm [fbits]
+//
+// Vector Duplicate Lane (from scalar to all elements) Instructions.
+// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q:
+// Qd/Dd Dm index
+//
+// Vector Shift Left Long (with maximum shift count) Instructions.
+// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size)
+//
+// Vector Move Long:
+// Qd Dm
+//
+// Vector Move Narrow:
+// Dd Qm
+//
+// Others
+static bool DisassembleNVdVmImm0(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag = N2V_None) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opc];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ ElemSize esize = ESizeNA;
+ if (Flag == N2V_VectorShiftLeftLong) {
+ // VSHLL has maximum shift count as the imm, inferred from its size.
+ assert(Opc == ARM::VSHLLi16 || Opc == ARM::VSHLLi32 || Opc == ARM::VSHLLi8);
+ esize = Opc == ARM::VSHLLi8 ? ESize8
+ : (Opc == ARM::VSHLLi16 ? ESize16
+ : ESize32);
+ }
+ if (Flag == N2V_VectorDupLane) {
+ // VDUPLN has its index embedded. Its size can be inferred from the Opcode.
+ assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q);
+ esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8
+ : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16
+ : ESize32);
+ }
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // VPADAL...
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ // Add the imm operand, if required.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+
+ unsigned imm = 0xFFFFFFFF;
+
+ if (Flag == N2V_VectorShiftLeftLong)
+ imm = static_cast<unsigned>(esize);
+ if (Flag == N2V_VectorDupLane)
+ imm = decodeNVLaneDupIndex(insn, esize);
+ if (Flag == N2V_VectorConvert_Between_Float_Fixed)
+ imm = decodeVCVTFractionBits(insn);
+
+ assert(imm != 0xFFFFFFFF);
+ MI.addOperand(MCOperand::CreateImm(imm));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleNVdVmImm(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded);
+}
+static bool DisassembleNVdVmImmVCVT(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorConvert_Between_Float_Fixed);
+}
+static bool DisassembleNVdVmImmVDupLane(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorDupLane);
+}
+static bool DisassembleNVdVmImmVSHLL(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorShiftLeftLong);
+}
+
+// Vector Transpose/Unzip/Zip Instructions
+// Qd/Dd Qm/Dm [Qd/Dd (TIED_TO)] [Qm/Dm (TIED_TO)]
+static bool DisassembleNVectorShuffle(MCInst &MI,unsigned Opcode,uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 4 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[2].RegClass == ARM::DPRRegClassID ||
+ OpInfo[2].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[3].RegClass == ARM::DPRRegClassID ||
+ OpInfo[3].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 &&
+ TID.getOperandConstraint(OpIdx+1, TOI::TIED_TO) != -1);
+
+ MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
+ MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
+
+ return true;
+}
+
+// Vector Shift [Accumulate] Instructions.
+// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt
+static bool DisassembleNVectorShift0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool NormalShift = true) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
+ OpInfo[OpIdx].RegClass == ARM::QPRRegClassID);
+
+ // Qm/Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ assert(OpInfo[OpIdx].RegClass == 0);
+
+ // Add the imm operand.
+ MI.addOperand(MCOperand::CreateImm(decodeNVSAmt(insn, NormalShift)));
+ ++OpIdx;
+
+ return true;
+}
+
+// Normal shift amount interpretation.
+static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+// Different shift amount interpretation.
+static bool DisassembleNVectorShift2(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+namespace {
+enum N3VFlag {
+ N3V_None,
+ N3V_VectorExtract,
+ N3V_VectorShift,
+ N3V_Multiply_By_Scalar
+};
+} // End of unnamed namespace
+
+// NEON Three Register Instructions with Optional Immediate Operand
+//
+// Vector Extract Instructions.
+// Qd/Dd Qn/Dn Qm/Dm imm4
+//
+// Vector Shift (Register) Instructions.
+// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n)
+//
+// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions.
+// Qd/Dd Qn/Dn RestrictedDm index
+//
+// Others
+static bool DisassembleNVdVnVmImm0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag = N3V_None) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[2].RegClass != 0));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ bool VdVnVm = Flag == N3V_VectorShift ? false : true;
+ bool IsImm4 = Flag == N3V_VectorExtract ? true : false;
+ bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false;
+ ElemSize esize = ESizeNA;
+ if (Flag == N3V_Multiply_By_Scalar) {
+ unsigned size = (insn >> 20) & 3;
+ if (size == 1) esize = ESize16;
+ if (size == 2) esize = ESize32;
+ assert (esize == ESize16 || esize == ESize32);
+ }
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // VABA, VABAL, VBSLd, VBSLq, ...
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Dn = Inst{7:19-16} => NEON Rn
+ // or
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(OpInfo[OpIdx].RegClass,
+ VdVnVm ? decodeNEONRn(insn)
+ : decodeNEONRm(insn))));
+ ++OpIdx;
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ // or
+ // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise
+ // or
+ // Dn = Inst{7:19-16} => NEON Rn
+ unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize)
+ : decodeNEONRm(insn))
+ : decodeNEONRn(insn);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(OpInfo[OpIdx].RegClass, m)));
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Add the imm operand.
+ unsigned Imm = 0;
+ if (IsImm4)
+ Imm = decodeN3VImm(insn);
+ else if (IsDmRestricted)
+ Imm = decodeRestrictedDmIndex(insn, esize);
+ else
+ assert(0 && "Internal error: unreachable code!");
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleNVdVnVmImm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+static bool DisassembleNVdVnVmImmVectorShift(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_VectorShift);
+}
+static bool DisassembleNVdVnVmImmVectorExtract(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_VectorExtract);
+}
+static bool DisassembleNVdVnVmImmMulScalar(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_Multiply_By_Scalar);
+}
+
+// Vector Table Lookup
+//
+// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm
+// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm
+// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm
+// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm
+static bool DisassembleVTBL(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::DPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ OpInfo[2].RegClass == ARM::DPRRegClassID);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned Rn = decodeNEONRn(insn);
+
+ // {Dn} encoded as len = 0b00
+ // {Dn Dn+1} encoded as len = 0b01
+ // {Dn Dn+1 Dn+2 } encoded as len = 0b10
+ // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11
+ unsigned Len = slice(insn, 9, 8) + 1;
+
+ // Dd (the destination vector)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // Process tied_to operand constraint.
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // Do the <list> now.
+ for (unsigned i = 0; i < Len; ++i) {
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ Rn + i)));
+ ++OpIdx;
+ }
+
+ // Dm (the index vector)
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+/// NEONFuncPtrs - NEONFuncPtrs maps NSFormat to corresponding DisassembleFP.
+/// We divide the disassembly task into different categories, with each one
+/// corresponding to a specific instruction encoding format. There could be
+/// exceptions when handling a specific format, and that is why the Opcode is
+/// also present in the function prototype.
+static const DisassembleFP NEONFuncPtrs[] = {
+ // This will assert().
+ &DisassembleNSFormatNone,
+
+ // VLD and VST (including one lane) Instructions.
+ &DisassembleVLDSTLane,
+
+ // VLD and VST (including one lane) Double-Spaced Instructions.
+ &DisassembleVLDSTLaneDbl,
+
+ // A8.6.319 VLDM & A8.6.399 VSTM
+ // LLVM defines VLDRQ/VSTRQ to load/store a Q register as a D register pair.
+ &DisassembleVLDSTRQ,
+
+ // A7.4.6 One register and a modified immediate value
+ // 1-Register Instructions with imm.
+ // LLVM only defines VMOVv instructions.
+ &DisassembleNVdImm,
+
+ // 2-Register Instructions with no imm.
+ &DisassembleNVdVmImm,
+
+ // 2-Register Instructions with imm (vector convert float/fixed point).
+ &DisassembleNVdVmImmVCVT,
+
+ // 2-Register Instructions with imm (vector dup lane).
+ &DisassembleNVdVmImmVDupLane,
+
+ // 2-Register Instructions with imm (vector shift left long).
+ &DisassembleNVdVmImmVSHLL,
+
+ // Vector Transpose/Unzip/Zip Instructions.
+ &DisassembleNVectorShuffle,
+
+ // Vector Shift [Narrow Accumulate] Instructions.
+ &DisassembleNVectorShift,
+
+ // Vector Shift Instructions with different interpretation of shift amount.
+ &DisassembleNVectorShift2,
+
+ // 3-Register Data-Processing Instructions.
+ &DisassembleNVdVnVmImm,
+
+ // Vector Shift (Register) Instructions.
+ // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
+ &DisassembleNVdVnVmImmVectorShift,
+
+ // Vector Extract Instructions.
+ &DisassembleNVdVnVmImmVectorExtract,
+
+ // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long]
+ // By Scalar Instructions.
+ &DisassembleNVdVnVmImmMulScalar,
+
+ // Vector Table Lookup uses byte indexes in a control vector to look up byte
+ // values in a table and generate a new vector.
+ &DisassembleVTBL,
+ NULL,
+};
+
+static bool DisassembleNEONFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ assert(0 && "Code is not reachable");
+ return false;
+}
+
+// Vector Get Lane (move scalar to ARM core register) Instructions.
+// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index
+static bool DisassembleNEONGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumDefs == 1 && NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ OpInfo[2].RegClass == 0);
+
+ ElemSize esize =
+ Opcode == ARM::VGETLNi32 ? ESize32
+ : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16
+ : ESize32);
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ // Dn = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRn(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
+
+ NumOpsAdded = 3;
+ return true;
+}
+
+// Vector Set Lane (move ARM core register to scalar) Instructions.
+// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index
+static bool DisassembleNEONSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumDefs == 1 && NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::DPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID &&
+ OpInfo[3].RegClass == 0);
+
+ ElemSize esize =
+ Opcode == ARM::VSETLNi8 ? ESize8
+ : (Opcode == ARM::VSETLNi16 ? ESize16
+ : ESize32);
+
+ // Dd = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRn(insn))));
+
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
+
+ NumOpsAdded = 4;
+ return true;
+}
+
+// Vector Duplicate Instructions (from ARM core register to all elements).
+// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt
+static bool DisassembleNEONDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ unsigned RegClass = OpInfo[0].RegClass;
+
+ // Qd/Dd = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,
+ decodeNEONRn(insn))));
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ NumOpsAdded = 2;
+ return true;
+}
+
+// A8.6.41 DMB
+// A8.6.42 DSB
+// A8.6.49 ISB
+static inline bool MemBarrierInstr(uint32_t insn) {
+ unsigned op7_4 = slice(insn, 7, 4);
+ if (slice(insn, 31, 20) == 0xf57 && (op7_4 >= 4 && op7_4 <= 6))
+ return true;
+
+ return false;
+}
+
+static inline bool PreLoadOpcode(unsigned Opcode) {
+ switch(Opcode) {
+ case ARM::PLDi: case ARM::PLDr:
+ case ARM::PLDWi: case ARM::PLDWr:
+ case ARM::PLIi: case ARM::PLIr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // Preload Data/Instruction requires either 2 or 4 operands.
+ // PLDi, PLDWi, PLIi: Rn [+/-]imm12 add = (U == '1')
+ // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: Rn Rm addrmode2_opc
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (Opcode == ARM::PLDi || Opcode == ARM::PLDWi || Opcode == ARM::PLIi) {
+ unsigned Imm12 = slice(insn, 11, 0);
+ bool Negative = getUBit(insn) == 0;
+ int Offset = Negative ? -1 - Imm12 : 1 * Imm12;
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ NumOpsAdded = 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+ NumOpsAdded = 3;
+ }
+
+ return true;
+}
+
+static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (MemBarrierInstr(insn))
+ return true;
+
+ switch (Opcode) {
+ case ARM::CLREX:
+ case ARM::NOP:
+ case ARM::TRAP:
+ case ARM::YIELD:
+ case ARM::WFE:
+ case ARM::WFI:
+ case ARM::SEV:
+ case ARM::SETENDBE:
+ case ARM::SETENDLE:
+ return true;
+ default:
+ break;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = mode from Inst{4-0}
+ // opt{5} = changemode from Inst{17}
+ // opt{8-6} = AIF from Inst{8-6}
+ // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::CPS) {
+ unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 |
+ slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // DBG has its option specified in Inst{3-0}.
+ if (Opcode == ARM::DBG) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}).
+ if (Opcode == ARM::BKPT) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 |
+ slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ if (PreLoadOpcode(Opcode))
+ return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ assert(0 && "Unexpected misc instruction!");
+ return false;
+}
+
+static bool DisassembleThumbMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(0 && "Unexpected thumb misc. instruction!");
+ return false;
+}
+
+/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP.
+/// We divide the disassembly task into different categories, with each one
+/// corresponding to a specific instruction encoding format. There could be
+/// exceptions when handling a specific format, and that is why the Opcode is
+/// also present in the function prototype.
+static const DisassembleFP FuncPtrs[] = {
+ &DisassemblePseudo,
+ &DisassembleMulFrm,
+ &DisassembleBrFrm,
+ &DisassembleBrMiscFrm,
+ &DisassembleDPFrm,
+ &DisassembleDPSoRegFrm,
+ &DisassembleLdFrm,
+ &DisassembleStFrm,
+ &DisassembleLdMiscFrm,
+ &DisassembleStMiscFrm,
+ &DisassembleLdStMulFrm,
+ &DisassembleArithMiscFrm,
+ &DisassembleExtFrm,
+ &DisassembleVFPUnaryFrm,
+ &DisassembleVFPBinaryFrm,
+ &DisassembleVFPConv1Frm,
+ &DisassembleVFPConv2Frm,
+ &DisassembleVFPConv3Frm,
+ &DisassembleVFPConv4Frm,
+ &DisassembleVFPConv5Frm,
+ &DisassembleVFPLdStFrm,
+ &DisassembleVFPLdStMulFrm,
+ &DisassembleVFPMiscFrm,
+ &DisassembleThumbFrm,
+ &DisassembleNEONFrm,
+ &DisassembleNEONGetLnFrm,
+ &DisassembleNEONSetLnFrm,
+ &DisassembleNEONDupFrm,
+ &DisassembleLdStExFrm,
+ &DisassembleMiscFrm,
+ &DisassembleThumbMiscFrm,
+ NULL,
+};
+
+/// ARMAlgorithm - ARMAlgorithm implements ARMDisassemblyAlgorithm for solving
+/// the problem of building the MCOperands of an MCInst. Construction of
+/// ARMAlgorithm requires passing in a function pointer with the DisassembleFP
+/// data type.
+class ARMAlgorithm : public ARMDisassemblyAlgorithm {
+ /// Algorithms - Algorithms stores a map from Format to ARMAlgorithm*.
+ static std::vector<ARMAlgorithm*> Algorithms;
+ /// NSAlgorithms - NSAlgorithms stores a map from NSFormat to ARMAlgorithm*.
+ static std::vector<ARMAlgorithm*> NSAlgorithms;
+
+ DisassembleFP Disassemble;
+
+public:
+ /// GetInstance - GetInstance returns an instance of ARMAlgorithm given the
+ /// encoding Format. API clients should not free up the returned instance.
+ static ARMAlgorithm *GetInstance(ARMFormat Format, NSFormat NSF) {
+ /// Init the first time.
+ if (Algorithms.size() == 0) {
+ Algorithms.resize(array_lengthof(FuncPtrs));
+ for (unsigned i = 0, num = array_lengthof(FuncPtrs); i < num; ++i)
+ if (FuncPtrs[i])
+ Algorithms[i] = new ARMAlgorithm(FuncPtrs[i]);
+ else
+ Algorithms[i] = NULL;
+ }
+ if (NSAlgorithms.size() == 0) {
+ NSAlgorithms.resize(array_lengthof(NEONFuncPtrs));
+ for (unsigned i = 0, num = array_lengthof(NEONFuncPtrs); i < num; ++i)
+ if (NEONFuncPtrs[i])
+ NSAlgorithms[i] = new ARMAlgorithm(NEONFuncPtrs[i]);
+ else
+ NSAlgorithms[i] = NULL;
+ }
+
+ if (Format != ARM_FORMAT_NEONFRM)
+ return Algorithms[Format];
+ else
+ return NSAlgorithms[NSF];
+ }
+
+ virtual bool Solve(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) const {
+ if (Disassemble == NULL)
+ return false;
+
+ return (*Disassemble)(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+private:
+ ARMAlgorithm(DisassembleFP fp) :
+ ARMDisassemblyAlgorithm(), Disassemble(fp) {}
+
+ ARMAlgorithm(ARMAlgorithm &AA) :
+ ARMDisassemblyAlgorithm(), Disassemble(AA.Disassemble) {}
+
+ virtual ~ARMAlgorithm() {}
+};
+
+// Define the symbol here.
+std::vector<ARMAlgorithm*> ARMAlgorithm::Algorithms;
+
+// Define the symbol here.
+std::vector<ARMAlgorithm*> ARMAlgorithm::NSAlgorithms;
+
+// Define the symbol here.
+unsigned ARMBasicMCBuilder::ITCounter = 0;
+
+// Define the symbol here.
+unsigned ARMBasicMCBuilder::ITState = 0;
+
+// A8.6.50
+static unsigned short CountITSize(unsigned ITMask) {
+ // First count the trailing zeros of the IT mask.
+ unsigned TZ = CountTrailingZeros_32(ITMask);
+ assert(TZ <= 3);
+ return (4 - TZ);
+}
+
+/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
+/// The general idea is to set the Opcode for the MCInst, followed by adding
+/// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates
+/// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
+/// disassembly, followed by class method TryPredicateAndSBitModifier() to do
+/// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
+bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) {
+ // Stage 1 sets the Opcode.
+ MI.setOpcode(Opcode);
+ // If the number of operands is zero, we're done!
+ if (NumOps == 0)
+ return true;
+
+ // Stage 2 calls the ARM Disassembly Algorithm to build the operand list.
+ unsigned NumOpsAdded = 0;
+ bool OK = Algo.Solve(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ if (!OK) return false;
+ if (NumOpsAdded >= NumOps)
+ return true;
+
+ // Stage 3 deals with operands unaccounted for after stage 2 is finished.
+ // FIXME: Should this be done selectively?
+ return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded);
+}
+
+bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOpsRemaining) {
+
+ assert(NumOpsRemaining > 0);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ const std::string &Name = ARMInsts[Opcode].Name;
+ unsigned Idx = MI.getNumOperands();
+
+ // First, we check whether this instr specifies the PredicateOperand through
+ // a pair of TargetOperandInfos with isPredicate() property.
+ if (NumOpsRemaining >= 2 &&
+ OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
+ OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
+ {
+ // If we are inside an IT block, get the IT condition bits maintained via
+ // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
+ // See also A2.5.2.
+ if (InITBlock())
+ MI.addOperand(MCOperand::CreateImm(GetITCond()));
+ else {
+ if (Name.length() > 1 && Name[0] == 't') {
+ // Thumb conditional branch instructions have their cond field embedded,
+ // like ARM.
+ //
+ // A8.6.16 B
+ if (Name == "t2Bcc")
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 25, 22)));
+ else if (Name == "tBcc")
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
+ else
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ } else {
+ // ARM Instructions. Check condition field.
+ int64_t CondVal = getCondField(insn);
+ if (CondVal == 0xF)
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ else
+ MI.addOperand(MCOperand::CreateImm(CondVal));
+ }
+ }
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ Idx += 2;
+ NumOpsRemaining -= 2;
+ if (NumOpsRemaining == 0)
+ return true;
+ }
+
+ assert(NumOpsRemaining > 0);
+
+ // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set.
+ if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0));
+ --NumOpsRemaining;
+ }
+
+ if (NumOpsRemaining == 0)
+ return true;
+ else
+ return false;
+}
+
+/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
+/// after BuildIt is finished.
+bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI,
+ uint32_t insn) {
+
+ if (Opcode == ARM::t2IT) {
+ ARMBasicMCBuilder::ITCounter = CountITSize(slice(insn, 3, 0));
+ ARMBasicMCBuilder::InitITState(slice(insn, 7, 0));
+ } else if (InITBlock())
+ ARMBasicMCBuilder::UpdateITState();
+
+ return Status;
+}
+
+AbstractARMMCBuilder *ARMMCBuilderFactory::CreateMCBuilder(unsigned Opcode,
+ ARMFormat Format, NSFormat NSF) {
+
+ ARMAlgorithm *Algo = ARMAlgorithm::GetInstance(Format, NSF);
+ if (!Algo)
+ return NULL;
+
+ return new ARMBasicMCBuilder(Opcode, Format, NSF,
+ ARMInsts[Opcode].getNumOperands(), *Algo);
+}
diff --git a/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
new file mode 100644
index 0000000000..23b309cd4f
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
@@ -0,0 +1,301 @@
+//===- ARMDisassemblerCore.h - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+//
+// The first part defines the enumeration type of ARM instruction format, which
+// specifies the encoding used by the instruction, as well as a helper function
+// to convert the enums to printable char strings.
+//
+// It also contains code to represent the concepts of Builder, Builder Factory,
+// as well as the Algorithm to solve the problem of disassembling an ARM instr.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMDISASSEMBLERCORE_H
+#define ARMDISASSEMBLERCORE_H
+
+#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "ARMInstrInfo.h"
+
+namespace llvm {
+
+class ARMUtils {
+public:
+ static const char *OpcodeName(unsigned Opcode);
+};
+
+#define ARM_FORMATS \
+ ENTRY(ARM_FORMAT_PSEUDO, 0) \
+ ENTRY(ARM_FORMAT_MULFRM, 1) \
+ ENTRY(ARM_FORMAT_BRFRM, 2) \
+ ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
+ ENTRY(ARM_FORMAT_DPFRM, 4) \
+ ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
+ ENTRY(ARM_FORMAT_LDFRM, 6) \
+ ENTRY(ARM_FORMAT_STFRM, 7) \
+ ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
+ ENTRY(ARM_FORMAT_STMISCFRM, 9) \
+ ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
+ ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \
+ ENTRY(ARM_FORMAT_EXTFRM, 12) \
+ ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \
+ ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \
+ ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \
+ ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \
+ ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \
+ ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \
+ ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \
+ ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \
+ ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
+ ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \
+ ENTRY(ARM_FORMAT_THUMBFRM, 23) \
+ ENTRY(ARM_FORMAT_NEONFRM, 24) \
+ ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \
+ ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \
+ ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \
+ ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \
+ ENTRY(ARM_FORMAT_MISCFRM, 29) \
+ ENTRY(ARM_FORMAT_THUMBMISCFRM, 30)
+
+// ARM instruction format specifies the encoding used by the instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ ARM_FORMATS
+ ARM_FORMAT_NA
+} ARMFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const inline char *stringForARMFormat(ARMFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ ARM_FORMATS
+ case ARM_FORMAT_NA:
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+#define NS_FORMATS \
+ ENTRY(NS_FORMAT_NONE, 0) \
+ ENTRY(NS_FORMAT_VLDSTLane, 1) \
+ ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \
+ ENTRY(NS_FORMAT_VLDSTRQ, 3) \
+ ENTRY(NS_FORMAT_NVdImm, 4) \
+ ENTRY(NS_FORMAT_NVdVmImm, 5) \
+ ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \
+ ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \
+ ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \
+ ENTRY(NS_FORMAT_NVectorShuffle, 9) \
+ ENTRY(NS_FORMAT_NVectorShift, 10) \
+ ENTRY(NS_FORMAT_NVectorShift2, 11) \
+ ENTRY(NS_FORMAT_NVdVnVmImm, 12) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \
+ ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \
+ ENTRY(NS_FORMAT_VTBL, 16)
+
+// NEON instruction sub-format further classify the NEONFrm instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ NS_FORMATS
+ NS_FORMAT_NA
+} NSFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const inline char *stringForNSFormat(NSFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ NS_FORMATS
+ case NS_FORMAT_NA:
+ return "NA";
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+/// Expands on the enum definitions from ARMBaseInstrInfo.h.
+/// They are being used by the disassembler implementation.
+namespace ARMII {
+ enum {
+ NEONRegMask = 15,
+ GPRRegMask = 15,
+ NEON_RegRdShift = 12,
+ NEON_D_BitShift = 22,
+ NEON_RegRnShift = 16,
+ NEON_N_BitShift = 7,
+ NEON_RegRmShift = 0,
+ NEON_M_BitShift = 5
+ };
+}
+
+/// Utility function for extracting [From, To] bits from a uint32_t.
+static inline unsigned slice(uint32_t Bits, unsigned From, unsigned To) {
+ assert(From < 32 && To < 32 && From >= To);
+ return (Bits >> To) & ((1 << (From - To + 1)) - 1);
+}
+
+/// Utility function for setting [From, To] bits to Val for a uint32_t.
+static inline void setSlice(uint32_t &Bits, unsigned From, unsigned To,
+ uint32_t Val) {
+ assert(From < 32 && To < 32 && From >= To);
+ uint32_t Mask = ((1 << (From - To + 1)) - 1);
+ Bits &= ~(Mask << To);
+ Bits |= (Val & Mask) << To;
+}
+
+/// Various utilities for checking the target specific flags.
+
+/// A unary data processing instruction doesn't have an Rn operand.
+static inline bool isUnaryDP(unsigned TSFlags) {
+ return (TSFlags & ARMII::UnaryDP);
+}
+
+/// This four-bit field describes the addressing mode used.
+/// See also ARMBaseInstrInfo.h.
+static inline unsigned getAddrMode(unsigned TSFlags) {
+ return (TSFlags & ARMII::AddrModeMask);
+}
+
+/// {IndexModePre, IndexModePost}
+/// Only valid for load and store ops.
+/// See also ARMBaseInstrInfo.h.
+static inline unsigned getIndexMode(unsigned TSFlags) {
+ return (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
+}
+
+/// Pre-/post-indexed operations define an extra $base_wb in the OutOperandList.
+static inline bool isPrePostLdSt(unsigned TSFlags) {
+ return (TSFlags & ARMII::IndexModeMask) != 0;
+}
+
+/// AbstractARMMCBuilder - AbstractARMMCBuilder represents an interface of ARM
+/// MCInst builder that knows how to build up the MCOperand list.
+class AbstractARMMCBuilder {
+public:
+ /// Build - Build the MCInst fully and return true. Return false if any
+ /// failure occurs.
+ virtual bool Build(MCInst &MI, uint32_t insn) { return false; }
+};
+
+/// ARMDisassemblyAlgorithm - ARMDisassemblyAlgorithm represents an interface of
+/// ARM disassembly algorithm that relies on the entries of target operand info,
+/// among other things, to solve the problem of disassembling an ARM machine
+/// instruction.
+class ARMDisassemblyAlgorithm {
+public:
+ /// Return true if this algorithm successfully disassembles the instruction.
+ /// NumOpsAdded is updated to reflect the number of operands added by the
+ /// algorithm. NumOpsAdded may be less than NumOps, in which case, there are
+ /// operands unaccounted for which need to be dealt with by the API client.
+ virtual bool Solve(MCInst& MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) const
+ = 0;
+};
+
+/// ARMBasicMCBuilder - ARMBasicMCBuilder represents a concrete subclass of
+/// ARMAbstractMCBuilder.
+class ARMBasicMCBuilder : public AbstractARMMCBuilder {
+ unsigned Opcode;
+ ARMFormat Format;
+ NSFormat NSF;
+ unsigned short NumOps;
+ const ARMDisassemblyAlgorithm &Algo;
+ static unsigned ITCounter; // Possible values: 0, 1, 2, 3, 4.
+ static unsigned ITState; // A2.5.2 Consists of IT[7:5] and IT[4:0] initially.
+
+public:
+ ARMBasicMCBuilder(ARMBasicMCBuilder &MCB) : AbstractARMMCBuilder(),
+ Opcode(MCB.Opcode), Format(MCB.Format), NSF(MCB.NSF), NumOps(MCB.NumOps),
+ Algo(MCB.Algo) {}
+
+ /// Opcode, Format, NSF, NumOperands, and Algo make an ARM Basic MCBuilder.
+ ARMBasicMCBuilder(unsigned opc, ARMFormat format, NSFormat NSF,
+ unsigned short num, const ARMDisassemblyAlgorithm &algo)
+ : AbstractARMMCBuilder(), Opcode(opc), Format(format), NumOps(num),
+ Algo(algo) {}
+
+ /// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process
+ /// the possible Predicate and SBitModifier, to build the remaining MCOperand
+ /// constituents.
+ static bool TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOpsRemaning);
+
+ /// InITBlock - InITBlock returns true if we are inside an IT block.
+ static bool InITBlock() {
+ return ITCounter > 0;
+ }
+
+ /// Build - Build delegates to BuildIt to perform the heavy liftling. After
+ /// that, it invokes RunBuildAfterHook where some housekeepings can be done.
+ virtual bool Build(MCInst &MI, uint32_t insn) {
+ bool Status = BuildIt(MI, insn);
+ return RunBuildAfterHook(Status, MI, insn);
+ }
+
+ /// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
+ /// The general idea is to set the Opcode for the MCInst, followed by adding
+ /// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates
+ /// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
+ /// disassembly, followed by class method TryPredicateAndSBitModifier() to do
+ /// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
+ virtual bool BuildIt(MCInst &MI, uint32_t insn);
+
+ /// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
+ /// after BuildIt is finished.
+ virtual bool RunBuildAfterHook(bool Status, MCInst &MI, uint32_t insn);
+
+private:
+ /// Get condition of the current IT instruction.
+ static unsigned GetITCond() {
+ return slice(ITState, 7, 4);
+ }
+
+ /// Init ITState.
+ static void InitITState(unsigned short bits7_0) {
+ ITState = bits7_0;
+ }
+
+ /// Update ITState if necessary.
+ static void UpdateITState() {
+ assert(ITCounter);
+ --ITCounter;
+ if (ITCounter == 0)
+ ITState = 0;
+ else {
+ unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
+ setSlice(ITState, 4, 0, NewITState4_0);
+ }
+ }
+};
+
+/// ARMMCBuilderFactory - ARMMCBuilderFactory represents the factory class that
+/// vends out ARMAbstractMCBuilder instances through its class method.
+class ARMMCBuilderFactory {
+private:
+ ARMMCBuilderFactory(); // DO NOT IMPLEMENT.
+
+public:
+ /// CreateMCBuilder - Return an AbstractARMMCBuilder that can build up the MC
+ /// infrastructure of an MCInst given the Opcode and Format of the instr.
+ /// Return NULL if it fails to create/return a proper builder. API clients
+ /// are responsible for freeing up of the allocated memory. Cacheing can be
+ /// performed by the API clients to improve performance.
+ static AbstractARMMCBuilder *CreateMCBuilder(unsigned Opcode,
+ ARMFormat Format, NSFormat NSF);
+};
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/ARM/Disassembler/Makefile b/lib/Target/ARM/Disassembler/Makefile
new file mode 100644
index 0000000000..3eab8325a4
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/Makefile
@@ -0,0 +1,17 @@
+##===- lib/Target/ARM/Disassembler/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMARMDisassembler
+CXXFLAGS = -fno-rtti
+
+# Hack: we need to include 'main' arm target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc b/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
new file mode 100644
index 0000000000..928c403b7e
--- /dev/null
+++ b/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
@@ -0,0 +1,2158 @@
+//===- ThumbDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code for disassembling a Thumb instr.
+//
+//===----------------------------------------------------------------------===//
+
+///////////////////////////////
+// //
+// Utility Functions //
+// //
+///////////////////////////////
+
+// Utilities for 16-bit Thumb instructions.
+/*
+15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ [ tRt ]
+ [ tRm ] [ tRn ] [ tRd ]
+ D [ Rm ] [ Rd ]
+
+ [ imm3]
+ [ imm5 ]
+ i [ imm5 ]
+ [ imm7 ]
+ [ imm8 ]
+ [ imm11 ]
+
+ [ cond ]
+*/
+
+static bool InITBlock() {
+ return ARMBasicMCBuilder::InITBlock();
+}
+
+// Extract tRt: Inst{10-8}.
+static inline unsigned getT1tRt(uint32_t insn) {
+ return slice(insn, 10, 8);
+}
+
+// Extract tRm: Inst{8-6}.
+static inline unsigned getT1tRm(uint32_t insn) {
+ return slice(insn, 8, 6);
+}
+
+// Extract tRn: Inst{5-3}.
+static inline unsigned getT1tRn(uint32_t insn) {
+ return slice(insn, 5, 3);
+}
+
+// Extract tRd: Inst{2-0}.
+static inline unsigned getT1tRd(uint32_t insn) {
+ return slice(insn, 2, 0);
+}
+
+// Extract [D:Rd]: Inst{7:2-0}.
+static inline unsigned getT1Rd(uint32_t insn) {
+ return slice(insn, 7, 7) << 3 | slice(insn, 2, 0);
+}
+
+// Extract Rm: Inst{6-3}.
+static inline unsigned getT1Rm(uint32_t insn) {
+ return slice(insn, 6, 3);
+}
+
+// Extract imm3: Inst{8-6}.
+static inline unsigned getT1Imm3(uint32_t insn) {
+ return slice(insn, 8, 6);
+}
+
+// Extract imm5: Inst{10-6}.
+static inline unsigned getT1Imm5(uint32_t insn) {
+ return slice(insn, 10, 6);
+}
+
+// Extract i:imm5: Inst{9:7-3}.
+static inline unsigned getT1Imm6(uint32_t insn) {
+ return slice(insn, 9, 9) << 5 | slice(insn, 7, 3);
+}
+
+// Extract imm7: Inst{6-0}.
+static inline unsigned getT1Imm7(uint32_t insn) {
+ return slice(insn, 6, 0);
+}
+
+// Extract imm8: Inst{7-0}.
+static inline unsigned getT1Imm8(uint32_t insn) {
+ return slice(insn, 7, 0);
+}
+
+// Extract imm11: Inst{10-0}.
+static inline unsigned getT1Imm11(uint32_t insn) {
+ return slice(insn, 10, 0);
+}
+
+// Extract cond: Inst{11-8}.
+static inline unsigned getT1Cond(uint32_t insn) {
+ return slice(insn, 11, 8);
+}
+
+static inline bool IsGPR(unsigned RegClass) {
+ return RegClass == ARM::GPRRegClassID;
+}
+
+// Utilities for 32-bit Thumb instructions.
+
+// Extract imm4: Inst{19-16}.
+static inline unsigned getImm4(uint32_t insn) {
+ return slice(insn, 19, 16);
+}
+
+// Extract imm3: Inst{14-12}.
+static inline unsigned getImm3(uint32_t insn) {
+ return slice(insn, 14, 12);
+}
+
+// Extract imm8: Inst{7-0}.
+static inline unsigned getImm8(uint32_t insn) {
+ return slice(insn, 7, 0);
+}
+
+// A8.6.61 LDRB (immediate, Thumb) and friends
+// +/-: Inst{9}
+// imm8: Inst{7-0}
+static inline int decodeImm8(uint32_t insn) {
+ int Offset = getImm8(insn);
+ return slice(insn, 9, 9) ? Offset : -Offset;
+}
+
+// Extract imm12: Inst{11-0}.
+static inline unsigned getImm12(uint32_t insn) {
+ return slice(insn, 11, 0);
+}
+
+// A8.6.63 LDRB (literal) and friends
+// +/-: Inst{23}
+// imm12: Inst{11-0}
+static inline int decodeImm12(uint32_t insn) {
+ int Offset = getImm12(insn);
+ return slice(insn, 23, 23) ? Offset : -Offset;
+}
+
+// Extract imm2: Inst{7-6}.
+static inline unsigned getImm2(uint32_t insn) {
+ return slice(insn, 7, 6);
+}
+
+// For BFI, BFC, t2SBFX, and t2UBFX.
+// Extract lsb: Inst{14-12:7-6}.
+static inline unsigned getLsb(uint32_t insn) {
+ return getImm3(insn) << 2 | getImm2(insn);
+}
+
+// For BFI and BFC.
+// Extract msb: Inst{4-0}.
+static inline unsigned getMsb(uint32_t insn) {
+ return slice(insn, 4, 0);
+}
+
+// For t2SBFX and t2UBFX.
+// Extract widthminus1: Inst{4-0}.
+static inline unsigned getWidthMinus1(uint32_t insn) {
+ return slice(insn, 4, 0);
+}
+
+// For t2ADDri12 and t2SUBri12.
+// imm12 = i:imm3:imm8;
+static inline unsigned getIImm3Imm8(uint32_t insn) {
+ return slice(insn, 26, 26) << 11 | getImm3(insn) << 8 | getImm8(insn);
+}
+
+// For t2MOVi16 and t2MOVTi16.
+// imm16 = imm4:i:imm3:imm8;
+static inline unsigned getImm16(uint32_t insn) {
+ return getImm4(insn) << 12 | slice(insn, 26, 26) << 11 |
+ getImm3(insn) << 8 | getImm8(insn);
+}
+
+// Inst{5-4} encodes the shift type.
+static inline unsigned getShiftTypeBits(uint32_t insn) {
+ return slice(insn, 5, 4);
+}
+
+// Inst{14-12}:Inst{7-6} encodes the imm5 shift amount.
+static inline unsigned getShiftAmtBits(uint32_t insn) {
+ return getImm3(insn) << 2 | getImm2(insn);
+}
+
+// A8.6.17 BFC
+// Encoding T1 ARMv6T2, ARMv7
+// LLVM-specific encoding for #<lsb> and #<width>
+static inline uint32_t getBitfieldInvMask(uint32_t insn) {
+ uint32_t lsb = getImm3(insn) << 2 | getImm2(insn);
+ uint32_t msb = getMsb(insn);
+ uint32_t Val = 0;
+ assert(lsb <= msb && "Encoding error: lsb > msb");
+ for (uint32_t i = lsb; i <= msb; ++i)
+ Val |= (1 << i);
+ return ~Val;
+}
+
+// A8.4 Shifts applied to a register
+// A8.4.1 Constant shifts
+// A8.4.3 Pseudocode details of instruction-specified shifts and rotates
+//
+// decodeImmShift() returns the shift amount and the the shift opcode.
+// Note that, as of Jan-06-2010, LLVM does not support rrx shifted operands yet.
+static inline unsigned decodeImmShift(unsigned bits2, unsigned imm5,
+ ARM_AM::ShiftOpc &ShOp) {
+
+ assert(imm5 < 32);
+ switch (bits2) {
+ default: assert(0 && "No such value");
+ case 0:
+ ShOp = ARM_AM::lsl;
+ return imm5;
+ case 1:
+ ShOp = ARM_AM::lsr;
+ return (imm5 == 0 ? 32 : imm5);
+ case 2:
+ ShOp = ARM_AM::asr;
+ return (imm5 == 0 ? 32 : imm5);
+ case 3:
+ ShOp = (imm5 == 0 ? ARM_AM::rrx : ARM_AM::ror);
+ return (imm5 == 0 ? 1 : imm5);
+ }
+}
+
+// A6.3.2 Modified immediate constants in Thumb instructions
+//
+// ThumbExpandImm() returns the modified immediate constant given an imm12 for
+// Thumb data-processing instructions with modified immediate.
+// See also A6.3.1 Data-processing (modified immediate).
+static inline unsigned ThumbExpandImm(unsigned imm12) {
+ assert(imm12 <= 0xFFF);
+
+ // If the leading two bits is 0b00, the modified immediate constant is
+ // obtained by splatting the low 8 bits into the first byte, every other byte,
+ // or every byte of a 32-bit value.
+ //
+ // Otherwise, a rotate right of '1':imm12<6:0> by the amount imm12<11:7> is
+ // performed.
+
+ if (slice(imm12, 11, 10) == 0) {
+ unsigned short control = slice(imm12, 9, 8);
+ unsigned imm8 = slice(imm12, 7, 0);
+ switch (control) {
+ default:
+ assert(0 && "No such value");
+ return 0;
+ case 0:
+ return imm8;
+ case 1:
+ return imm8 << 16 | imm8;
+ case 2:
+ return imm8 << 24 | imm8 << 8;
+ case 3:
+ return imm8 << 24 | imm8 << 16 | imm8 << 8 | imm8;
+ }
+ } else {
+ // A rotate is required.
+ unsigned Val = 1 << 7 | slice(imm12, 6, 0);
+ unsigned Amt = slice(imm12, 11, 7);
+ return ARM_AM::rotr32(Val, Amt);
+ }
+}
+
+static inline int decodeImm32_B_EncodingT3(uint32_t insn) {
+ bool S = slice(insn, 26, 26);
+ bool J1 = slice(insn, 13, 13);
+ bool J2 = slice(insn, 11, 11);
+ unsigned Imm21 = slice(insn, 21, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm21 |= 1 << 20;
+ if (J2) Imm21 |= 1 << 19;
+ if (J1) Imm21 |= 1 << 18;
+
+ return signextend<signed int, 21>(Imm21);
+}
+
+static inline int decodeImm32_B_EncodingT4(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+static inline int decodeImm32_BL(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+static inline int decodeImm32_BLX(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 1) << 2;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+// See, for example, A8.6.221 SXTAB16.
+static inline unsigned decodeRotate(uint32_t insn) {
+ unsigned rotate = slice(insn, 5, 4);
+ return rotate << 3;
+}
+
+///////////////////////////////////////////////
+// //
+// Thumb1 instruction disassembly functions. //
+// //
+///////////////////////////////////////////////
+
+// See "Utilities for 16-bit Thumb instructions" for register naming convention.
+
+// A6.2.1 Shift (immediate), add, subtract, move, and compare
+//
+// shift immediate: tRd CPSR tRn imm5
+// add/sub register: tRd CPSR tRn tRm
+// add/sub 3-bit immediate: tRd CPSR tRn imm3
+// add/sub 8-bit immediate: tRt CPSR tRt(TIED_TO) imm8
+// mov/cmp immediate: tRt [CPSR] imm8 (CPSR present for mov)
+//
+// Special case:
+// tMOVSr: tRd tRn
+static bool DisassembleThumb1General(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID);
+
+ bool Imm3 = (Opcode == ARM::tADDi3 || Opcode == ARM::tSUBi3);
+
+ // Use Rt implies use imm8.
+ bool UseRt = (Opcode == ARM::tADDi8 || Opcode == ARM::tSUBi8 ||
+ Opcode == ARM::tMOVi8 || Opcode == ARM::tCMPi8);
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::tGPRRegClassID,
+ UseRt ? getT1tRt(insn) : getT1tRd(insn))));
+ ++OpIdx;
+
+ // Check whether the next operand to be added is a CCR Register.
+ if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
+ assert(OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
+ ++OpIdx;
+ }
+
+ // Check whether the next operand to be added is a Thumb1 Register.
+ assert(OpIdx < NumOps);
+ if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // For UseRt, the reg operand is tied to the first reg operand.
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::tGPRRegClassID,
+ UseRt ? getT1tRt(insn) : getT1tRn(insn))));
+ ++OpIdx;
+ }
+
+ // Special case for tMOVSr.
+ if (OpIdx == NumOps)
+ return true;
+
+ // The next available operand is either a reg operand or an imm operand.
+ if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // Three register operand instructions.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRm(insn))));
+ } else {
+ assert(OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateImm(UseRt ? getT1Imm8(insn)
+ : (Imm3 ? getT1Imm3(insn)
+ : getT1Imm5(insn))));
+ }
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.2.2 Data-processing
+//
+// tCMPr, tTST, tCMN: tRd tRn
+// tMVN, tRSB: tRd CPSR tRn
+// Others: tRd CPSR tRd(TIED_TO) tRn
+static bool DisassembleThumb1DP(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == ARM::CCRRegClassID
+ || OpInfo[1].RegClass == ARM::tGPRRegClassID));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+ ++OpIdx;
+
+ // Check whether the next operand to be added is a CCR Register.
+ if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
+ assert(OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
+ ++OpIdx;
+ }
+
+ // We have either { tRd(TIED_TO), tRn } or { tRn } remaining.
+ // Process the TIED_TO operand first.
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // The reg operand is tied to the first reg operand.
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // Process possible next reg operand.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // Add tRn operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.2.3 Special data instructions and branch and exchange
+//
+// tADDhirr: Rd Rd(TIED_TO) Rm
+// tCMPhir: Rd Rm
+// tMOVr, tMOVgpr2gpr, tMOVgpr2tgpr, tMOVtgpr2gpr: Rd|tRd Rm|tRn
+// tBX_RET: 0 operand
+// tBX_RET_vararg: Rm
+// tBLXr_r9: Rm
+static bool DisassembleThumb1Special(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // tBX_RET has 0 operand.
+ if (NumOps == 0)
+ return true;
+
+ // BX/BLX has 1 reg operand: Rm.
+ if (NumOps == 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ getT1Rm(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Add the destination operand.
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass,
+ IsGPR(RegClass) ? getT1Rd(insn)
+ : getT1tRd(insn))));
+ ++OpIdx;
+
+ // We have either { Rd(TIED_TO), Rm } or { Rm|tRn } remaining.
+ // Process the TIED_TO operand first.
+
+ assert(OpIdx < NumOps);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // The reg operand is tied to the first reg operand.
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // The next reg operand is either Rm or tRn.
+ assert(OpIdx < NumOps);
+ RegClass = OpInfo[OpIdx].RegClass;
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass,
+ IsGPR(RegClass) ? getT1Rm(insn)
+ : getT1tRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A8.6.59 LDR (literal)
+//
+// tLDRpci: tRt imm8*4
+static bool DisassembleThumb1LdPC(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == 0 &&
+ !OpInfo[1].isPredicate() &&
+ !OpInfo[1].isOptionalDef()));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+
+ // And the (imm8 << 2) operand.
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn) << 2));
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// Thumb specific addressing modes (see ARMInstrThumb.td):
+//
+// t_addrmode_rr := reg + reg
+//
+// t_addrmode_s4 := reg + reg
+// reg + imm5 * 4
+//
+// t_addrmode_s2 := reg + reg
+// reg + imm5 * 2
+//
+// t_addrmode_s1 := reg + reg
+// reg + imm5
+//
+// t_addrmode_sp := sp + imm8 * 4
+//
+
+// A6.2.4 Load/store single data item
+//
+// Load/Store Register (reg|imm): tRd tRn imm5 tRm
+// Load Register Signed Byte|Halfword: tRd tRn tRm
+static bool DisassembleThumb1LdSt(unsigned opA, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Table A6-5 16-bit Thumb Load/store instructions
+ // opA = 0b0101 for STR/LDR (register) and friends.
+ // Otherwise, we have STR/LDR (immediate) and friends.
+ bool Imm5 = (opA != 5);
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::tGPRRegClassID
+ && OpInfo[1].RegClass == ARM::tGPRRegClassID);
+
+ // Add the destination reg and the base reg.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ OpIdx = 2;
+
+ // We have either { imm5, tRm } or { tRm } remaining.
+ // Process the imm5 first. Note that STR/LDR (register) should skip the imm5
+ // offset operand for t_addrmode_s[1|2|4].
+
+ assert(OpIdx < NumOps);
+
+ if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() &&
+ !OpInfo[OpIdx].isOptionalDef()) {
+
+ MI.addOperand(MCOperand::CreateImm(Imm5 ? getT1Imm5(insn) : 0));
+ ++OpIdx;
+ }
+
+ // The next reg operand is tRm, the offset.
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(Imm5 ? 0
+ : getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRm(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.2.4 Load/store single data item
+//
+// Load/Store Register SP relative: tRt ARM::SP imm8
+static bool DisassembleThumb1LdStSP(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ (OpInfo[2].RegClass == 0 &&
+ !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 3;
+ return true;
+}
+
+// Table A6-1 16-bit Thumb instruction encoding
+// A8.6.10 ADR
+//
+// tADDrPCi: tRt imm8
+static bool DisassembleThumb1AddPCi(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tADDrPCi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == 0 &&
+ !OpInfo[1].isPredicate() &&
+ !OpInfo[1].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// Table A6-1 16-bit Thumb instruction encoding
+// A8.6.8 ADD (SP plus immediate)
+//
+// tADDrSPi: tRt ARM::SP imm8
+static bool DisassembleThumb1AddSPi(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tADDrSPi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ (OpInfo[2].RegClass == 0 &&
+ !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 3;
+ return true;
+}
+
+// tPUSH, tPOP: Pred-Imm Pred-CCR register_list
+//
+// where register_list = low registers + [lr] for PUSH or
+// low registers + [pc] for POP
+//
+// "low registers" is specified by Inst{7-0}
+// lr|pc is specified by Inst{8}
+static bool DisassembleThumb1PushPop(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tPUSH || Opcode == ARM::tPOP);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx = 2;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = slice(insn, 8, 8) << (Opcode == ARM::tPUSH ? 14 : 15)
+ | slice(insn, 7, 0);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// A6.2.5 Miscellaneous 16-bit instructions
+// Delegate to DisassembleThumb1PushPop() for tPUSH & tPOP.
+//
+// tADDspi, tSUBspi: ARM::SP ARM::SP(TIED_TO) imm7
+// t2IT: firstcond=Inst{7-4} mask=Inst{3-0}
+// tCBNZ, tCBZ: tRd imm6*2
+// tBKPT: imm8
+// tNOP, tSEV, tYIELD, tWFE, tWFI:
+// no operand (except predicate pair)
+// tSETENDBE, tSETENDLE, :
+// no operand
+// Others: tRd tRn
+static bool DisassembleThumb1Misc(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (NumOps == 0)
+ return true;
+
+ if (Opcode == ARM::tPUSH || Opcode == ARM::tPOP)
+ return DisassembleThumb1PushPop(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ // Predicate operands are handled elsewhere.
+ if (NumOps == 2 &&
+ OpInfo[0].isPredicate() && OpInfo[1].isPredicate() &&
+ OpInfo[0].RegClass == 0 && OpInfo[1].RegClass == ARM::CCRRegClassID) {
+ return true;
+ }
+
+ if (Opcode == ARM::tADDspi || Opcode == ARM::tSUBspi) {
+ // Special case handling for tADDspi and tSUBspi.
+ // A8.6.8 ADD (SP plus immediate) & A8.6.215 SUB (SP minus immediate)
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm7(insn)));
+ NumOpsAdded = 3;
+ return true;
+ }
+
+ if (Opcode == ARM::t2IT) {
+ // Special case handling for If-Then.
+ // A8.6.50 IT
+ // Tag the (firstcond[0] bit << 4) along with mask.
+
+ // firstcond
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 4)));
+
+ // firstcond[0] and mask
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ NumOpsAdded = 2;
+ return true;
+ }
+
+ if (Opcode == ARM::tBKPT) {
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); // breakpoint value
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = don't care
+ // opt{5} = 0 (false)
+ // opt{8-6} = AIF from Inst{2-0}
+ // opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::tCPS) {
+ unsigned Option = slice(insn, 2, 0) << 6 | slice(insn, 4, 4) << 9 | 1 << 10;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass==0 || OpInfo[1].RegClass==ARM::tGPRRegClassID));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+
+ if (OpInfo[1].RegClass == ARM::tGPRRegClassID) {
+ // Two register instructions.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ } else {
+ // CBNZ, CBZ
+ assert(Opcode == ARM::tCBNZ || Opcode == ARM::tCBZ);
+ MI.addOperand(MCOperand::CreateImm(getT1Imm6(insn) * 2));
+ }
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// A8.6.53 LDM / LDMIA
+// A8.6.189 STM / STMIA
+//
+// tRt AM4ModeImm Pred-Imm Pred-CCR register_list
+static bool DisassembleThumb1LdStMul(bool Ld, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tLDM || Opcode == ARM::tSTM_UPD);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned tRt = getT1tRt(insn);
+ unsigned RegListBits = slice(insn, 7, 0);
+
+ OpIdx = 0;
+
+ // For STM, WB is always true.
+ if (Opcode == ARM::tSTM_UPD) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ tRt)));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ tRt)));
+ ++OpIdx;
+
+ // A8.6.53 LDM / LDMIA / LDMFD - Encoding T1
+ // WB is true if tRt is not specified as a member of the register list.
+ // For STM, WB is always true.
+ bool WB = Ld ? ((RegListBits >> tRt) & 1) == 0 : true;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(ARM_AM::ia, WB)));
+ ++OpIdx;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx += 2;
+
+ // Fill the variadic part of reglist.
+ for (unsigned i = 0; i < 8; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+static bool DisassembleThumb1LdMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleThumb1LdStMul(true, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+
+static bool DisassembleThumb1StMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleThumb1LdStMul(false, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+
+// A8.6.16 B Encoding T1
+// cond = Inst{11-8} & imm8 = Inst{7-0}
+// imm32 = SignExtend(imm8:'0', 32)
+//
+// tBcc: offset Pred-Imm Pred-CCR
+// tSVC: imm8 Pred-Imm Pred-CCR
+// tTRAP: 0 operand (early return)
+static bool DisassembleThumb1CondBr(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Opcode == ARM::tTRAP)
+ return true;
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ assert(NumOps == 3 && OpInfo[0].RegClass == 0 &&
+ OpInfo[1].isPredicate() && OpInfo[2].RegClass == ARM::CCRRegClassID);
+
+ unsigned Imm8 = getT1Imm8(insn);
+ MI.addOperand(MCOperand::CreateImm(
+ Opcode == ARM::tBcc ? signextend<signed int, 9>(Imm8 << 1) + 4
+ : (int)Imm8));
+
+ // Predicate operands by ARMBasicMCBuilder::TryPredicateAndSBitModifier().
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+// A8.6.16 B Encoding T2
+// imm11 = Inst{10-0}
+// imm32 = SignExtend(imm11:'0', 32)
+//
+// tB: offset
+static bool DisassembleThumb1Br(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ assert(NumOps == 1 && OpInfo[0].RegClass == 0);
+
+ unsigned Imm11 = getT1Imm11(insn);
+
+ // When executing a Thumb instruction, PC reads as the address of the current
+ // instruction plus 4. The assembler subtracts 4 from the difference between
+ // the branch instruction and the target address, disassembler has to add 4 to
+ // to compensate.
+ MI.addOperand(MCOperand::CreateImm(
+ signextend<signed int, 12>(Imm11 << 1) + 4));
+
+ NumOpsAdded = 1;
+
+ return true;
+
+}
+
+// See A6.2 16-bit Thumb instruction encoding for instruction classes
+// corresponding to op.
+//
+// Table A6-1 16-bit Thumb instruction encoding (abridged)
+// op Instruction or instruction class
+// ------ --------------------------------------------------------------------
+// 00xxxx Shift (immediate), add, subtract, move, and compare on page A6-7
+// 010000 Data-processing on page A6-8
+// 010001 Special data instructions and branch and exchange on page A6-9
+// 01001x Load from Literal Pool, see LDR (literal) on page A8-122
+// 0101xx Load/store single data item on page A6-10
+// 011xxx
+// 100xxx
+// 10100x Generate PC-relative address, see ADR on page A8-32
+// 10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28
+// 1011xx Miscellaneous 16-bit instructions on page A6-11
+// 11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374
+// 11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 a
+// 1101xx Conditional branch, and Supervisor Call on page A6-13
+// 11100x Unconditional Branch, see B on page A8-44
+//
+static bool DisassembleThumb1(uint16_t op,
+ MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ unsigned op1 = slice(op, 5, 4);
+ unsigned op2 = slice(op, 3, 2);
+ unsigned op3 = slice(op, 1, 0);
+ unsigned opA = slice(op, 5, 2);
+ switch (op1) {
+ case 0:
+ // A6.2.1 Shift (immediate), add, subtract, move, and compare
+ return DisassembleThumb1General(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ switch (op2) {
+ case 0:
+ switch (op3) {
+ case 0:
+ // A6.2.2 Data-processing
+ return DisassembleThumb1DP(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ // A6.2.3 Special data instructions and branch and exchange
+ return DisassembleThumb1Special(MI, Opcode, insn, NumOps, NumOpsAdded);
+ default:
+ // A8.6.59 LDR (literal)
+ return DisassembleThumb1LdPC(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ default:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
+ break;
+ }
+ break;
+ case 2:
+ switch (op2) {
+ case 0:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdStSP(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 2:
+ if (op3 <= 1) {
+ // A8.6.10 ADR
+ return DisassembleThumb1AddPCi(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A8.6.8 ADD (SP plus immediate)
+ return DisassembleThumb1AddSPi(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ default:
+ // A6.2.5 Miscellaneous 16-bit instructions
+ return DisassembleThumb1Misc(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ case 3:
+ switch (op2) {
+ case 0:
+ if (op3 <= 1) {
+ // A8.6.189 STM / STMIA / STMEA
+ return DisassembleThumb1StMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A8.6.53 LDM / LDMIA / LDMFD
+ return DisassembleThumb1LdMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ case 1:
+ // A6.2.6 Conditional branch, and Supervisor Call
+ return DisassembleThumb1CondBr(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 2:
+ // Unconditional Branch, see B on page A8-44
+ return DisassembleThumb1Br(MI, Opcode, insn, NumOps, NumOpsAdded);
+ default:
+ assert(0 && "Unreachable code");
+ break;
+ }
+ break;
+ default:
+ assert(0 && "Unreachable code");
+ break;
+ }
+
+ return false;
+}
+
+///////////////////////////////////////////////
+// //
+// Thumb2 instruction disassembly functions. //
+// //
+///////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////
+// //
+// Note: the register naming follows the ARM convention! //
+// //
+///////////////////////////////////////////////////////////
+
+static inline bool Thumb2SRSOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2SRSDBW: case ARM::t2SRSDB:
+ case ARM::t2SRSIAW: case ARM::t2SRSIA:
+ return true;
+ }
+}
+
+static inline bool Thumb2RFEOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2RFEDBW: case ARM::t2RFEDB:
+ case ARM::t2RFEIAW: case ARM::t2RFEIA:
+ return true;
+ }
+}
+
+// t2SRS[IA|DB]W/t2SRS[IA|DB]: mode_imm = Inst{4-0}
+static bool DisassembleThumb2SRS(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ NumOpsAdded = 1;
+ return true;
+}
+
+// t2RFE[IA|DB]W/t2RFE[IA|DB]: Rn
+static bool DisassembleThumb2RFE(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 1;
+ return true;
+}
+
+static bool DisassembleThumb2LdStMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Thumb2SRSOpcode(Opcode))
+ return DisassembleThumb2SRS(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ if (Thumb2RFEOpcode(Opcode))
+ return DisassembleThumb2RFE(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ assert(Opcode == ARM::t2LDM || Opcode == ARM::t2LDM_UPD ||
+ Opcode == ARM::t2STM || Opcode == ARM::t2STM_UPD);
+ assert(NumOps >= 5 && "Thumb2 LdStMul expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+
+ // Writeback to base.
+ if (Opcode == ARM::t2LDM_UPD || Opcode == ARM::t2STM_UPD) {
+ MI.addOperand(MCOperand::CreateReg(Base));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(Base));
+ ++OpIdx;
+
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+ ++OpIdx;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx += 2;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = insn & ((1 << 16) - 1);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// t2LDREX: Rd Rn
+// t2LDREXD: Rd Rs Rn
+// t2LDREXB, t2LDREXH: Rd Rn
+// t2STREX: Rs Rd Rn
+// t2STREXD: Rm Rd Rs Rn
+// t2STREXB, t2STREXH: Rm Rd Rn
+static bool DisassembleThumb2LdStEx(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool isStore = (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH);
+ bool isSW = (Opcode == ARM::t2LDREX || Opcode == ARM::t2STREX);
+ bool isDW = (Opcode == ARM::t2LDREXD || Opcode == ARM::t2STREXD);
+
+ // Add the destination operand for store.
+ if (isStore) {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ isSW ? decodeRs(insn) : decodeRm(insn))));
+ ++OpIdx;
+ }
+
+ // Source operand for store and destination operand for load.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Thumb2 doubleword complication: with an extra source/destination operand.
+ if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+ }
+
+ // Finally add the pointer operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// LLVM, as of Jan-05-2010, does not output <Rt2>, i.e., Rs, in the asm.
+// Whereas the ARM Arch. Manual does not require that t2 = t+1 like in ARM ISA.
+//
+// t2LDRDi8: Rd Rs Rn imm8s4 (offset mode)
+// t2LDRDpci: Rd Rs imm8s4 (Not decoded, prefer the generic t2LDRDi8 version)
+// t2STRDi8: Rd Rs Rn imm8s4 (offset mode)
+//
+// Ditto for t2LDRD_PRE, t2LDRD_POST, t2STRD_PRE, t2STRD_POST, which are for
+// disassembly only and do not have a tied_to writeback base register operand.
+static bool DisassembleThumb2LdStDual(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 4
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == ARM::GPRRegClassID
+ && OpInfo[3].RegClass == 0);
+
+ // Add the <Rt> <Rt2> operands.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // Finally add (+/-)imm8*4, depending on the U bit.
+ int Offset = getImm8(insn) * 4;
+ if (getUBit(insn) == 0)
+ Offset = -Offset;
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ NumOpsAdded = 4;
+
+ return true;
+}
+
+// PC-based defined for Codegen, which do not get decoded by design:
+//
+// t2TBB, t2TBH: Rm immDontCare immDontCare
+//
+// Generic version defined for disassembly:
+//
+// t2TBBgen, t2TBHgen: Rn Rm Pred-Imm Pred-CCR
+static bool DisassembleThumb2TB(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2);
+
+ // The generic version of TBB/TBH needs a base register.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ // Add the index register.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+static inline bool Thumb2ShiftOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2MOVCClsl: case ARM::t2MOVCClsr:
+ case ARM::t2MOVCCasr: case ARM::t2MOVCCror:
+ case ARM::t2LSLri: case ARM::t2LSRri:
+ case ARM::t2ASRri: case ARM::t2RORri:
+ return true;
+ }
+}
+
+// A6.3.11 Data-processing (shifted register)
+//
+// Two register operands (Rn=0b1111 no 1st operand reg): Rs Rm
+// Two register operands (Rs=0b1111 no dst operand reg): Rn Rm
+// Three register operands: Rs Rn Rm
+// Three register operands: (Rn=0b1111 Conditional Move) Rs Ro(TIED_TO) Rm
+//
+// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
+// register with shift forms: (Rm, ConstantShiftSpecifier).
+// Constant shift specifier: Imm = (ShOp | ShAmt<<3).
+//
+// There are special instructions, like t2MOVsra_flag and t2MOVsrl_flag, which
+// only require two register operands: Rd, Rm in ARM Reference Manual terms, and
+// nothing else, because the shift amount is already specified.
+// Similar case holds for t2MOVrx, t2ADDrr, ..., etc.
+static bool DisassembleThumb2DPSoReg(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Special case handling.
+ if (Opcode == ARM::t2BR_JT) {
+ assert(NumOps == 4
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == 0
+ && OpInfo[3].RegClass == 0);
+ // Only need to populate the src reg operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateReg(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+ NumOpsAdded = 4;
+ return true;
+ }
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = (NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID);
+ bool NoDstReg = (decodeRs(insn) == 0xF);
+
+ // Build the register operands, followed by the constant shift specifier.
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ NoDstReg ? decodeRn(insn) : decodeRs(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // Process tied_to operand constraint.
+ MI.addOperand(MI.getOperand(Idx));
+ } else {
+ assert(!NoDstReg);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ }
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (NumOps == OpIdx)
+ return true;
+
+ if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef()) {
+
+ if (Thumb2ShiftOpcode(Opcode))
+ MI.addOperand(MCOperand::CreateImm(getShiftAmtBits(insn)));
+ else {
+ // Build the constant shift specifier operand.
+ unsigned bits2 = getShiftTypeBits(insn);
+ unsigned imm5 = getShiftAmtBits(insn);
+ ARM_AM::ShiftOpc ShOp = ARM_AM::no_shift;
+ unsigned ShAmt = decodeImmShift(bits2, imm5, ShOp);
+
+ // PKHBT/PKHTB are special in that we need the decodeImmShift() call to
+ // decode the shift amount from raw imm5 and bits2, but we DO NOT need
+ // to encode the ShOp, as it's in the asm string already.
+ if (Opcode == ARM::t2PKHBT || Opcode == ARM::t2PKHTB)
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+ else
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShAmt)));
+ }
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.1 Data-processing (modified immediate)
+//
+// Two register operands: Rs Rn ModImm
+// One register operands (Rs=0b1111 no explicit dest reg): Rn ModImm
+// One register operands (Rn=0b1111 no explicit src reg): Rs ModImm - {t2MOVi, t2MVNi}
+//
+// ModImm = ThumbExpandImm(i:imm3:imm8)
+static bool DisassembleThumb2DPModImm(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
+ bool NoDstReg = (decodeRs(insn) == 0xF);
+
+ // Build the register operands, followed by the modified immediate.
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ NoDstReg ? decodeRn(insn) : decodeRs(insn))));
+ ++OpIdx;
+
+ if (TwoReg) {
+ assert(!NoDstReg);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // The modified immediate operand should come next.
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
+
+ // i:imm3:imm8
+ // A6.3.2 Modified immediate constants in Thumb instructions
+ unsigned imm12 = getIImm3Imm8(insn);
+ MI.addOperand(MCOperand::CreateImm(ThumbExpandImm(imm12)));
+ ++OpIdx;
+
+ return true;
+}
+
+static inline bool Thumb2SaturateOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::t2SSATlsl: case ARM::t2SSATasr: case ARM::t2SSAT16:
+ case ARM::t2USATlsl: case ARM::t2USATasr: case ARM::t2USAT16:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline unsigned decodeThumb2SaturatePos(unsigned Opcode, uint32_t insn) {
+ switch (Opcode) {
+ case ARM::t2SSATlsl:
+ case ARM::t2SSATasr:
+ return slice(insn, 4, 0) + 1;
+ case ARM::t2SSAT16:
+ return slice(insn, 3, 0) + 1;
+ case ARM::t2USATlsl:
+ case ARM::t2USATasr:
+ return slice(insn, 4, 0);
+ case ARM::t2USAT16:
+ return slice(insn, 3, 0);
+ default:
+ llvm_unreachable("Invalid opcode passed in");
+ return 0;
+ }
+}
+
+// A6.3.3 Data-processing (plain binary immediate)
+//
+// o t2ADDri12, t2SUBri12: Rs Rn imm12
+// o t2LEApcrel (ADR): Rs imm12
+// o t2BFC (BFC): Rs Ro(TIED_TO) bf_inv_mask_imm
+// o t2BFI (BFI) (Currently not defined in LLVM as of Jan-07-2010)
+// o t2MOVi16: Rs imm16
+// o t2MOVTi16: Rs imm16
+// o t2SBFX (SBFX): Rs Rn lsb width
+// o t2UBFX (UBFX): Rs Rn lsb width
+// o t2BFI (BFI): Rs Rn lsb width
+//
+// [Signed|Unsigned] Saturate [16]
+//
+// o t2SSAT[lsl|asr], t2USAT[lsl|asr]: Rs sat_pos Rn shamt
+// o t2SSAT16, t2USAT16: Rs sat_pos Rn
+static bool DisassembleThumb2DPBinImm(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operand(s), followed by the immediate(s).
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+
+ // t2SSAT/t2SSAT16/t2USAT/t2USAT16 has imm operand after Rd.
+ if (Thumb2SaturateOpcode(Opcode)) {
+ MI.addOperand(MCOperand::CreateImm(decodeThumb2SaturatePos(Opcode, insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (Opcode == ARM::t2SSAT16 || Opcode == ARM::t2USAT16) {
+ OpIdx += 2;
+ return true;
+ }
+
+ // For SSAT operand reg (Rn) has been disassembled above.
+ // Now disassemble the shift amount.
+
+ // Inst{14-12:7-6} encodes the imm5 shift amount.
+ unsigned ShAmt = slice(insn, 14, 12) << 2 | slice(insn, 7, 6);
+
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+
+ OpIdx += 3;
+ return true;
+ }
+
+ if (TwoReg) {
+ assert(NumOps >= 3);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // Process tied_to operand constraint.
+ MI.addOperand(MI.getOperand(Idx));
+ } else {
+ // Add src reg operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ }
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+
+ // Pre-increment OpIdx.
+ ++OpIdx;
+
+ if (Opcode == ARM::t2ADDri12 || Opcode == ARM::t2SUBri12
+ || Opcode == ARM::t2LEApcrel)
+ MI.addOperand(MCOperand::CreateImm(getIImm3Imm8(insn)));
+ else if (Opcode == ARM::t2MOVi16 || Opcode == ARM::t2MOVTi16)
+ MI.addOperand(MCOperand::CreateImm(getImm16(insn)));
+ else if (Opcode == ARM::t2BFC)
+ MI.addOperand(MCOperand::CreateImm(getBitfieldInvMask(insn)));
+ else {
+ // Handle the case of: lsb width
+ assert(Opcode == ARM::t2SBFX || Opcode == ARM::t2UBFX ||
+ Opcode == ARM::t2BFI);
+ MI.addOperand(MCOperand::CreateImm(getLsb(insn)));
+ if (Opcode == ARM::t2BFI) {
+ assert(getMsb(insn) >= getLsb(insn));
+ MI.addOperand(MCOperand::CreateImm(getMsb(insn) - getLsb(insn) + 1));
+ } else
+ MI.addOperand(MCOperand::CreateImm(getWidthMinus1(insn) + 1));
+
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.4 Table A6-15 Miscellaneous control instructions
+// A8.6.41 DMB
+// A8.6.42 DSB
+// A8.6.49 ISB
+static inline bool t2MiscCtrlInstr(uint32_t insn) {
+ if (slice(insn, 31, 20) == 0xf3b && slice(insn, 15, 14) == 2 &&
+ slice(insn, 12, 12) == 0)
+ return true;
+
+ return false;
+}
+
+// A6.3.4 Branches and miscellaneous control
+//
+// A8.6.16 B
+// Branches: t2B, t2Bcc -> imm operand
+//
+// Branches: t2TPsoft -> no operand
+//
+// A8.6.23 BL, BLX (immediate)
+// Branches (defined in ARMInstrThumb.td): tBLr9, tBLXi_r9 -> imm operand
+//
+// A8.6.26
+// t2BXJ -> Rn
+//
+// Miscellaneous control: t2Int_MemBarrierV7 (and its t2DMB variants),
+// t2Int_SyncBarrierV7 (and its t2DSB varianst), t2ISBsy, t2CLREX
+// -> no operand (except pred-imm pred-ccr for CLREX, memory barrier variants)
+//
+// Hint: t2NOP, t2YIELD, t2WFE, t2WFI, t2SEV
+// -> no operand (except pred-imm pred-ccr)
+//
+// t2DBG -> imm4 = Inst{3-0}
+//
+// t2MRS/t2MRSsys -> Rs
+// t2MSR/t2MSRsys -> Rn mask=Inst{11-8}
+// t2SMC -> imm4 = Inst{19-16}
+static bool DisassembleThumb2BrMiscCtrl(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (NumOps == 0)
+ return true;
+
+ if (t2MiscCtrlInstr(insn))
+ return true;
+
+ switch (Opcode) {
+ case ARM::t2CLREX:
+ case ARM::t2NOP:
+ case ARM::t2YIELD:
+ case ARM::t2WFE:
+ case ARM::t2WFI:
+ case ARM::t2SEV:
+ return true;
+ default:
+ break;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = mode from Inst{4-0}
+ // opt{5} = changemode from Inst{8}
+ // opt{8-6} = AIF from Inst{7-5}
+ // opt{10-9} = imod from Inst{10-9} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::t2CPS) {
+ unsigned Option = slice(insn, 4, 0) | slice(insn, 8, 8) << 5 |
+ slice(insn, 7, 5) << 6 | slice(insn, 10, 9) << 9;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // DBG has its option specified in Inst{3-0}.
+ if (Opcode == ARM::t2DBG) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // MRS and MRSsys take one GPR reg Rs.
+ if (Opcode == ARM::t2MRS || Opcode == ARM::t2MRSsys) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // BXJ takes one GPR reg Rn.
+ if (Opcode == ARM::t2BXJ) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // MSR and MSRsys take one GPR reg Rn, followed by the mask.
+ if (Opcode == ARM::t2MSR || Opcode == ARM::t2MSRsys || Opcode == ARM::t2BXJ) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // SMC take imm4.
+ if (Opcode == ARM::t2SMC) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // Add the imm operand.
+ int Offset = 0;
+
+ switch (Opcode) {
+ default:
+ assert(0 && "Unreachable code");
+ case ARM::t2B:
+ Offset = decodeImm32_B_EncodingT4(insn);
+ break;
+ case ARM::t2Bcc:
+ Offset = decodeImm32_B_EncodingT3(insn);
+ break;
+ case ARM::tBLr9:
+ Offset = decodeImm32_BL(insn);
+ break;
+ case ARM::tBLXi_r9:
+ Offset = decodeImm32_BLX(insn);
+ break;
+ }
+ // When executing a Thumb instruction, PC reads as the address of the current
+ // instruction plus 4. The assembler subtracts 4 from the difference between
+ // the branch instruction and the target address, disassembler has to add 4 to
+ // to compensate.
+ MI.addOperand(MCOperand::CreateImm(Offset + 4));
+
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+static inline bool Thumb2PreloadOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2PLDi12: case ARM::t2PLDi8: case ARM::t2PLDpci:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8: case ARM::t2PLDWpci:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ case ARM::t2PLIi12: case ARM::t2PLIi8: case ARM::t2PLIpci:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return true;
+ }
+}
+
+static bool DisassembleThumb2PreLoad(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // Preload Data/Instruction requires either 2 or 3 operands.
+ // t2PLDi12, t2PLDi8, t2PLDpci: Rn [+/-]imm12/imm8
+ // t2PLDr: Rn Rm
+ // t2PLDs: Rn Rm imm2=Inst{5-4}
+ // Same pattern applies for t2PLDW* and t2PLI*.
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ } else {
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+ int Offset = 0;
+ if (Opcode == ARM::t2PLDpci || Opcode == ARM::t2PLDWpci ||
+ Opcode == ARM::t2PLIpci) {
+ bool Negative = slice(insn, 23, 23) == 0;
+ unsigned Imm12 = getImm12(insn);
+ Offset = Negative ? -1 - Imm12 : 1 * Imm12;
+ } else if (Opcode == ARM::t2PLDi8 || Opcode == ARM::t2PLDWi8 ||
+ Opcode == ARM::t2PLIi8) {
+ // A8.6.117 Encoding T2: add = FALSE
+ unsigned Imm8 = getImm8(insn);
+ Offset = -1 - Imm8;
+ } else // The i12 forms. See, for example, A8.6.117 Encoding T1.
+ Offset = decodeImm12(insn);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ }
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Fills in the shift amount for t2PLDs, t2PLDWs, t2PLIs.
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 5, 4)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A8.6.63 LDRB (literal)
+// A8.6.79 LDRSB (literal)
+// A8.6.75 LDRH (literal)
+// A8.6.83 LDRSH (literal)
+// A8.6.59 LDR (literal)
+//
+// These instrs calculate an address from the PC value and an immediate offset.
+// Rd Rn=PC (+/-)imm12 (+ if Inst{23} == 0b1)
+static bool DisassembleThumb2Ldpci(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == 0);
+
+ // Build the register operand, followed by the (+/-)imm12 immediate.
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeImm12(insn)));
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// A6.3.10 Store single data item
+// A6.3.9 Load byte, memory hints
+// A6.3.8 Load halfword, memory hints
+// A6.3.7 Load word
+//
+// For example,
+//
+// t2LDRi12: Rd Rn (+)imm12
+// t2LDRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2LDRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
+// t2LDR_POST: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2LDR_PRE: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+//
+// t2STRi12: Rd Rn (+)imm12
+// t2STRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2STRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
+// t2STR_POST: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2STR_PRE: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+//
+// Note that for indexed modes, the Rn(TIED_TO) operand needs to be populated
+// correctly, as LLVM AsmPrinter depends on it. For indexed stores, the first
+// operand is Rn; for all the other instructions, Rd is the first operand.
+//
+// Delegates to DisassembleThumb2PreLoad() for preload data/instruction.
+// Delegates to DisassembleThumb2Ldpci() for load * literal operations.
+static bool DisassembleThumb2LdSt(bool Load, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ unsigned Rn = decodeRn(insn);
+
+ if (Thumb2PreloadOpcode(Opcode))
+ return DisassembleThumb2PreLoad(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ // See, for example, A6.3.7 Load word: Table A6-18 Load word.
+ if (Load && Rn == 15)
+ return DisassembleThumb2Ldpci(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = (OpInfo[2].RegClass == ARM::GPRRegClassID);
+ bool TIED_TO = ThreeReg && TID.getOperandConstraint(2, TOI::TIED_TO) != -1;
+ bool Imm12 = !ThreeReg && slice(insn, 23, 23) == 1; // ARMInstrThumb2.td
+
+ // Build the register operands, followed by the immediate.
+ unsigned R0, R1, R2 = 0;
+ unsigned Rd = decodeRd(insn);
+ int Imm = 0;
+
+ if (!Load && TIED_TO) {
+ R0 = Rn;
+ R1 = Rd;
+ } else {
+ R0 = Rd;
+ R1 = Rn;
+ }
+ if (ThreeReg) {
+ if (TIED_TO) {
+ R2 = Rn;
+ Imm = decodeImm8(insn);
+ } else {
+ R2 = decodeRm(insn);
+ // See, for example, A8.6.64 LDRB (register).
+ // And ARMAsmPrinter::printT2AddrModeSoRegOperand().
+ // LSL is the default shift opc, and LLVM does not expect it to be encoded
+ // as part of the immediate operand.
+ // Imm = ARM_AM::getSORegOpc(ARM_AM::lsl, slice(insn, 5, 4));
+ Imm = slice(insn, 5, 4);
+ }
+ } else {
+ if (Imm12)
+ Imm = getImm12(insn);
+ else
+ Imm = decodeImm8(insn);
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R0)));
+ ++OpIdx;
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R1)));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,R2)));
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.3.12 Data-processing (register)
+//
+// Two register operands [rotate]: Rs Rm [rotation(= (rotate:'000'))]
+// Three register operands only: Rs Rn Rm
+// Three register operands [rotate]: Rs Rn Rm [rotation(= (rotate:'000'))]
+//
+// Parallel addition and subtraction 32-bit Thumb instructions: Rs Rn Rm
+//
+// Miscellaneous operations: Rs [Rn] Rm
+static bool DisassembleThumb2DPReg(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operands, followed by the optional rotation amount.
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Add the rotation amount immediate.
+ MI.addOperand(MCOperand::CreateImm(decodeRotate(insn)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.16 Multiply, multiply accumulate, and absolute difference
+//
+// t2MLA, t2MLS, t2SMMLA, t2SMMLS: Rs Rn Rm Ra=Inst{15-12}
+// t2MUL, t2SMMUL: Rs Rn Rm
+// t2SMLA[BB|BT|TB|TT|WB|WT]: Rs Rn Rm Ra=Inst{15-12}
+// t2SMUL[BB|BT|TB|TT|WB|WT]: Rs Rn Rm
+//
+// Dual halfword multiply: t2SMUAD[X], t2SMUSD[X], t2SMLAD[X], t2SMLSD[X]:
+// Rs Rn Rm Ra=Inst{15-12}
+//
+// Unsigned Sum of Absolute Differences [and Accumulate]
+// Rs Rn Rm [Ra=Inst{15-12}]
+static bool DisassembleThumb2Mul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operands.
+
+ bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (FourReg)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ NumOpsAdded = FourReg ? 4 : 3;
+
+ return true;
+}
+
+// A6.3.17 Long multiply, long multiply accumulate, and divide
+//
+// t2SMULL, t2UMULL, t2SMLAL, t2UMLAL, t2UMAAL: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Halfword multiple accumulate long: t2SMLAL<x><y>: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Dual halfword multiple: t2SMLALD[X], t2SMLSLD[X]: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Signed/Unsigned divide: t2SDIV, t2UDIV: Rs Rn Rm
+static bool DisassembleThumb2LongMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
+
+ // Build the register operands.
+
+ if (FourReg)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (FourReg)
+ NumOpsAdded = 4;
+ else
+ NumOpsAdded = 3;
+
+ return true;
+}
+
+// See A6.3 32-bit Thumb instruction encoding for instruction classes
+// corresponding to (op1, op2, op).
+//
+// Table A6-9 32-bit Thumb instruction encoding
+// op1 op2 op Instruction class, see
+// --- ------- -- ------------------------------------------------------------
+// 01 00xx0xx - Load/store multiple on page A6-23
+// 00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-24
+// 01xxxxx - Data-processing (shifted register) on page A6-31
+// 1xxxxxx - Coprocessor instructions on page A6-40
+// 10 x0xxxxx 0 Data-processing (modified immediate) on page A6-15
+// x1xxxxx 0 Data-processing (plain binary immediate) on page A6-19
+// - 1 Branches and miscellaneous control on page A6-20
+// 11 000xxx0 - Store single data item on page A6-30
+// 001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-27
+// 00xx001 - Load byte, memory hints on page A6-28
+// 00xx011 - Load halfword, memory hints on page A6-26
+// 00xx101 - Load word on page A6-25
+// 00xx111 - UNDEFINED
+// 010xxxx - Data-processing (register) on page A6-33
+// 0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-38
+// 0111xxx - Long multiply, long multiply accumulate, and divide on page A6-39
+// 1xxxxxx - Coprocessor instructions on page A6-40
+//
+static bool DisassembleThumb2(uint16_t op1, uint16_t op2, uint16_t op,
+ MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ switch (op1) {
+ case 1:
+ if (slice(op2, 6, 5) == 0) {
+ if (slice(op2, 2, 2) == 0) {
+ // Load/store multiple.
+ return DisassembleThumb2LdStMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ // Load/store dual, load/store exclusive, table branch, otherwise.
+ assert(slice(op2, 2, 2) == 1);
+ if ((ARM::t2LDREX <= Opcode && Opcode <= ARM::t2LDREXH) ||
+ (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH)) {
+ // Load/store exclusive.
+ return DisassembleThumb2LdStEx(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ if (Opcode == ARM::t2LDRDi8 ||
+ Opcode == ARM::t2LDRD_PRE || Opcode == ARM::t2LDRD_POST ||
+ Opcode == ARM::t2STRDi8 ||
+ Opcode == ARM::t2STRD_PRE || Opcode == ARM::t2STRD_POST) {
+ // Load/store dual.
+ return DisassembleThumb2LdStDual(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ if (Opcode == ARM::t2TBBgen || Opcode == ARM::t2TBHgen) {
+ // Table branch.
+ return DisassembleThumb2TB(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ } else if (slice(op2, 6, 5) == 1) {
+ // Data-processing (shifted register).
+ return DisassembleThumb2DPSoReg(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ // FIXME: A6.3.18 Coprocessor instructions
+ // But see ThumbDisassembler::getInstruction().
+
+ break;
+ case 2:
+ if (op == 0) {
+ if (slice(op2, 5, 5) == 0) {
+ // Data-processing (modified immediate)
+ return DisassembleThumb2DPModImm(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // Data-processing (plain binary immediate)
+ return DisassembleThumb2DPBinImm(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ } else {
+ // Branches and miscellaneous control on page A6-20.
+ return DisassembleThumb2BrMiscCtrl(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ break;
+ case 3:
+ switch (slice(op2, 6, 5)) {
+ case 0:
+ // Load/store instructions...
+ if (slice(op2, 0, 0) == 0) {
+ if (slice(op2, 4, 4) == 0) {
+ // Store single data item on page A6-30
+ return DisassembleThumb2LdSt(false, MI,Opcode,insn,NumOps,NumOpsAdded);
+ } else {
+ // FIXME: Advanced SIMD element or structure load/store instructions.
+ // But see ThumbDisassembler::getInstruction().
+ ;
+ }
+ } else {
+ // Table A6-9 32-bit Thumb instruction encoding: Load byte|halfword|word
+ return DisassembleThumb2LdSt(true, MI,Opcode,insn,NumOps,NumOpsAdded);
+ }
+ break;
+ case 1:
+ if (slice(op2, 4, 4) == 0) {
+ // A6.3.12 Data-processing (register)
+ return DisassembleThumb2DPReg(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else if (slice(op2, 3, 3) == 0) {
+ // A6.3.16 Multiply, multiply accumulate, and absolute difference
+ return DisassembleThumb2Mul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A6.3.17 Long multiply, long multiply accumulate, and divide
+ return DisassembleThumb2LongMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ default:
+ // FIXME: A6.3.18 Coprocessor instructions
+ // But see ThumbDisassembler::getInstruction().
+ ;
+ break;
+ }
+
+ break;
+ default:
+ assert(0 && "Encoding error for Thumb2 instruction!");
+ break;
+ }
+
+ return false;
+}
+
+static bool DisassembleThumbFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ uint16_t HalfWord = slice(insn, 31, 16);
+
+ if (HalfWord == 0) {
+ // A6.2 16-bit Thumb instruction encoding
+ // op = bits[15:10]
+ uint16_t op = slice(insn, 15, 10);
+ return DisassembleThumb1(op, MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ unsigned bits15_11 = slice(HalfWord, 15, 11);
+
+ // A6.1 Thumb instruction set encoding
+ assert((bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) &&
+ "Bits [15:11] of first halfword of a Thumb2 instruction out of range");
+
+ // A6.3 32-bit Thumb instruction encoding
+
+ uint16_t op1 = slice(HalfWord, 12, 11);
+ uint16_t op2 = slice(HalfWord, 10, 4);
+ uint16_t op = slice(insn, 15, 15);
+
+ return DisassembleThumb2(op1, op2, op, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
diff --git a/lib/Target/ARM/Makefile b/lib/Target/ARM/Makefile
index a8dd38cb36..2aac116120 100644
--- a/lib/Target/ARM/Makefile
+++ b/lib/Target/ARM/Makefile
@@ -16,8 +16,9 @@ BUILT_SOURCES = ARMGenRegisterInfo.h.inc ARMGenRegisterNames.inc \
ARMGenRegisterInfo.inc ARMGenInstrNames.inc \
ARMGenInstrInfo.inc ARMGenAsmWriter.inc \
ARMGenDAGISel.inc ARMGenSubtarget.inc \
- ARMGenCodeEmitter.inc ARMGenCallingConv.inc
+ ARMGenCodeEmitter.inc ARMGenCallingConv.inc \
+ ARMGenDisassemblerTables.inc
-DIRS = AsmPrinter AsmParser TargetInfo
+DIRS = AsmPrinter AsmParser Disassembler TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/ARM/Thumb2ITBlockPass.cpp b/lib/Target/ARM/Thumb2ITBlockPass.cpp
index f5ba155f40..f36d4ef756 100644
--- a/lib/Target/ARM/Thumb2ITBlockPass.cpp
+++ b/lib/Target/ARM/Thumb2ITBlockPass.cpp
@@ -78,14 +78,16 @@ bool Thumb2ITBlockPass::InsertITBlocks(MachineBasicBlock &MBB) {
DebugLoc ndl = NMI->getDebugLoc();
unsigned NPredReg = 0;
ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
- if (NCC == OCC) {
- Mask |= (1 << Pos);
- } else if (NCC != CC)
+ if (NCC == CC || NCC == OCC)
+ Mask |= (NCC & 1) << Pos;
+ else
break;
--Pos;
++MBBI;
}
Mask |= (1 << Pos);
+ // Tag along (firstcond[0] << 4) with the mask.
+ Mask |= (CC & 1) << 4;
MIB.addImm(Mask);
Modified = true;
++NumITs;
diff --git a/test/CodeGen/ARM/2009-10-27-double-align.ll b/test/CodeGen/ARM/2009-10-27-double-align.ll
index a4e76859d1..f17d059ed0 100644
--- a/test/CodeGen/ARM/2009-10-27-double-align.ll
+++ b/test/CodeGen/ARM/2009-10-27-double-align.ll
@@ -4,8 +4,8 @@
define arm_aapcscc void @g() {
entry:
-;CHECK: [sp, #+8]
-;CHECK: [sp, #+12]
+;CHECK: [sp, #8]
+;CHECK: [sp, #12]
;CHECK: [sp]
tail call arm_aapcscc void (i8*, ...)* @f(i8* getelementptr ([1 x i8]* @.str, i32 0, i32 0), i32 1, double 2.000000e+00, i32 3, double 4.000000e+00)
ret void
diff --git a/test/CodeGen/ARM/2009-10-30.ll b/test/CodeGen/ARM/2009-10-30.ll
index 90a5bd2a75..87d1a8b9e9 100644
--- a/test/CodeGen/ARM/2009-10-30.ll
+++ b/test/CodeGen/ARM/2009-10-30.ll
@@ -6,7 +6,7 @@ define void @f(i32 %a1, i32 %a2, i32 %a3, i32 %a4, i32 %a5, ...) {
entry:
;CHECK: sub sp, sp, #4
;CHECK: add r{{[0-9]+}}, sp, #8
-;CHECK: str r{{[0-9]+}}, [sp], #+4
+;CHECK: str r{{[0-9]+}}, [sp], #4
;CHECK: bx lr
%ap = alloca i8*, align 4
%ap1 = bitcast i8** %ap to i8*
diff --git a/test/CodeGen/ARM/arm-negative-stride.ll b/test/CodeGen/ARM/arm-negative-stride.ll
index 52ab8717c1..fb0f8ff879 100644
--- a/test/CodeGen/ARM/arm-negative-stride.ll
+++ b/test/CodeGen/ARM/arm-negative-stride.ll
@@ -5,7 +5,7 @@
define void @test(i32* %P, i32 %A, i32 %i) nounwind {
entry:
-; CHECK: str r1, [{{r.*}}, +{{r.*}}, lsl #2]
+; CHECK: str r1, [{{r.*}}, {{r.*}}, lsl #2]
icmp eq i32 %i, 0 ; <i1>:0 [#uses=1]
br i1 %0, label %return, label %bb
diff --git a/test/CodeGen/ARM/globals.ll b/test/CodeGen/ARM/globals.ll
index 886c0d55cf..adb4497397 100644
--- a/test/CodeGen/ARM/globals.ll
+++ b/test/CodeGen/ARM/globals.ll
@@ -41,7 +41,7 @@ define i32 @test1() {
; DarwinPIC: _test1:
; DarwinPIC: ldr r0, LCPI1_0
; DarwinPIC: LPC1_0:
-; DarwinPIC: ldr r0, [pc, +r0]
+; DarwinPIC: ldr r0, [pc, r0]
; DarwinPIC: ldr r0, [r0]
; DarwinPIC: bx lr
@@ -63,7 +63,7 @@ define i32 @test1() {
; LinuxPIC: .LPC1_0:
; LinuxPIC: add r0, pc, r0
-; LinuxPIC: ldr r0, [r1, +r0]
+; LinuxPIC: ldr r0, [r1, r0]
; LinuxPIC: ldr r0, [r0]
; LinuxPIC: bx lr
diff --git a/test/CodeGen/ARM/ldrd.ll b/test/CodeGen/ARM/ldrd.ll
index c366e2dca5..895562a1d3 100644
--- a/test/CodeGen/ARM/ldrd.ll
+++ b/test/CodeGen/ARM/ldrd.ll
@@ -10,10 +10,10 @@ entry:
;V6: ldrd r2, [r2]
;V5: ldr r3, [r2]
-;V5: ldr r2, [r2, #+4]
+;V5: ldr r2, [r2, #4]
;EABI: ldr r3, [r2]
-;EABI: ldr r2, [r2, #+4]
+;EABI: ldr r2, [r2, #4]
%0 = load i64** @b, align 4
%1 = load i64* %0, align 4
diff --git a/test/CodeGen/ARM/str_pre-2.ll b/test/CodeGen/ARM/str_pre-2.ll
index f8d3df29c4..553cd64fce 100644
--- a/test/CodeGen/ARM/str_pre-2.ll
+++ b/test/CodeGen/ARM/str_pre-2.ll
@@ -1,5 +1,5 @@
; RUN: llc < %s -mtriple=arm-linux-gnu | grep {str.*\\!}
-; RUN: llc < %s -mtriple=arm-linux-gnu | grep {ldr.*\\\[.*\], #+4}
+; RUN: llc < %s -mtriple=arm-linux-gnu | grep {ldr.*\\\[.*\], #4}
@b = external global i64*
diff --git a/test/CodeGen/ARM/tls2.ll b/test/CodeGen/ARM/tls2.ll
index d932f90e4c..57370c4de1 100644
--- a/test/CodeGen/ARM/tls2.ll
+++ b/test/CodeGen/ARM/tls2.ll
@@ -7,7 +7,7 @@
define i32 @f() {
; CHECK-NONPIC: f:
-; CHECK-NONPIC: ldr {{r.}}, [pc, +{{r.}}]
+; CHECK-NONPIC: ldr {{r.}}, [pc, {{r.}}]
; CHECK-NONPIC: i(gottpoff)
; CHECK-PIC: f:
; CHECK-PIC: __tls_get_addr
@@ -18,7 +18,7 @@ entry:
define i32* @g() {
; CHECK-NONPIC: g:
-; CHECK-NONPIC: ldr {{r.}}, [pc, +{{r.}}]
+; CHECK-NONPIC: ldr {{r.}}, [pc, {{r.}}]
; CHECK-NONPIC: i(gottpoff)
; CHECK-PIC: g:
; CHECK-PIC: __tls_get_addr
diff --git a/test/CodeGen/Thumb2/ldr-str-imm12.ll b/test/CodeGen/Thumb2/ldr-str-imm12.ll
index f007b5c697..55cdac983b 100644
--- a/test/CodeGen/Thumb2/ldr-str-imm12.ll
+++ b/test/CodeGen/Thumb2/ldr-str-imm12.ll
@@ -22,7 +22,7 @@
define arm_apcscc %union.rec* @Manifest(%union.rec* %x, %union.rec* %env, %struct.STYLE* %style, %union.rec** %bthr, %union.rec** %fthr, %union.rec** %target, %union.rec** %crs, i32 %ok, i32 %need_expand, %union.rec** %enclose, i32 %fcr) nounwind {
entry:
-; CHECK: ldr.w r9, [r7, #+28]
+; CHECK: ldr.w r9, [r7, #28]
%xgaps.i = alloca [32 x %union.rec*], align 4 ; <[32 x %union.rec*]*> [#uses=0]
%ycomp.i = alloca [32 x %union.rec*], align 4 ; <[32 x %union.rec*]*> [#uses=0]
br i1 false, label %bb, label %bb20
@@ -50,9 +50,9 @@ bb119: ; preds = %bb20, %bb20
bb420: ; preds = %bb20, %bb20
; CHECK: bb420
; CHECK: str r{{[0-7]}}, [sp]
-; CHECK: str r{{[0-7]}}, [sp, #+4]
-; CHECK: str r{{[0-7]}}, [sp, #+8]
-; CHECK: str{{(.w)?}} r{{[0-9]+}}, [sp, #+24]
+; CHECK: str r{{[0-7]}}, [sp, #4]
+; CHECK: str r{{[0-7]}}, [sp, #8]
+; CHECK: str{{(.w)?}} r{{[0-9]+}}, [sp, #24]
store %union.rec* null, %union.rec** @zz_hold, align 4
store %union.rec* null, %union.rec** @zz_res, align 4
store %union.rec* %x, %union.rec** @zz_hold, align 4
diff --git a/test/CodeGen/Thumb2/thumb2-ldr.ll b/test/CodeGen/Thumb2/thumb2-ldr.ll
index 94888fd940..88434f1c7d 100644
--- a/test/CodeGen/Thumb2/thumb2-ldr.ll
+++ b/test/CodeGen/Thumb2/thumb2-ldr.ll
@@ -11,7 +11,7 @@ entry:
define i32 @f2(i32* %v) {
entry:
; CHECK: f2:
-; CHECK: ldr.w r0, [r0, #+4092]
+; CHECK: ldr.w r0, [r0, #4092]
%tmp2 = getelementptr i32* %v, i32 1023
%tmp = load i32* %tmp2
ret i32 %tmp
diff --git a/test/CodeGen/Thumb2/thumb2-ldrh.ll b/test/CodeGen/Thumb2/thumb2-ldrh.ll
index f1fb79c35e..fee97bf689 100644
--- a/test/CodeGen/Thumb2/thumb2-ldrh.ll
+++ b/test/CodeGen/Thumb2/thumb2-ldrh.ll
@@ -11,7 +11,7 @@ entry:
define i16 @f2(i16* %v) {
entry:
; CHECK: f2:
-; CHECK: ldrh.w r0, [r0, #+2046]
+; CHECK: ldrh.w r0, [r0, #2046]
%tmp2 = getelementptr i16* %v, i16 1023
%tmp = load i16* %tmp2
ret i16 %tmp
diff --git a/test/CodeGen/Thumb2/thumb2-str.ll b/test/CodeGen/Thumb2/thumb2-str.ll
index 3eeec8c385..11bb936d1e 100644
--- a/test/CodeGen/Thumb2/thumb2-str.ll
+++ b/test/CodeGen/Thumb2/thumb2-str.ll
@@ -9,7 +9,7 @@ define i32 @f1(i32 %a, i32* %v) {
define i32 @f2(i32 %a, i32* %v) {
; CHECK: f2:
-; CHECK: str.w r0, [r1, #+4092]
+; CHECK: str.w r0, [r1, #4092]
%tmp2 = getelementptr i32* %v, i32 1023
store i32 %a, i32* %tmp2
ret i32 %a
diff --git a/test/CodeGen/Thumb2/thumb2-str_pre.ll b/test/CodeGen/Thumb2/thumb2-str_pre.ll
index 9af960bbeb..1e6616a91c 100644
--- a/test/CodeGen/Thumb2/thumb2-str_pre.ll
+++ b/test/CodeGen/Thumb2/thumb2-str_pre.ll
@@ -2,7 +2,7 @@
define void @test1(i32* %X, i32* %A, i32** %dest) {
; CHECK: test1
-; CHECK: str r1, [r0, #+16]!
+; CHECK: str r1, [r0, #16]!
%B = load i32* %A ; <i32> [#uses=1]
%Y = getelementptr i32* %X, i32 4 ; <i32*> [#uses=2]
store i32 %B, i32* %Y
@@ -12,7 +12,7 @@ define void @test1(i32* %X, i32* %A, i32** %dest) {
define i16* @test2(i16* %X, i32* %A) {
; CHECK: test2
-; CHECK: strh r1, [r0, #+8]!
+; CHECK: strh r1, [r0, #8]!
%B = load i32* %A ; <i32> [#uses=1]
%Y = getelementptr i16* %X, i32 4 ; <i16*> [#uses=2]
%tmp = trunc i32 %B to i16 ; <i16> [#uses=1]
diff --git a/test/CodeGen/Thumb2/thumb2-strb.ll b/test/CodeGen/Thumb2/thumb2-strb.ll
index 1ebb938b1a..7978e7fa91 100644
--- a/test/CodeGen/Thumb2/thumb2-strb.ll
+++ b/test/CodeGen/Thumb2/thumb2-strb.ll
@@ -9,7 +9,7 @@ define i8 @f1(i8 %a, i8* %v) {
define i8 @f2(i8 %a, i8* %v) {
; CHECK: f2:
-; CHECK: strb.w r0, [r1, #+4092]
+; CHECK: strb.w r0, [r1, #4092]
%tmp2 = getelementptr i8* %v, i32 4092
store i8 %a, i8* %tmp2
ret i8 %a
diff --git a/test/CodeGen/Thumb2/thumb2-strh.ll b/test/CodeGen/Thumb2/thumb2-strh.ll
index b0eb8c12f5..97110a726f 100644
--- a/test/CodeGen/Thumb2/thumb2-strh.ll
+++ b/test/CodeGen/Thumb2/thumb2-strh.ll
@@ -9,7 +9,7 @@ define i16 @f1(i16 %a, i16* %v) {
define i16 @f2(i16 %a, i16* %v) {
; CHECK: f2:
-; CHECK: strh.w r0, [r1, #+4092]
+; CHECK: strh.w r0, [r1, #4092]
%tmp2 = getelementptr i16* %v, i32 2046
store i16 %a, i16* %tmp2
ret i16 %a
diff --git a/utils/TableGen/DisassemblerEmitter.cpp b/utils/TableGen/DisassemblerEmitter.cpp
index 61b9b1583b..e68592d007 100644
--- a/utils/TableGen/DisassemblerEmitter.cpp
+++ b/utils/TableGen/DisassemblerEmitter.cpp
@@ -12,6 +12,8 @@
#include "Record.h"
#include "X86DisassemblerTables.h"
#include "X86RecognizableInstr.h"
+#include "RISCDisassemblerEmitter.h"
+
using namespace llvm;
using namespace llvm::X86Disassembler;
@@ -124,6 +126,12 @@ void DisassemblerEmitter::run(raw_ostream &OS) {
return;
}
+ // Fixed-instruction-length targets use a common disassembler.
+ if (Target.getName() == "ARM") {
+ RISCDisassemblerEmitter(Records).run(OS);
+ return;
+ }
+
throw TGError(Target.getTargetRecord()->getLoc(),
"Unable to generate disassembler for this target");
}
diff --git a/utils/TableGen/RISCDisassemblerEmitter.cpp b/utils/TableGen/RISCDisassemblerEmitter.cpp
new file mode 100644
index 0000000000..35ad22a9dc
--- /dev/null
+++ b/utils/TableGen/RISCDisassemblerEmitter.cpp
@@ -0,0 +1,1743 @@
+//===- RISCDisassemblerEmitter.cpp - Disassembler Generator ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// FIXME: document
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "risc-disassembler-emitter"
+
+#include "RISCDisassemblerEmitter.h"
+#include "CodeGenTarget.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <iomanip>
+#include <vector>
+#include <cstdio>
+#include <map>
+#include <string>
+#include <sstream>
+
+using namespace llvm;
+
+////////////////////////////////////
+// Utility classes / structures //
+////////////////////////////////////
+
+// LLVM coding style
+#define INDENT_LEVEL 2
+
+/// Indenter - A little helper class to keep track of the indentation depth,
+/// while the instance object is being passed around.
+class Indenter {
+public:
+ Indenter() : depth(0) {}
+
+ void push() {
+ depth += INDENT_LEVEL;
+ }
+
+ void pop() {
+ if (depth >= INDENT_LEVEL)
+ depth -= INDENT_LEVEL;
+ }
+
+ // Conversion operator.
+ operator int () {
+ return depth;
+ }
+private:
+ uint8_t depth;
+};
+
+/////////////////////////
+// Utility functions //
+/////////////////////////
+
+static uint8_t byteFromBitsInit(BitsInit &init) {
+ int width = init.getNumBits();
+
+ assert(width <= 8 && "Field is too large for uint8_t!");
+
+ int index;
+ uint8_t mask = 0x01;
+
+ uint8_t ret = 0;
+
+ for (index = 0; index < width; index++) {
+ if (static_cast<BitInit*>(init.getBit(index))->getValue())
+ ret |= mask;
+
+ mask <<= 1;
+ }
+
+ return ret;
+}
+
+static uint8_t getByteField(const Record &def, const char *str) {
+ BitsInit *bits = def.getValueAsBitsInit(str);
+ return byteFromBitsInit(*bits);
+}
+
+static BitsInit &getBitsField(const Record &def, const char *str) {
+ BitsInit *bits = def.getValueAsBitsInit(str);
+ return *bits;
+}
+
+/// sameStringExceptEndingChar - Return true if the two strings differ only in
+/// the ending char. ("VST4q8a", "VST4q8b", 'a', 'b') as input returns true.
+static
+bool sameStringExceptEndingChar(const std::string &LHS, const std::string &RHS,
+ char lhc, char rhc) {
+
+ if (LHS.length() > 1 && RHS.length() > 1 && LHS.length() == RHS.length()) {
+ unsigned length = LHS.length();
+ return LHS.substr(0, length - 1) == RHS.substr(0, length - 1)
+ && LHS[length - 1] == lhc && RHS[length - 1] == rhc;
+ }
+
+ return false;
+}
+
+/// thumbInstruction - Determine whether we have a Thumb instruction.
+/// See also ARMInstrFormats.td.
+static bool thumbInstruction(uint8_t Form) {
+ return Form == 23;
+}
+
+// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
+// for a bit value.
+//
+// BIT_UNFILTERED is used as the init value for a filter position. It is used
+// only for filter processings.
+typedef enum {
+ BIT_TRUE, // '1'
+ BIT_FALSE, // '0'
+ BIT_UNSET, // '?'
+ BIT_UNFILTERED // unfiltered
+} bit_value_t;
+
+static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
+ if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
+ return bit->getValue() ? BIT_TRUE : BIT_FALSE;
+
+ // The bit is uninitialized.
+ return BIT_UNSET;
+}
+
+static void dumpBits(raw_ostream &o, BitsInit &bits) {
+ unsigned index;
+
+ for (index = bits.getNumBits(); index > 0; index--) {
+ switch (bitFromBits(bits, index - 1)) {
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ default:
+ assert(0 && "unexpected return value from bitFromBits");
+ }
+ }
+}
+
+/////////////
+// Enums //
+/////////////
+
+#define ARM_FORMATS \
+ ENTRY(ARM_FORMAT_PSEUDO, 0) \
+ ENTRY(ARM_FORMAT_MULFRM, 1) \
+ ENTRY(ARM_FORMAT_BRFRM, 2) \
+ ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
+ ENTRY(ARM_FORMAT_DPFRM, 4) \
+ ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
+ ENTRY(ARM_FORMAT_LDFRM, 6) \
+ ENTRY(ARM_FORMAT_STFRM, 7) \
+ ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
+ ENTRY(ARM_FORMAT_STMISCFRM, 9) \
+ ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
+ ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \
+ ENTRY(ARM_FORMAT_EXTFRM, 12) \
+ ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \
+ ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \
+ ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \
+ ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \
+ ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \
+ ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \
+ ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \
+ ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \
+ ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
+ ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \
+ ENTRY(ARM_FORMAT_THUMBFRM, 23) \
+ ENTRY(ARM_FORMAT_NEONFRM, 24) \
+ ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \
+ ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \
+ ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \
+ ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \
+ ENTRY(ARM_FORMAT_MISCFRM, 29) \
+ ENTRY(ARM_FORMAT_THUMBMISCFRM, 30)
+
+// ARM instruction format specifies the encoding used by the instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ ARM_FORMATS
+ ARM_FORMAT_NA
+} ARMFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const char *stringForARMFormat(ARMFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ ARM_FORMATS
+ case ARM_FORMAT_NA:
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+#define NS_FORMATS \
+ ENTRY(NS_FORMAT_NONE, 0) \
+ ENTRY(NS_FORMAT_VLDSTLane, 1) \
+ ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \
+ ENTRY(NS_FORMAT_VLDSTRQ, 3) \
+ ENTRY(NS_FORMAT_NVdImm, 4) \
+ ENTRY(NS_FORMAT_NVdVmImm, 5) \
+ ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \
+ ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \
+ ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \
+ ENTRY(NS_FORMAT_NVectorShuffle, 9) \
+ ENTRY(NS_FORMAT_NVectorShift, 10) \
+ ENTRY(NS_FORMAT_NVectorShift2, 11) \
+ ENTRY(NS_FORMAT_NVdVnVmImm, 12) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \
+ ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \
+ ENTRY(NS_FORMAT_VTBL, 16)
+
+// NEON instruction sub-format further classify the NEONFrm instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ NS_FORMATS
+ NS_FORMAT_NA
+} NSFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const char *stringForNSFormat(NSFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ NS_FORMATS
+ case NS_FORMAT_NA:
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+// Enums for the available target names.
+typedef enum {
+ TARGET_ARM = 0,
+ TARGET_THUMB
+} TARGET_NAME_t;
+
+class AbstractFilterChooser {
+public:
+ static TARGET_NAME_t TargetName;
+ static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
+ virtual ~AbstractFilterChooser() {}
+ virtual void emitTop(raw_ostream &o, Indenter &i) = 0;
+ virtual void emitBot(raw_ostream &o, Indenter &i) = 0;
+};
+
+// Define the symbol here.
+TARGET_NAME_t AbstractFilterChooser::TargetName;
+
+template <unsigned tBitWidth>
+class FilterChooser : public AbstractFilterChooser {
+protected:
+ // Representation of the instruction to work on.
+ typedef bit_value_t insn_t[tBitWidth];
+
+ class Filter {
+ protected:
+ FilterChooser *Owner; // pointer without ownership
+ unsigned StartBit; // the starting bit position
+ unsigned NumBits; // number of bits to filter
+ bool Mixed; // a mixed region contains both set and unset bits
+
+ // Map of well-known segment value to the set of uid's with that value.
+ std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
+
+ // Set of uid's with non-constant segment values.
+ std::vector<unsigned> VariableInstructions;
+
+ // Map of well-known segment value to its delegate.
+ std::map<unsigned, FilterChooser> FilterChooserMap;
+
+ // Number of instructions which fall under FilteredInstructions category.
+ unsigned NumFiltered;
+
+ // Keeps track of the last opcode in the filtered bucket.
+ unsigned LastOpcFiltered;
+
+ // Number of instructions which fall under VariableInstructions category.
+ unsigned NumVariable;
+
+ public:
+ unsigned getNumFiltered() { return NumFiltered; }
+ unsigned getNumVariable() { return NumVariable; }
+ unsigned getSingletonOpc() {
+ assert(NumFiltered == 1);
+ return LastOpcFiltered;
+ }
+ FilterChooser &getVariableFC() {
+ assert(NumFiltered == 1);
+ assert(FilterChooserMap.size() == 1);
+ return FilterChooserMap.find(-1)->second;
+ }
+
+ Filter(const Filter &f) :
+ Owner(f.Owner),
+ StartBit(f.StartBit),
+ NumBits(f.NumBits),
+ Mixed(f.Mixed),
+ FilteredInstructions(f.FilteredInstructions),
+ VariableInstructions(f.VariableInstructions),
+ FilterChooserMap(f.FilterChooserMap),
+ NumFiltered(f.NumFiltered),
+ LastOpcFiltered(f.LastOpcFiltered),
+ NumVariable(f.NumVariable) { }
+
+ Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
+ bool mixed) :
+ Owner(&owner),
+ StartBit(startBit),
+ NumBits(numBits),
+ Mixed(mixed)
+ {
+ assert(StartBit + NumBits - 1 < tBitWidth);
+
+ NumFiltered = 0;
+ LastOpcFiltered = 0;
+ NumVariable = 0;
+
+ for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
+ insn_t Insn;
+
+ // Populates the insn given the uid.
+ Owner->insnWithID(Insn, Owner->Opcodes[i]);
+
+ uint64_t Field;
+ // Scans the segment for possibly well-specified encoding bits.
+ bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
+
+ if (ok) {
+ // The encoding bits are well-known. Lets add the uid of the
+ // instruction into the bucket keyed off the constant field value.
+ LastOpcFiltered = Owner->Opcodes[i];
+ FilteredInstructions[Field].push_back(LastOpcFiltered);
+ ++NumFiltered;
+ } else {
+ // Some of the encoding bit(s) are unspecfied. This contributes to
+ // one additional member of "Variable" instructions.
+ VariableInstructions.push_back(Owner->Opcodes[i]);
+ ++NumVariable;
+ }
+ }
+
+ assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
+ && "Filter returns no instruction categories");
+ }
+
+ // Divides the decoding task into sub tasks and delegates them to the
+ // inferior FilterChooser's.
+ //
+ // A special case arises when there's only one entry in the filtered
+ // instructions. In order to unambiguously decode the singleton, we need to
+ // match the remaining undecoded encoding bits against the singleton.
+ void recurse() {
+ std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
+
+ bit_value_t BitValueArray[tBitWidth];
+ // Starts by inheriting our parent filter chooser's filter bit values.
+ memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
+
+ unsigned bitIndex;
+
+ if (VariableInstructions.size()) {
+ // Conservatively marks each segment position as BIT_UNSET.
+ for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
+ BitValueArray[StartBit + bitIndex] = BIT_UNSET;
+
+ // Delegates to an inferior filter chooser for futher processing on this
+ // group of instructions whose segment values are variable.
+ FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
+ (unsigned)-1,
+ FilterChooser(Owner->AllInstructions,
+ VariableInstructions,
+ BitValueArray,
+ *Owner)
+ ));
+ }
+
+ // No need to recurse for a singleton filtered instruction.
+ // See also Filter::emit().
+ if (getNumFiltered() == 1) {
+ //Owner->SingletonExists(LastOpcFiltered);
+ assert(FilterChooserMap.size() == 1);
+ return;
+ }
+
+ // Otherwise, create sub choosers.
+ for (mapIterator = FilteredInstructions.begin();
+ mapIterator != FilteredInstructions.end();
+ mapIterator++) {
+
+ // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
+ for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
+ if (mapIterator->first & (1 << bitIndex))
+ BitValueArray[StartBit + bitIndex] = BIT_TRUE;
+ else
+ BitValueArray[StartBit + bitIndex] = BIT_FALSE;
+ }
+
+ // Delegates to an inferior filter chooser for futher processing on this
+ // category of instructions.
+ FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
+ mapIterator->first,
+ FilterChooser(Owner->AllInstructions,
+ mapIterator->second,
+ BitValueArray,
+ *Owner)
+ ));
+ }
+ }
+
+ // Emit code to decode instructions given a segment or segments of bits.
+ void emit(raw_ostream &o, Indenter &i) {
+ o.indent(i) << "// Check Inst{";
+
+ if (NumBits > 1)
+ o << (StartBit + NumBits - 1) << '-';
+
+ o << StartBit << "} ...\n";
+
+ o.indent(i) << "switch (fieldFromInstruction(insn, "
+ << StartBit << ", " << NumBits << ")) {\n";
+
+ typename std::map<unsigned, FilterChooser>::iterator filterIterator;
+
+ bool DefaultCase = false;
+ for (filterIterator = FilterChooserMap.begin();
+ filterIterator != FilterChooserMap.end();
+ filterIterator++) {
+
+ // Field value -1 implies a non-empty set of variable instructions.
+ // See also recurse().
+ if (filterIterator->first == (unsigned)-1) {
+ DefaultCase = true;
+
+ o.indent(i) << "default:\n";
+ o.indent(i) << " break; // fallthrough\n";
+
+ // Closing curly brace for the switch statement.
+ // This is unconventional because we want the default processing to be
+ // performed for the fallthrough cases as well, i.e., when the "cases"
+ // did not prove a decoded instruction.
+ o.indent(i) << "}\n";
+
+ } else {
+ o.indent(i) << "case " << filterIterator->first << ":\n";
+ }
+
+ // We arrive at a category of instructions with the same segment value.
+ // Now delegate to the sub filter chooser for further decodings.
+ // The case may fallthrough, which happens if the remaining well-known
+ // encoding bits do not match exactly.
+ if (!DefaultCase) i.push();
+ {
+ bool finished = filterIterator->second.emit(o, i);
+ // For top level default case, there's no need for a break statement.
+ if (Owner->isTopLevel() && DefaultCase)
+ break;
+ if (!finished)
+ o.indent(i) << "break;\n";
+ }
+ if (!DefaultCase) i.pop();
+ }
+
+ // If there is no default case, we still need to supply a closing brace.
+ if (!DefaultCase) {
+ // Closing curly brace for the switch statement.
+ o.indent(i) << "}\n";
+ }
+ }
+
+ // Returns the number of fanout produced by the filter. More fanout implies
+ // the filter distinguishes more categories of instructions.
+ unsigned usefulness() const {
+ if (VariableInstructions.size())
+ return FilteredInstructions.size();
+ else
+ return FilteredInstructions.size() + 1;
+ }
+ }; // End of inner class Filter
+
+ friend class Filter;
+
+ // Vector of codegen instructions to choose our filter.
+ const std::vector<const CodeGenInstruction*> &AllInstructions;
+
+ // Vector of uid's for this filter chooser to work on.
+ const std::vector<unsigned> Opcodes;
+
+ // Vector of candidate filters.
+ std::vector<Filter> Filters;
+
+ // Array of bit values passed down from our parent.
+ // Set to all BIT_UNFILTERED's for Parent == NULL.
+ bit_value_t FilterBitValues[tBitWidth];
+
+ // Links to the FilterChooser above us in the decoding tree.
+ FilterChooser *Parent;
+
+ // Index of the best filter from Filters.
+ int BestIndex;
+
+public:
+ FilterChooser(const FilterChooser &FC) :
+ AbstractFilterChooser(),
+ AllInstructions(FC.AllInstructions),
+ Opcodes(FC.Opcodes),
+ Filters(FC.Filters),
+ Parent(FC.Parent),
+ BestIndex(FC.BestIndex)
+ {
+ memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
+ }
+
+ FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ const std::vector<unsigned> &IDs) :
+ AllInstructions(Insts),
+ Opcodes(IDs),
+ Filters(),
+ Parent(NULL),
+ BestIndex(-1)
+ {
+ for (unsigned i = 0; i < tBitWidth; ++i)
+ FilterBitValues[i] = BIT_UNFILTERED;
+
+ doFilter();
+ }
+
+ FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
+ const std::vector<unsigned> &IDs,
+ bit_value_t (&ParentFilterBitValues)[tBitWidth],
+ FilterChooser &parent) :
+ AllInstructions(Insts),
+ Opcodes(IDs),
+ Filters(),
+ Parent(&parent),
+ BestIndex(-1)
+ {
+ for (unsigned i = 0; i < tBitWidth; ++i)
+ FilterBitValues[i] = ParentFilterBitValues[i];
+
+ doFilter();
+ }
+
+ // The top level filter chooser has NULL as its parent.
+ bool isTopLevel() { return Parent == NULL; }
+
+ // This provides an opportunity for target specific code emission.
+ void emitTopHook(raw_ostream &o, Indenter &i) {
+ if (TargetName == TARGET_ARM) {
+ // Emit code that references the ARMFormat data type.
+ o << "static const ARMFormat ARMFormats[] = {\n";
+ for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
+ const Record &Def = *(AllInstructions[i]->TheDef);
+ const std::string &Name = Def.getName();
+ if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
+ o.indent(2) <<
+ stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
+ else
+ o << " ARM_FORMAT_NA";
+
+ o << ",\t// Inst #" << i << " = " << Name << '\n';
+ }
+ o << " ARM_FORMAT_NA\t// Unreachable.\n";
+ o << "};\n\n";
+
+ // And emit code that references the NSFormat data type.
+ // This is meaningful only for NEONFrm instructions.
+ o << "static const NSFormat NSFormats[] = {\n";
+ for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
+ const Record &Def = *(AllInstructions[i]->TheDef);
+ const std::string &Name = Def.getName();
+ if (Def.isSubClassOf("NeonI") || Def.isSubClassOf("NeonXI"))
+ o.indent(2) <<
+ stringForNSFormat((NSFormat)getByteField(Def, "NSForm"));
+ else
+ o << " NS_FORMAT_NA";
+
+ o << ",\t// Inst #" << i << " = " << Name << '\n';
+ }
+ o << " NS_FORMAT_NA\t// Unreachable.\n";
+ o << "};\n\n";
+ }
+ }
+
+ // Emit the top level typedef and decodeInstruction() function.
+ void emitTop(raw_ostream &o, Indenter &i) {
+
+ // Run the target specific emit hook.
+ emitTopHook(o, i);
+
+ switch(tBitWidth) {
+ case 8:
+ o.indent(i) << "typedef uint8_t field_t;\n";
+ break;
+ case 16:
+ o.indent(i) << "typedef uint16_t field_t;\n";
+ break;
+ case 32:
+ o.indent(i) << "typedef uint32_t field_t;\n";
+ break;
+ case 64:
+ o.indent(i) << "typedef uint64_t field_t;\n";
+ break;
+ default:
+ assert(0 && "Unexpected instruction size!");
+ }
+
+ o << '\n';
+
+ o.indent(i) << "static field_t " <<
+ "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
+
+ o.indent(i) << "{\n";
+ i.push();
+ {
+ o.indent(i) << "assert(startBit + numBits <= " << tBitWidth
+ << " && \"Instruction field out of bounds!\");\n";
+ o << '\n';
+ o.indent(i) << "field_t fieldMask;\n";
+ o << '\n';
+ o.indent(i) << "if (numBits == " << tBitWidth << ")\n";
+
+ i.push();
+ {
+ o.indent(i) << "fieldMask = (field_t)-1;\n";
+ }
+ i.pop();
+
+ o.indent(i) << "else\n";
+
+ i.push();
+ {
+ o.indent(i) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
+ }
+ i.pop();
+
+ o << '\n';
+ o.indent(i) << "return (insn & fieldMask) >> startBit;\n";
+ }
+ i.pop();
+ o.indent(i) << "}\n";
+
+ o << '\n';
+
+ o.indent(i) << "static uint16_t decodeInstruction(field_t insn) {\n";
+
+ i.push();
+ {
+ // Emits code to decode the instructions.
+ emit(o, i);
+
+ o << '\n';
+ o.indent(i) << "return 0;\n";
+ }
+ i.pop();
+
+ o.indent(i) << "}\n";
+
+ o << '\n';
+
+ }
+
+ // This provides an opportunity for target specific code emission after
+ // emitTop().
+ void emitBot(raw_ostream &o, Indenter &i) {
+ if (TargetName == TARGET_THUMB) {
+ // Emit code that decodes the Thumb ISA.
+ o.indent(i)
+ << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
+
+ i.push();
+ {
+ // Emits code to decode the instructions.
+ emit(o, i);
+
+ o << '\n';
+ o.indent(i) << "return 0;\n";
+ }
+ i.pop();
+
+ o.indent(i) << "}\n";
+ }
+ }
+
+protected:
+ // Populates the insn given the uid.
+ void insnWithID(insn_t &Insn, unsigned Opcode) const {
+ assert(Opcode > 10);
+ BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
+
+ for (unsigned i = 0; i < tBitWidth; ++i)
+ Insn[i] = bitFromBits(Bits, i);
+ }
+
+ // Returns the record name.
+ const std::string &nameWithID(unsigned Opcode) const {
+ return AllInstructions[Opcode]->TheDef->getName();
+ }
+
+ // Populates the field of the insn given the start position and the number of
+ // consecutive bits to scan for.
+ //
+ // Returns false if and on the first uninitialized bit value encountered.
+ // Returns true, otherwise.
+ const bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
+ unsigned NumBits) const {
+ Field = 0;
+
+ for (unsigned i = 0; i < NumBits; ++i) {
+ if (Insn[StartBit + i] == BIT_UNSET)
+ return false;
+
+ if (Insn[StartBit + i] == BIT_TRUE)
+ Field = Field | (1 << i);
+ }
+
+ return true;
+ }
+
+ void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[tBitWidth]) {
+ unsigned bitIndex;
+
+ for (bitIndex = tBitWidth; bitIndex > 0; bitIndex--) {
+ switch (filter[bitIndex - 1]) {
+ case BIT_UNFILTERED:
+ o << ".";
+ break;
+ case BIT_UNSET:
+ o << "_";
+ break;
+ case BIT_TRUE:
+ o << "1";
+ break;
+ case BIT_FALSE:
+ o << "0";
+ break;
+ }
+ }
+ }
+
+ void dumpStack(raw_ostream &o, const char *prefix) {
+ FilterChooser *current = this;
+
+ while (current) {
+ o << prefix;
+
+ dumpFilterArray(o, current->FilterBitValues);
+
+ o << '\n';
+
+ current = current->Parent;
+ }
+ }
+
+ Filter &bestFilter() {
+ assert(BestIndex != -1 && "BestIndex not set");
+ return Filters[BestIndex];
+ }
+
+ // States of our finite state machines.
+ typedef enum {
+ ATTR_NONE,
+ ATTR_FILTERED,
+ ATTR_ALL_SET,
+ ATTR_ALL_UNSET,
+ ATTR_MIXED
+ } bitAttr_t;
+
+ // Called from Filter::recurse() when singleton exists. For debug purpose.
+ void SingletonExists(unsigned Opc) {
+
+ insn_t Insn0;
+ insnWithID(Insn0, Opc);
+
+ errs() << "Singleton exists: " << nameWithID(Opc)
+ << " with its decoding dominating ";
+ for (unsigned i = 0; i < Opcodes.size(); ++i) {
+ if (Opcodes[i] == Opc) continue;
+ errs() << nameWithID(Opcodes[i]) << ' ';
+ }
+ errs() << '\n';
+
+ dumpStack(errs(), "\t\t");
+ for (unsigned i = 0; i < Opcodes.size(); i++) {
+ const std::string &Name = nameWithID(Opcodes[i]);
+
+ errs() << '\t' << Name << " ";
+ dumpBits(errs(),
+ getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
+ errs() << '\n';
+ }
+ }
+
+ bool ValueSet(bit_value_t V) {
+ return (V == BIT_TRUE || V == BIT_FALSE);
+ }
+ bool ValueNotSet(bit_value_t V) {
+ return (V == BIT_UNSET);
+ }
+ int Value(bit_value_t V) {
+ return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
+ }
+ bool PositionFiltered(unsigned i) {
+ return ValueSet(FilterBitValues[i]);
+ }
+
+ // Calculates the island(s) needed to decode the instruction.
+ unsigned getIslands(std::vector<unsigned> &StartBits,
+ std::vector<unsigned> &EndBits,
+ std::vector<uint64_t> &FieldVals, insn_t &Insn)
+ {
+ unsigned Num, BitNo;
+ Num = BitNo = 0;
+
+ uint64_t FieldVal = 0;
+
+ // 0: Init
+ // 1: Water
+ // 2: Island
+ int State = 0;
+ int Val = -1;
+
+ for (unsigned i = 0; i < tBitWidth; ++i) {
+ Val = Value(Insn[i]);
+ bool Filtered = PositionFiltered(i);
+ switch (State) {
+ default:
+ assert(0 && "Unreachable code!");
+ break;
+ case 0:
+ case 1:
+ if (Filtered || Val == -1)
+ State = 1; // Still in Water
+ else {
+ State = 2; // Into the Island
+ BitNo = 0;
+ StartBits.push_back(i);
+ FieldVal = Val;
+ }
+ break;
+ case 2:
+ if (Filtered || Val == -1) {
+ State = 1; // Into the Water
+ EndBits.push_back(i - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ } else {
+ State = 2; // Still in Island
+ ++BitNo;
+ FieldVal = FieldVal | Val << BitNo;
+ }
+ break;
+ }
+ }
+ // If we are still in Island after the loop, do some housekeeping.
+ if (State == 2) {
+ EndBits.push_back(tBitWidth - 1);
+ FieldVals.push_back(FieldVal);
+ ++Num;
+ }
+
+ /*
+ printf("StartBits.size()=%u,EndBits.size()=%u,FieldVals.size()=%u,Num=%u\n",
+ (unsigned)StartBits.size(), (unsigned)EndBits.size(),
+ (unsigned)FieldVals.size(), Num);
+ */
+
+ assert(StartBits.size() == Num && EndBits.size() == Num &&
+ FieldVals.size() == Num);
+
+ return Num;
+ }
+
+ bool LdStCopEncoding1(unsigned Opc) {
+ const std::string &Name = nameWithID(Opc);
+ if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
+ Name == "LDC_POST" || Name == "LDC_PRE" ||
+ Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
+ Name == "LDCL_POST" || Name == "LDCL_PRE" ||
+ Name == "STC_OFFSET" || Name == "STC_OPTION" ||
+ Name == "STC_POST" || Name == "STC_PRE" ||
+ Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
+ Name == "STCL_POST" || Name == "STCL_PRE")
+ return true;
+ else
+ return false;
+ }
+
+ // Emits code to decode the singleton. Return true if we have matched all the
+ // well-known bits.
+ bool emitSingletonDecoder(raw_ostream &o, Indenter &i, unsigned Opc) {
+
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+ insnWithID(Insn, Opc);
+
+ if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
+ o.indent(i);
+ // A8.6.51 & A8.6.188
+ // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
+ o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
+ }
+
+ // Look for islands of undecoded bits of the singleton.
+ getIslands(StartBits, EndBits, FieldVals, Insn);
+
+ unsigned Size = StartBits.size();
+ unsigned I, NumBits;
+
+ // If we have matched all the well-known bits, just issue a return.
+ if (Size == 0) {
+ o.indent(i) << "return " << Opc << "; // " << nameWithID(Opc) << '\n';
+ return true;
+ }
+
+ // Otherwise, there are more decodings to be done!
+
+ // Emit code to match the island(s) for the singleton.
+ o.indent(i) << "// Check ";
+
+ for (I = Size; I != 0; --I) {
+ o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
+ if (I > 1)
+ o << "&& ";
+ else
+ o << "for singleton decoding...\n";
+ }
+
+ o.indent(i) << "if (";
+
+ for (I = Size; I != 0; --I) {
+ NumBits = EndBits[I-1] - StartBits[I-1] + 1;
+ o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
+ << ") == " << FieldVals[I-1];
+ if (I > 1)
+ o << " && ";
+ else
+ o << ")\n";
+ }
+
+ o.indent(i) << " return " << Opc << "; // " << nameWithID(Opc) << '\n';
+
+ return false;
+ }
+
+ // Emits code to decode the singleton, and then to decode the rest.
+ void emitSingletonDecoder(raw_ostream &o, Indenter &i, Filter & Best) {
+
+ unsigned Opc = Best.getSingletonOpc();
+
+ emitSingletonDecoder(o, i, Opc);
+
+ // Emit code for the rest.
+ o.indent(i) << "else\n";
+ i.push();
+ {
+ Best.getVariableFC().emit(o, i);
+ }
+ i.pop();
+ }
+
+ // Assign a single filter and run with it.
+ void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
+ bool mixed) {
+ Filters.clear();
+ Filter F(*this, startBit, numBit, true);
+ Filters.push_back(F);
+ BestIndex = 0; // Sole Filter instance to choose from.
+ bestFilter().recurse();
+ }
+
+ bool filterProcessor(bool AllowMixed, bool Greedy = true) {
+ Filters.clear();
+ BestIndex = -1;
+ unsigned numInstructions = Opcodes.size();
+
+ assert(numInstructions && "Filter created with no instructions");
+
+ // No further filtering is necessary.
+ if (numInstructions == 1)
+ return true;
+
+ // Heuristics. See also doFilter()'s "Heuristics" comment when num of
+ // instructions is 3.
+ if (AllowMixed && !Greedy) {
+ assert(numInstructions == 3);
+
+ for (unsigned i = 0; i < Opcodes.size(); ++i) {
+ std::vector<unsigned> StartBits;
+ std::vector<unsigned> EndBits;
+ std::vector<uint64_t> FieldVals;
+ insn_t Insn;
+
+ insnWithID(Insn, Opcodes[i]);
+
+ // Look for islands of undecoded bits of any instruction.
+ if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
+ // Found an instruction with island(s). Now just assign a filter.
+ runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
+ true);
+ return true;
+ }
+ }
+ }
+
+ unsigned bitIndex, insnIndex;
+
+ // We maintain tBitWidth copies of the bitAttrs automaton.
+ // The automaton consumes the corresponding bit from each
+ // instruction.
+ //
+ // Input symbols: 0, 1, and _ (unset).
+ // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
+ // Initial state: NONE.
+ //
+ // (NONE) ------- [01] -> (ALL_SET)
+ // (NONE) ------- _ ----> (ALL_UNSET)
+ // (ALL_SET) ---- [01] -> (ALL_SET)
+ // (ALL_SET) ---- _ ----> (MIXED)
+ // (ALL_UNSET) -- [01] -> (MIXED)
+ // (ALL_UNSET) -- _ ----> (ALL_UNSET)
+ // (MIXED) ------ . ----> (MIXED)
+ // (FILTERED)---- . ----> (FILTERED)
+
+ bitAttr_t bitAttrs[tBitWidth];
+
+ // FILTERED bit positions provide no entropy and are not worthy of pursuing.
+ // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
+ for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex)
+ if (FilterBitValues[bitIndex] == BIT_TRUE ||
+ FilterBitValues[bitIndex] == BIT_FALSE)
+ bitAttrs[bitIndex] = ATTR_FILTERED;
+ else
+ bitAttrs[bitIndex] = ATTR_NONE;
+
+ for (insnIndex = 0; insnIndex < numInstructions; ++insnIndex) {
+ insn_t insn;
+
+ insnWithID(insn, Opcodes[insnIndex]);
+
+ for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) {
+ switch (bitAttrs[bitIndex]) {
+ case ATTR_NONE:
+ if (insn[bitIndex] == BIT_UNSET)
+ bitAttrs[bitIndex] = ATTR_ALL_UNSET;
+ else
+ bitAttrs[bitIndex] = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_SET:
+ if (insn[bitIndex] == BIT_UNSET)
+ bitAttrs[bitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_ALL_UNSET:
+ if (insn[bitIndex] != BIT_UNSET)
+ bitAttrs[bitIndex] = ATTR_MIXED;
+ break;
+ case ATTR_MIXED:
+ case ATTR_FILTERED:
+ break;
+ }
+ }
+ }
+
+ // The regionAttr automaton consumes the bitAttrs automatons' state,
+ // lowest-to-highest.
+ //
+ // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
+ // States: NONE, ALL_SET, MIXED
+ // Initial state: NONE
+ //
+ // (NONE) ----- F --> (NONE)
+ // (NONE) ----- S --> (ALL_SET) ; and set region start
+ // (NONE) ----- U --> (NONE)
+ // (NONE) ----- M --> (MIXED) ; and set region start
+ // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- S --> (ALL_SET)
+ // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
+ // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
+ // (MIXED) ---- F --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
+ // (MIXED) ---- U --> (NONE) ; and report a MIXED region
+ // (MIXED) ---- M --> (MIXED)
+
+ bitAttr_t regionAttr = ATTR_NONE;
+ unsigned startBit = 0;
+
+ for (bitIndex = 0; bitIndex < tBitWidth; bitIndex++) {
+ bitAttr_t bitAttr = bitAttrs[bitIndex];
+
+ assert(bitAttr != ATTR_NONE && "Bit without attributes");
+
+#define SET_START \
+ startBit = bitIndex;
+
+#define REPORT_REGION \
+ if (regionAttr == ATTR_MIXED && AllowMixed) \
+ Filters.push_back(Filter(*this, startBit, bitIndex - startBit, true)); \
+ else if (regionAttr == ATTR_ALL_SET && !AllowMixed) \
+ Filters.push_back(Filter(*this, startBit, bitIndex - startBit, false));
+
+ switch (regionAttr) {
+ case ATTR_NONE:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ SET_START
+ regionAttr = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ SET_START
+ regionAttr = ATTR_MIXED;
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_SET:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ REPORT_REGION
+ regionAttr = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ break;
+ case ATTR_ALL_UNSET:
+ REPORT_REGION
+ regionAttr = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ REPORT_REGION
+ SET_START
+ regionAttr = ATTR_MIXED;
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_MIXED:
+ switch (bitAttr) {
+ case ATTR_FILTERED:
+ REPORT_REGION
+ SET_START
+ regionAttr = ATTR_NONE;
+ break;
+ case ATTR_ALL_SET:
+ REPORT_REGION
+ SET_START
+ regionAttr = ATTR_ALL_SET;
+ break;
+ case ATTR_ALL_UNSET:
+ REPORT_REGION
+ regionAttr = ATTR_NONE;
+ break;
+ case ATTR_MIXED:
+ break;
+ default:
+ assert(0 && "Unexpected bitAttr!");
+ }
+ break;
+ case ATTR_ALL_UNSET:
+ assert(0 && "regionAttr state machine has no ATTR_UNSET state");
+ case ATTR_FILTERED:
+ assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
+ }
+ }
+
+ // At the end, if we're still in ALL_SET or MIXED states, report a region
+
+ switch (regionAttr) {
+ case ATTR_NONE:
+ break;
+ case ATTR_FILTERED:
+ break;
+ case ATTR_ALL_SET:
+ REPORT_REGION
+ break;
+ case ATTR_ALL_UNSET:
+ break;
+ case ATTR_MIXED:
+ REPORT_REGION
+ break;
+ }
+
+#undef SET_START
+#undef REPORT_REGION
+
+ // We have finished with the filter processings. Now it's time to choose
+ // the best performing filter.
+
+ BestIndex = 0;
+ bool AllUseless = true;
+ unsigned BestScore = 0;
+
+ for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
+ unsigned Usefulness = Filters[i].usefulness();
+
+ if (Usefulness)
+ AllUseless = false;
+
+ if (Usefulness > BestScore) {
+ BestIndex = i;
+ BestScore = Usefulness;
+ }
+ }
+
+ if (!AllUseless) {
+ bestFilter().recurse();
+ }
+
+ return !AllUseless;
+ } // end of filterProcessor(bool)
+
+ // Decides on the best configuration of filter(s) to use in order to decode
+ // the instructions. A conflict of instructions may occur, in which case we
+ // dump the conflict set to the standard error.
+ void doFilter() {
+ unsigned Num = Opcodes.size();
+ assert(Num && "FilterChooser created with no instructions");
+
+ // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
+ if (TargetName == TARGET_ARM && Parent == NULL) {
+ runSingleFilter(*this, 28, 4, false);
+ return;
+ }
+
+ if (filterProcessor(false))
+ return;
+
+ if (filterProcessor(true))
+ return;
+
+ // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
+ // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
+ // well-known encoding pattern. In such case, we backtrack and scan for the
+ // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
+ if (Num == 3 && filterProcessor(true, false))
+ return;
+
+ // If we come to here, the instruction decoding has failed.
+ // Print out the instructions in the conflict set...
+
+ BestIndex = -1;
+
+ DEBUG({
+ errs() << "Conflict:\n";
+
+ dumpStack(errs(), "\t\t");
+
+ for (unsigned i = 0; i < Num; i++) {
+ const std::string &Name = nameWithID(Opcodes[i]);
+
+ errs() << '\t' << Name << " ";
+ dumpBits(errs(),
+ getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
+ errs() << '\n';
+ }
+ });
+ }
+
+ // Emits code to decode our share of instructions. Returns true if the
+ // emitted code causes a return, which occurs if we know how to decode
+ // the instruction at this level or the instruction is not decodeable.
+ bool emit(raw_ostream &o, Indenter &i) {
+ if (Opcodes.size() == 1) {
+ // There is only one instruction in the set, which is great!
+ // Call emitSingletonDecoder() to see whether there are any remaining
+ // encodings bits.
+ return emitSingletonDecoder(o, i, Opcodes[0]);
+
+ } else if (BestIndex == -1) {
+ if (TargetName == TARGET_ARM && Opcodes.size() == 2) {
+ // Resolve the known conflict sets:
+ //
+ // 1. source registers are identical => VMOVDneon; otherwise => VORRd
+ // 2. source registers are identical => VMOVQ; otherwise => VORRq
+ // 3. LDR, LDRcp => return LDR for now.
+ // FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
+ // 4. VLD[234]LN*a/VST[234]LN*a vs. VLD[234]LN*b/VST[234]LN*b conflicts
+ // are resolved returning the 'a' versions of the instructions. Note
+ // that the difference between a/b is that the former is for double-
+ // spaced even registers while the latter is for double-spaced odd
+ // registers. This is for codegen instruction selection purpose.
+ // For disassembly, it does not matter.
+ const std::string &name1 = nameWithID(Opcodes[0]);
+ const std::string &name2 = nameWithID(Opcodes[1]);
+ if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
+ (name1 == "VMOVQ" && name2 == "VORRq")) {
+ // Inserting the opening curly brace for this case block.
+ i.pop();
+ o.indent(i) << "{\n";
+ i.push();
+
+ o.indent(i) << "field_t N = fieldFromInstruction(insn, 7, 1), "
+ << "M = fieldFromInstruction(insn, 5, 1);\n";
+ o.indent(i) << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
+ << "Vm = fieldFromInstruction(insn, 0, 4);\n";
+ o.indent(i) << "return (N == M && Vn == Vm) ? "
+ << Opcodes[0] << " /* " << name1 << " */ : "
+ << Opcodes[1] << " /* " << name2 << " */ ;\n";
+
+ // Inserting the closing curly brace for this case block.
+ i.pop();
+ o.indent(i) << "}\n";
+ i.push();
+
+ return true;
+ }
+ if (name1 == "LDR" && name2 == "LDRcp") {
+ o.indent(i) << "return " << Opcodes[0]
+ << "; // Returning LDR for {LDR, LDRcp}\n";
+ return true;
+ }
+ if (sameStringExceptEndingChar(name1, name2, 'a', 'b')) {
+ o.indent(i) << "return " << Opcodes[0] << "; // Returning " << name1
+ << " for {" << name1 << ", " << name2 << "}\n";
+ return true;
+ }
+
+ // Otherwise, it does not belong to the known conflict sets.
+ }
+ // We don't know how to decode these instructions! Dump the conflict set!
+ o.indent(i) << "return 0;" << " // Conflict set: ";
+ for (int i = 0, N = Opcodes.size(); i < N; ++i) {
+ o << nameWithID(Opcodes[i]);
+ if (i < (N - 1))
+ o << ", ";
+ else
+ o << '\n';
+ }
+ return true;
+ } else {
+ // Choose the best filter to do the decodings!
+ Filter &Best = bestFilter();
+ if (Best.getNumFiltered() == 1)
+ emitSingletonDecoder(o, i, Best);
+ else
+ bestFilter().emit(o, i);
+ return false;
+ }
+ }
+};
+
+///////////////
+// Backend //
+///////////////
+
+class RISCDisassemblerEmitter::RISCDEBackend {
+public:
+ RISCDEBackend(RISCDisassemblerEmitter &frontend) :
+ NumberedInstructions(),
+ Opcodes(),
+ Frontend(frontend),
+ Target(),
+ AFC(NULL)
+ {
+ populateInstructions();
+
+ if (Target.getName() == "ARM") {
+ TargetName = TARGET_ARM;
+ } else {
+ errs() << "Target name " << Target.getName() << " not recognized\n";
+ assert(0 && "Unknown target");
+ }
+ }
+
+ ~RISCDEBackend() {
+ if (AFC) {
+ delete AFC;
+ AFC = NULL;
+ }
+ }
+
+ void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
+ &NumberedInstructions) {
+ // Dig down to the proper namespace. Code shamelessly stolen from
+ // InstrEnumEmitter.cpp
+ std::string Namespace;
+ CodeGenTarget::inst_iterator II, E;
+
+ for (II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II)
+ if (II->second.Namespace != "TargetInstrInfo") {
+ Namespace = II->second.Namespace;
+ break;
+ }
+
+ assert(!Namespace.empty() && "No instructions defined.");
+
+ Target.getInstructionsByEnumValue(NumberedInstructions);
+ }
+
+ bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN) {
+ const Record &Def = *CGI.TheDef;
+ const std::string &Name = Def.getName();
+ uint8_t Form = getByteField(Def, "Form");
+ BitsInit &Bits = getBitsField(Def, "Inst");
+
+ if (TN == TARGET_ARM) {
+ // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6?
+ if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") &&
+ Form == ARM_FORMAT_PSEUDO)
+ return false;
+ if (thumbInstruction(Form))
+ return false;
+ if (Name.find("CMPz") != std::string::npos /* ||
+ Name.find("CMNz") != std::string::npos */)
+ return false;
+
+ // Ignore pseudo instructions.
+ if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9")
+ return false;
+
+ // VLDRQ/VSTRQ can be hanlded with the more generic VLDMD/VSTMD.
+ if (Name == "VLDRQ" || Name == "VSTRQ")
+ return false;
+
+ //
+ // The following special cases are for conflict resolutions.
+ //
+
+ // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are
+ // better off using the generic RSCri and RSCrs instructions.
+ if (Name == "RSCSri" || Name == "RSCSrs") return false;
+
+ // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used
+ // in the compiler to implement conditional moves. We can ignore them in
+ // favor of their more generic versions of instructions.
+ // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op).
+ if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" ||
+ Name == "FCPYScc" || Name == "FCPYDcc" ||
+ Name == "FNEGScc" || Name == "FNEGDcc")
+ return false;
+
+ // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc.
+ if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" ||
+ Name == "VNEGScc")
+ return false;
+
+ // Ignore the *_sfp instructions when decoding. They are used by the
+ // compiler to implement scalar floating point operations using vector
+ // operations in order to work around some performance issues.
+ if (Name.find("_sfp") != std::string::npos) return false;
+
+ // LLVM added LDM/STM_UPD which conflicts with LDM/STM.
+ // Ditto for VLDMS_UPD, VLDMD_UPD, VSTMS_UPD, VSTMD_UPD.
+ if (Name == "LDM_UPD" || Name == "STM_UPD" || Name == "VLDMS_UPD" ||
+ Name == "VLDMD_UPD" || Name == "VSTMS_UPD" || Name == "VSTMD_UPD")
+ return false;
+
+ // LDM_RET is a special case of LDM (Load Multiple) where the registers
+ // loaded include the PC, causing a branch to a loaded address. Ignore
+ // the LDM_RET instruction when decoding.
+ if (Name == "LDM_RET") return false;
+
+ // Bcc is in a more generic form than B. Ignore B when decoding.
+ if (Name == "B") return false;
+
+ // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction.
+ if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" ||
+ Name == "TPsoft")
+ return false;
+
+ // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for
+ // decoding. The instruction duplicates an element from an ARM core
+ // register into every element of the destination vector. There is no
+ // distinction between data types.
+ if (Name == "VDUPfd" || Name == "VDUPfq") return false;
+
+ // A8-598: VEXT
+ // Vector Extract extracts elements from the bottom end of the second
+ // operand vector and the top end of the first, concatenates them and
+ // places the result in the destination vector. The elements of the
+ // vectors are treated as being 8-bit bitfields. There is no distinction
+ // between data types. The size of the operation can be specified in
+ // assembler as vext.size. If the value is 16, 32, or 64, the syntax is
+ // a pseudo-instruction for a VEXT instruction specifying the equivalent
+ // number of bytes.
+ //
+ // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
+ // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
+ if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
+ Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
+ return false;
+
+ // Vector Reverse is similar to Vector Extract. There is no distinction
+ // between data types, other than size.
+ //
+ // VREV64df is equivalent to VREV64d32.
+ // VREV64qf is equivalent to VREV64q32.
+ if (Name == "VREV64df" || Name == "VREV64qf") return false;
+
+ // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d.
+ // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q.
+ // VLD1df is equivalent to VLD1d32.
+ // VLD1qf is equivalent to VLD1q32.
+ // VLD2d64 is equivalent to VLD1q64.
+ // VST1df is equivalent to VST1d32.
+ // VST1qf is equivalent to VST1q32.
+ // VST2d64 is equivalent to VST1q64.
+ if (Name == "VDUPLNfd" || Name == "VDUPfdf" ||
+ Name == "VDUPLNfq" || Name == "VDUPfqf" ||
+ Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" ||
+ Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64")
+ return false;
+ } else if (TN == TARGET_THUMB) {
+ if (!thumbInstruction(Form))
+ return false;
+
+ // Ignore pseudo instructions.
+ if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" ||
+ Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9")
+ return false;
+
+ // LLVM added tLDM_UPD which conflicts with tLDM.
+ if (Name == "tLDM_UPD")
+ return false;
+
+ // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts.
+ if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
+ return false;
+
+ // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
+ if (Name == "tTPsoft" || Name == "t2TPsoft")
+ return false;
+
+ // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi.
+ if (Name == "tLEApcrel" || Name == "tLEApcrelJT")
+ return false;
+
+ // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing.
+ if (Name == "t2LEApcrel")
+ return false;
+
+ // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
+ // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
+ // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
+ if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
+ Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
+ return false;
+
+ // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
+ if (Name == "t2LDRDpci")
+ return false;
+
+ // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen.
+ if (Name == "t2TBB" || Name == "t2TBH")
+ return false;
+
+ // Resolve conflicts:
+ //
+ // tBfar conflicts with tBLr9
+ // tCMNz conflicts with tCMN (with assembly format strings being equal)
+ // tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto)
+ // tMOVCCi conflicts with tMOVi8
+ // tMOVCCr conflicts with tMOVgpr2gpr
+ // tBR_JTr conflicts with tBRIND
+ // tSpill conflicts with tSTRspi
+ // tLDRcp conflicts with tLDRspi
+ // tRestore conflicts with tLDRspi
+ // t2LEApcrelJT conflicts with t2LEApcrel
+ // t2ADDrSPi/t2SUBrSPi have more generic couterparts
+ if (Name == "tBfar" ||
+ /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" ||
+ Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" ||
+ Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" ||
+ Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" ||
+ Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" ||
+ Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
+ Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi")
+ return false;
+ }
+
+ // Dumps the instruction encoding format.
+ switch (TargetName) {
+ case TARGET_ARM:
+ case TARGET_THUMB:
+ DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form));
+ break;
+ }
+
+ DEBUG({
+ errs() << " ";
+
+ // Dumps the instruction encoding bits.
+ dumpBits(errs(), Bits);
+
+ errs() << '\n';
+
+ // Dumps the list of operand info.
+ for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) {
+ CodeGenInstruction::OperandInfo Info = CGI.OperandList[i];
+ const std::string &OperandName = Info.Name;
+ const Record &OperandDef = *Info.Rec;
+
+ errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
+ }
+ });
+
+ return true;
+ }
+
+ void populateInstructions() {
+ getInstructionsByEnumValue(NumberedInstructions);
+
+ uint16_t numUIDs = NumberedInstructions.size();
+ uint16_t uid;
+
+ const char *instClass = NULL;
+
+ switch (TargetName) {
+ case TARGET_ARM:
+ instClass = "InstARM";
+ break;
+ default:
+ assert(0 && "Unreachable code!");
+ }
+
+ for (uid = 0; uid < numUIDs; uid++) {
+ // filter out intrinsics
+ if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
+ continue;
+
+ if (populateInstruction(*NumberedInstructions[uid], TargetName))
+ Opcodes.push_back(uid);
+ }
+
+ // Special handling for the ARM chip, which supports two modes of execution.
+ // This branch handles the Thumb opcodes.
+ if (TargetName == TARGET_ARM) {
+ for (uid = 0; uid < numUIDs; uid++) {
+ // filter out intrinsics
+ if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
+ && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
+ continue;
+
+ if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
+ Opcodes2.push_back(uid);
+ }
+ }
+ }
+
+ // Emits disassembler code for instruction decoding. This delegates to the
+ // FilterChooser instance to do the heavy lifting.
+ void emit(raw_ostream &o) {
+ Indenter i;
+ std::string s;
+ raw_string_ostream ro(s);
+
+ switch (TargetName) {
+ case TARGET_ARM:
+ Frontend.EmitSourceFileHeader("ARM Disassembler", ro);
+ break;
+ default:
+ assert(0 && "Unreachable code!");
+ }
+
+ ro.flush();
+ o << s;
+
+ o.indent(i) << "#include <inttypes.h>\n";
+ o.indent(i) << "#include <assert.h>\n";
+ o << '\n';
+ o << "namespace llvm {\n\n";
+
+ AbstractFilterChooser::setTargetName(TargetName);
+
+ switch (TargetName) {
+ case TARGET_ARM: {
+ // Emit common utility and ARM ISA decoder.
+ AFC = new FilterChooser<32>(NumberedInstructions, Opcodes);
+ AFC->emitTop(o, i);
+ delete AFC;
+
+ // Emit Thumb ISA decoder as well.
+ AbstractFilterChooser::setTargetName(TARGET_THUMB);
+ AFC = new FilterChooser<32>(NumberedInstructions, Opcodes2);
+ AFC->emitBot(o, i);
+ break;
+ }
+ default:
+ assert(0 && "Unreachable code!");
+ }
+
+ o << "\n} // End llvm namespace \n";
+ }
+
+protected:
+ std::vector<const CodeGenInstruction*> NumberedInstructions;
+ std::vector<unsigned> Opcodes;
+ // Special case for the ARM chip, which supports ARM and Thumb ISAs.
+ // Opcodes2 will be populated with the Thumb opcodes.
+ std::vector<unsigned> Opcodes2;
+ RISCDisassemblerEmitter &Frontend;
+ CodeGenTarget Target;
+ AbstractFilterChooser *AFC;
+
+ TARGET_NAME_t TargetName;
+};
+
+/////////////////////////
+// Backend interface //
+/////////////////////////
+
+void RISCDisassemblerEmitter::initBackend()
+{
+ Backend = new RISCDEBackend(*this);
+}
+
+void RISCDisassemblerEmitter::run(raw_ostream &o)
+{
+ Backend->emit(o);
+}
+
+void RISCDisassemblerEmitter::shutdownBackend()
+{
+ delete Backend;
+ Backend = NULL;
+}
diff --git a/utils/TableGen/RISCDisassemblerEmitter.h b/utils/TableGen/RISCDisassemblerEmitter.h
new file mode 100644
index 0000000000..f0e5eced02
--- /dev/null
+++ b/utils/TableGen/RISCDisassemblerEmitter.h
@@ -0,0 +1,48 @@
+//===- RISCDisassemblerEmitter.h - Disassembler Generator -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// FIXME: document
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef RISCDISASSEMBLEREMITTER_H
+#define RISCDISASSEMBLEREMITTER_H
+
+#include "TableGenBackend.h"
+
+#include <inttypes.h>
+
+namespace llvm {
+
+class RISCDisassemblerEmitter : public TableGenBackend {
+ RecordKeeper &Records;
+public:
+ RISCDisassemblerEmitter(RecordKeeper &R) : Records(R) {
+ initBackend();
+ }
+
+ ~RISCDisassemblerEmitter() {
+ shutdownBackend();
+ }
+
+ // run - Output the code emitter
+ void run(raw_ostream &o);
+
+private:
+ class RISCDEBackend;
+
+ RISCDEBackend *Backend;
+
+ void initBackend();
+ void shutdownBackend();
+};
+
+} // end llvm namespace
+
+#endif
diff --git a/utils/TableGen/TableGen.cpp b/utils/TableGen/TableGen.cpp
index f20ec00aa0..aaeef4d1fc 100644
--- a/utils/TableGen/TableGen.cpp
+++ b/utils/TableGen/TableGen.cpp
@@ -31,6 +31,7 @@
#include "OptParserEmitter.h"
#include "Record.h"
#include "RegisterInfoEmitter.h"
+#include "RISCDisassemblerEmitter.h"
#include "SubtargetEmitter.h"
#include "TGParser.h"
#include "llvm/Support/CommandLine.h"
@@ -48,6 +49,7 @@ enum ActionType {
GenEmitter,
GenRegisterEnums, GenRegister, GenRegisterHeader,
GenInstrEnums, GenInstrs, GenAsmWriter, GenAsmMatcher,
+ GenRISCDisassembler,
GenDisassembler,
GenCallingConv,
GenClangDiagsDefs,
@@ -84,6 +86,9 @@ namespace {
"Generate calling convention descriptions"),
clEnumValN(GenAsmWriter, "gen-asm-writer",
"Generate assembly writer"),
+ clEnumValN(GenRISCDisassembler, "gen-risc-disassembler",
+ "Generate disassembler for fixed instruction"
+ " length"),
clEnumValN(GenDisassembler, "gen-disassembler",
"Generate disassembler"),
clEnumValN(GenAsmMatcher, "gen-asm-matcher",
@@ -229,6 +234,9 @@ int main(int argc, char **argv) {
case GenAsmWriter:
AsmWriterEmitter(Records).run(*Out);
break;
+ case GenRISCDisassembler:
+ RISCDisassemblerEmitter(Records).run(*Out);
+ break;
case GenAsmMatcher:
AsmMatcherEmitter(Records).run(*Out);
break;