summaryrefslogtreecommitdiff
path: root/include/llvm/Support/Path.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/Path.h')
-rw-r--r--include/llvm/Support/Path.h738
1 files changed, 738 insertions, 0 deletions
diff --git a/include/llvm/Support/Path.h b/include/llvm/Support/Path.h
new file mode 100644
index 0000000000..7d5c297c95
--- /dev/null
+++ b/include/llvm/Support/Path.h
@@ -0,0 +1,738 @@
+//===- llvm/System/Path.h - Path Operating System Concept -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the llvm::sys::Path class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SYSTEM_PATH_H
+#define LLVM_SYSTEM_PATH_H
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/TimeValue.h"
+#include <set>
+#include <string>
+#include <vector>
+
+namespace llvm {
+namespace sys {
+
+ /// This structure provides basic file system information about a file. It
+ /// is patterned after the stat(2) Unix operating system call but made
+ /// platform independent and eliminates many of the unix-specific fields.
+ /// However, to support llvm-ar, the mode, user, and group fields are
+ /// retained. These pertain to unix security and may not have a meaningful
+ /// value on non-Unix platforms. However, the other fields should
+ /// always be applicable on all platforms. The structure is filled in by
+ /// the PathWithStatus class.
+ /// @brief File status structure
+ class FileStatus {
+ public:
+ uint64_t fileSize; ///< Size of the file in bytes
+ TimeValue modTime; ///< Time of file's modification
+ uint32_t mode; ///< Mode of the file, if applicable
+ uint32_t user; ///< User ID of owner, if applicable
+ uint32_t group; ///< Group ID of owner, if applicable
+ uint64_t uniqueID; ///< A number to uniquely ID this file
+ bool isDir : 1; ///< True if this is a directory.
+ bool isFile : 1; ///< True if this is a file.
+
+ FileStatus() : fileSize(0), modTime(0,0), mode(0777), user(999),
+ group(999), uniqueID(0), isDir(false), isFile(false) { }
+
+ TimeValue getTimestamp() const { return modTime; }
+ uint64_t getSize() const { return fileSize; }
+ uint32_t getMode() const { return mode; }
+ uint32_t getUser() const { return user; }
+ uint32_t getGroup() const { return group; }
+ uint64_t getUniqueID() const { return uniqueID; }
+ };
+
+ /// This class provides an abstraction for the path to a file or directory
+ /// in the operating system's filesystem and provides various basic operations
+ /// on it. Note that this class only represents the name of a path to a file
+ /// or directory which may or may not be valid for a given machine's file
+ /// system. The class is patterned after the java.io.File class with various
+ /// extensions and several omissions (not relevant to LLVM). A Path object
+ /// ensures that the path it encapsulates is syntactically valid for the
+ /// operating system it is running on but does not ensure correctness for
+ /// any particular file system. That is, a syntactically valid path might
+ /// specify path components that do not exist in the file system and using
+ /// such a Path to act on the file system could produce errors. There is one
+ /// invalid Path value which is permitted: the empty path. The class should
+ /// never allow a syntactically invalid non-empty path name to be assigned.
+ /// Empty paths are required in order to indicate an error result in some
+ /// situations. If the path is empty, the isValid operation will return
+ /// false. All operations will fail if isValid is false. Operations that
+ /// change the path will either return false if it would cause a syntactically
+ /// invalid path name (in which case the Path object is left unchanged) or
+ /// throw an std::string exception indicating the error. The methods are
+ /// grouped into four basic categories: Path Accessors (provide information
+ /// about the path without accessing disk), Disk Accessors (provide
+ /// information about the underlying file or directory), Path Mutators
+ /// (change the path information, not the disk), and Disk Mutators (change
+ /// the disk file/directory referenced by the path). The Disk Mutator methods
+ /// all have the word "disk" embedded in their method name to reinforce the
+ /// notion that the operation modifies the file system.
+ /// @since 1.4
+ /// @brief An abstraction for operating system paths.
+ class Path {
+ /// @name Constructors
+ /// @{
+ public:
+ /// Construct a path to the root directory of the file system. The root
+ /// directory is a top level directory above which there are no more
+ /// directories. For example, on UNIX, the root directory is /. On Windows
+ /// it is file:///. Other operating systems may have different notions of
+ /// what the root directory is or none at all. In that case, a consistent
+ /// default root directory will be used.
+ static Path GetRootDirectory();
+
+ /// Construct a path to a unique temporary directory that is created in
+ /// a "standard" place for the operating system. The directory is
+ /// guaranteed to be created on exit from this function. If the directory
+ /// cannot be created, the function will throw an exception.
+ /// @returns an invalid path (empty) on error
+ /// @param ErrMsg Optional place for an error message if an error occurs
+ /// @brief Constrct a path to an new, unique, existing temporary
+ /// directory.
+ static Path GetTemporaryDirectory(std::string* ErrMsg = 0);
+
+ /// Construct a vector of sys::Path that contains the "standard" system
+ /// library paths suitable for linking into programs.
+ /// @brief Construct a path to the system library directory
+ static void GetSystemLibraryPaths(std::vector<sys::Path>& Paths);
+
+ /// Construct a vector of sys::Path that contains the "standard" bitcode
+ /// library paths suitable for linking into an llvm program. This function
+ /// *must* return the value of LLVM_LIB_SEARCH_PATH as well as the value
+ /// of LLVM_LIBDIR. It also must provide the System library paths as
+ /// returned by GetSystemLibraryPaths.
+ /// @see GetSystemLibraryPaths
+ /// @brief Construct a list of directories in which bitcode could be
+ /// found.
+ static void GetBitcodeLibraryPaths(std::vector<sys::Path>& Paths);
+
+ /// Find the path to a library using its short name. Use the system
+ /// dependent library paths to locate the library.
+ /// @brief Find a library.
+ static Path FindLibrary(std::string& short_name);
+
+ /// Construct a path to the default LLVM configuration directory. The
+ /// implementation must ensure that this is a well-known (same on many
+ /// systems) directory in which llvm configuration files exist. For
+ /// example, on Unix, the /etc/llvm directory has been selected.
+ /// @brief Construct a path to the default LLVM configuration directory
+ static Path GetLLVMDefaultConfigDir();
+
+ /// Construct a path to the LLVM installed configuration directory. The
+ /// implementation must ensure that this refers to the "etc" directory of
+ /// the LLVM installation. This is the location where configuration files
+ /// will be located for a particular installation of LLVM on a machine.
+ /// @brief Construct a path to the LLVM installed configuration directory
+ static Path GetLLVMConfigDir();
+
+ /// Construct a path to the current user's home directory. The
+ /// implementation must use an operating system specific mechanism for
+ /// determining the user's home directory. For example, the environment
+ /// variable "HOME" could be used on Unix. If a given operating system
+ /// does not have the concept of a user's home directory, this static
+ /// constructor must provide the same result as GetRootDirectory.
+ /// @brief Construct a path to the current user's "home" directory
+ static Path GetUserHomeDirectory();
+
+ /// Construct a path to the current directory for the current process.
+ /// @returns The current working directory.
+ /// @brief Returns the current working directory.
+ static Path GetCurrentDirectory();
+
+ /// Return the suffix commonly used on file names that contain an
+ /// executable.
+ /// @returns The executable file suffix for the current platform.
+ /// @brief Return the executable file suffix.
+ static StringRef GetEXESuffix();
+
+ /// Return the suffix commonly used on file names that contain a shared
+ /// object, shared archive, or dynamic link library. Such files are
+ /// linked at runtime into a process and their code images are shared
+ /// between processes.
+ /// @returns The dynamic link library suffix for the current platform.
+ /// @brief Return the dynamic link library suffix.
+ static StringRef GetDLLSuffix();
+
+ /// GetMainExecutable - Return the path to the main executable, given the
+ /// value of argv[0] from program startup and the address of main itself.
+ /// In extremis, this function may fail and return an empty path.
+ static Path GetMainExecutable(const char *argv0, void *MainAddr);
+
+ /// This is one of the very few ways in which a path can be constructed
+ /// with a syntactically invalid name. The only *legal* invalid name is an
+ /// empty one. Other invalid names are not permitted. Empty paths are
+ /// provided so that they can be used to indicate null or error results in
+ /// other lib/System functionality.
+ /// @brief Construct an empty (and invalid) path.
+ Path() : path() {}
+ Path(const Path &that) : path(that.path) {}
+
+ /// This constructor will accept a char* or std::string as a path. No
+ /// checking is done on this path to determine if it is valid. To
+ /// determine validity of the path, use the isValid method.
+ /// @param p The path to assign.
+ /// @brief Construct a Path from a string.
+ explicit Path(StringRef p);
+
+ /// This constructor will accept a character range as a path. No checking
+ /// is done on this path to determine if it is valid. To determine
+ /// validity of the path, use the isValid method.
+ /// @param StrStart A pointer to the first character of the path name
+ /// @param StrLen The length of the path name at StrStart
+ /// @brief Construct a Path from a string.
+ Path(const char *StrStart, unsigned StrLen);
+
+ /// @}
+ /// @name Operators
+ /// @{
+ public:
+ /// Makes a copy of \p that to \p this.
+ /// @returns \p this
+ /// @brief Assignment Operator
+ Path &operator=(const Path &that) {
+ path = that.path;
+ return *this;
+ }
+
+ /// Makes a copy of \p that to \p this.
+ /// @param that A StringRef denoting the path
+ /// @returns \p this
+ /// @brief Assignment Operator
+ Path &operator=(StringRef that);
+
+ /// Compares \p this Path with \p that Path for equality.
+ /// @returns true if \p this and \p that refer to the same thing.
+ /// @brief Equality Operator
+ bool operator==(const Path &that) const;
+
+ /// Compares \p this Path with \p that Path for inequality.
+ /// @returns true if \p this and \p that refer to different things.
+ /// @brief Inequality Operator
+ bool operator!=(const Path &that) const { return !(*this == that); }
+
+ /// Determines if \p this Path is less than \p that Path. This is required
+ /// so that Path objects can be placed into ordered collections (e.g.
+ /// std::map). The comparison is done lexicographically as defined by
+ /// the std::string::compare method.
+ /// @returns true if \p this path is lexicographically less than \p that.
+ /// @brief Less Than Operator
+ bool operator<(const Path& that) const;
+
+ /// @}
+ /// @name Path Accessors
+ /// @{
+ public:
+ /// This function will use an operating system specific algorithm to
+ /// determine if the current value of \p this is a syntactically valid
+ /// path name for the operating system. The path name does not need to
+ /// exist, validity is simply syntactical. Empty paths are always invalid.
+ /// @returns true iff the path name is syntactically legal for the
+ /// host operating system.
+ /// @brief Determine if a path is syntactically valid or not.
+ bool isValid() const;
+
+ /// This function determines if the contents of the path name are empty.
+ /// That is, the path name has a zero length. This does NOT determine if
+ /// if the file is empty. To get the length of the file itself, Use the
+ /// PathWithStatus::getFileStatus() method and then the getSize() method
+ /// on the returned FileStatus object.
+ /// @returns true iff the path is empty.
+ /// @brief Determines if the path name is empty (invalid).
+ bool isEmpty() const { return path.empty(); }
+
+ /// This function returns the last component of the path name. The last
+ /// component is the file or directory name occuring after the last
+ /// directory separator. If no directory separator is present, the entire
+ /// path name is returned (i.e. same as toString).
+ /// @returns StringRef containing the last component of the path name.
+ /// @brief Returns the last component of the path name.
+ StringRef getLast() const;
+
+ /// This function strips off the path and suffix of the file or directory
+ /// name and returns just the basename. For example /a/foo.bar would cause
+ /// this function to return "foo".
+ /// @returns StringRef containing the basename of the path
+ /// @brief Get the base name of the path
+ StringRef getBasename() const;
+
+ /// This function strips off the suffix of the path beginning with the
+ /// path separator ('/' on Unix, '\' on Windows) and returns the result.
+ StringRef getDirname() const;
+
+ /// This function strips off the path and basename(up to and
+ /// including the last dot) of the file or directory name and
+ /// returns just the suffix. For example /a/foo.bar would cause
+ /// this function to return "bar".
+ /// @returns StringRef containing the suffix of the path
+ /// @brief Get the suffix of the path
+ StringRef getSuffix() const;
+
+ /// Obtain a 'C' string for the path name.
+ /// @returns a 'C' string containing the path name.
+ /// @brief Returns the path as a C string.
+ const char *c_str() const { return path.c_str(); }
+ const std::string &str() const { return path; }
+
+
+ /// size - Return the length in bytes of this path name.
+ size_t size() const { return path.size(); }
+
+ /// empty - Returns true if the path is empty.
+ unsigned empty() const { return path.empty(); }
+
+ /// @}
+ /// @name Disk Accessors
+ /// @{
+ public:
+ /// This function determines if the path name is absolute, as opposed to
+ /// relative.
+ /// @brief Determine if the path is absolute.
+ bool isAbsolute() const;
+
+ /// This function determines if the path name is absolute, as opposed to
+ /// relative.
+ /// @brief Determine if the path is absolute.
+ static bool isAbsolute(const char *NameStart, unsigned NameLen);
+
+ /// This function opens the file associated with the path name provided by
+ /// the Path object and reads its magic number. If the magic number at the
+ /// start of the file matches \p magic, true is returned. In all other
+ /// cases (file not found, file not accessible, etc.) it returns false.
+ /// @returns true if the magic number of the file matches \p magic.
+ /// @brief Determine if file has a specific magic number
+ bool hasMagicNumber(StringRef magic) const;
+
+ /// This function retrieves the first \p len bytes of the file associated
+ /// with \p this. These bytes are returned as the "magic number" in the
+ /// \p Magic parameter.
+ /// @returns true if the Path is a file and the magic number is retrieved,
+ /// false otherwise.
+ /// @brief Get the file's magic number.
+ bool getMagicNumber(std::string& Magic, unsigned len) const;
+
+ /// This function determines if the path name in the object references an
+ /// archive file by looking at its magic number.
+ /// @returns true if the file starts with the magic number for an archive
+ /// file.
+ /// @brief Determine if the path references an archive file.
+ bool isArchive() const;
+
+ /// This function determines if the path name in the object references an
+ /// LLVM Bitcode file by looking at its magic number.
+ /// @returns true if the file starts with the magic number for LLVM
+ /// bitcode files.
+ /// @brief Determine if the path references a bitcode file.
+ bool isBitcodeFile() const;
+
+ /// This function determines if the path name in the object references a
+ /// native Dynamic Library (shared library, shared object) by looking at
+ /// the file's magic number. The Path object must reference a file, not a
+ /// directory.
+ /// @returns true if the file starts with the magic number for a native
+ /// shared library.
+ /// @brief Determine if the path references a dynamic library.
+ bool isDynamicLibrary() const;
+
+ /// This function determines if the path name in the object references a
+ /// native object file by looking at it's magic number. The term object
+ /// file is defined as "an organized collection of separate, named
+ /// sequences of binary data." This covers the obvious file formats such
+ /// as COFF and ELF, but it also includes llvm ir bitcode, archives,
+ /// libraries, etc...
+ /// @returns true if the file starts with the magic number for an object
+ /// file.
+ /// @brief Determine if the path references an object file.
+ bool isObjectFile() const;
+
+ /// This function determines if the path name references an existing file
+ /// or directory in the file system.
+ /// @returns true if the pathname references an existing file or
+ /// directory.
+ /// @brief Determines if the path is a file or directory in
+ /// the file system.
+ bool exists() const;
+
+ /// This function determines if the path name references an
+ /// existing directory.
+ /// @returns true if the pathname references an existing directory.
+ /// @brief Determines if the path is a directory in the file system.
+ bool isDirectory() const;
+
+ /// This function determines if the path name references an
+ /// existing symbolic link.
+ /// @returns true if the pathname references an existing symlink.
+ /// @brief Determines if the path is a symlink in the file system.
+ bool isSymLink() const;
+
+ /// This function determines if the path name references a readable file
+ /// or directory in the file system. This function checks for
+ /// the existence and readability (by the current program) of the file
+ /// or directory.
+ /// @returns true if the pathname references a readable file.
+ /// @brief Determines if the path is a readable file or directory
+ /// in the file system.
+ bool canRead() const;
+
+ /// This function determines if the path name references a writable file
+ /// or directory in the file system. This function checks for the
+ /// existence and writability (by the current program) of the file or
+ /// directory.
+ /// @returns true if the pathname references a writable file.
+ /// @brief Determines if the path is a writable file or directory
+ /// in the file system.
+ bool canWrite() const;
+
+ /// This function checks that what we're trying to work only on a regular
+ /// file. Check for things like /dev/null, any block special file, or
+ /// other things that aren't "regular" regular files.
+ /// @returns true if the file is S_ISREG.
+ /// @brief Determines if the file is a regular file
+ bool isRegularFile() const;
+
+ /// This function determines if the path name references an executable
+ /// file in the file system. This function checks for the existence and
+ /// executability (by the current program) of the file.
+ /// @returns true if the pathname references an executable file.
+ /// @brief Determines if the path is an executable file in the file
+ /// system.
+ bool canExecute() const;
+
+ /// This function builds a list of paths that are the names of the
+ /// files and directories in a directory.
+ /// @returns true if an error occurs, true otherwise
+ /// @brief Build a list of directory's contents.
+ bool getDirectoryContents(
+ std::set<Path> &paths, ///< The resulting list of file & directory names
+ std::string* ErrMsg ///< Optional place to return an error message.
+ ) const;
+
+ /// @}
+ /// @name Path Mutators
+ /// @{
+ public:
+ /// The path name is cleared and becomes empty. This is an invalid
+ /// path name but is the *only* invalid path name. This is provided
+ /// so that path objects can be used to indicate the lack of a
+ /// valid path being found.
+ /// @brief Make the path empty.
+ void clear() { path.clear(); }
+
+ /// This method sets the Path object to \p unverified_path. This can fail
+ /// if the \p unverified_path does not pass the syntactic checks of the
+ /// isValid() method. If verification fails, the Path object remains
+ /// unchanged and false is returned. Otherwise true is returned and the
+ /// Path object takes on the path value of \p unverified_path
+ /// @returns true if the path was set, false otherwise.
+ /// @param unverified_path The path to be set in Path object.
+ /// @brief Set a full path from a StringRef
+ bool set(StringRef unverified_path);
+
+ /// One path component is removed from the Path. If only one component is
+ /// present in the path, the Path object becomes empty. If the Path object
+ /// is empty, no change is made.
+ /// @returns false if the path component could not be removed.
+ /// @brief Removes the last directory component of the Path.
+ bool eraseComponent();
+
+ /// The \p component is added to the end of the Path if it is a legal
+ /// name for the operating system. A directory separator will be added if
+ /// needed.
+ /// @returns false if the path component could not be added.
+ /// @brief Appends one path component to the Path.
+ bool appendComponent(StringRef component);
+
+ /// A period and the \p suffix are appended to the end of the pathname.
+ /// The precondition for this function is that the Path reference a file
+ /// name (i.e. isFile() returns true). If the Path is not a file, no
+ /// action is taken and the function returns false. If the path would
+ /// become invalid for the host operating system, false is returned. When
+ /// the \p suffix is empty, no action is performed.
+ /// @returns false if the suffix could not be added, true if it was.
+ /// @brief Adds a period and the \p suffix to the end of the pathname.
+ bool appendSuffix(StringRef suffix);
+
+ /// The suffix of the filename is erased. The suffix begins with and
+ /// includes the last . character in the filename after the last directory
+ /// separator and extends until the end of the name. If no . character is
+ /// after the last directory separator, then the file name is left
+ /// unchanged (i.e. it was already without a suffix) but the function
+ /// returns false.
+ /// @returns false if there was no suffix to remove, true otherwise.
+ /// @brief Remove the suffix from a path name.
+ bool eraseSuffix();
+
+ /// The current Path name is made unique in the file system. Upon return,
+ /// the Path will have been changed to make a unique file in the file
+ /// system or it will not have been changed if the current path name is
+ /// already unique.
+ /// @throws std::string if an unrecoverable error occurs.
+ /// @brief Make the current path name unique in the file system.
+ bool makeUnique( bool reuse_current /*= true*/, std::string* ErrMsg );
+
+ /// The current Path name is made absolute by prepending the
+ /// current working directory if necessary.
+ void makeAbsolute();
+
+ /// @}
+ /// @name Disk Mutators
+ /// @{
+ public:
+ /// This method attempts to make the file referenced by the Path object
+ /// available for reading so that the canRead() method will return true.
+ /// @brief Make the file readable;
+ bool makeReadableOnDisk(std::string* ErrMsg = 0);
+
+ /// This method attempts to make the file referenced by the Path object
+ /// available for writing so that the canWrite() method will return true.
+ /// @brief Make the file writable;
+ bool makeWriteableOnDisk(std::string* ErrMsg = 0);
+
+ /// This method attempts to make the file referenced by the Path object
+ /// available for execution so that the canExecute() method will return
+ /// true.
+ /// @brief Make the file readable;
+ bool makeExecutableOnDisk(std::string* ErrMsg = 0);
+
+ /// This method allows the last modified time stamp and permission bits
+ /// to be set on the disk object referenced by the Path.
+ /// @throws std::string if an error occurs.
+ /// @returns true on error.
+ /// @brief Set the status information.
+ bool setStatusInfoOnDisk(const FileStatus &SI,
+ std::string *ErrStr = 0) const;
+
+ /// This method attempts to create a directory in the file system with the
+ /// same name as the Path object. The \p create_parents parameter controls
+ /// whether intermediate directories are created or not. if \p
+ /// create_parents is true, then an attempt will be made to create all
+ /// intermediate directories, as needed. If \p create_parents is false,
+ /// then only the final directory component of the Path name will be
+ /// created. The created directory will have no entries.
+ /// @returns true if the directory could not be created, false otherwise
+ /// @brief Create the directory this Path refers to.
+ bool createDirectoryOnDisk(
+ bool create_parents = false, ///< Determines whether non-existent
+ ///< directory components other than the last one (the "parents")
+ ///< are created or not.
+ std::string* ErrMsg = 0 ///< Optional place to put error messages.
+ );
+
+ /// This method attempts to create a file in the file system with the same
+ /// name as the Path object. The intermediate directories must all exist
+ /// at the time this method is called. Use createDirectoriesOnDisk to
+ /// accomplish that. The created file will be empty upon return from this
+ /// function.
+ /// @returns true if the file could not be created, false otherwise.
+ /// @brief Create the file this Path refers to.
+ bool createFileOnDisk(
+ std::string* ErrMsg = 0 ///< Optional place to put error messages.
+ );
+
+ /// This is like createFile except that it creates a temporary file. A
+ /// unique temporary file name is generated based on the contents of
+ /// \p this before the call. The new name is assigned to \p this and the
+ /// file is created. Note that this will both change the Path object
+ /// *and* create the corresponding file. This function will ensure that
+ /// the newly generated temporary file name is unique in the file system.
+ /// @returns true if the file couldn't be created, false otherwise.
+ /// @brief Create a unique temporary file
+ bool createTemporaryFileOnDisk(
+ bool reuse_current = false, ///< When set to true, this parameter
+ ///< indicates that if the current file name does not exist then
+ ///< it will be used without modification.
+ std::string* ErrMsg = 0 ///< Optional place to put error messages
+ );
+
+ /// This method renames the file referenced by \p this as \p newName. The
+ /// file referenced by \p this must exist. The file referenced by
+ /// \p newName does not need to exist.
+ /// @returns true on error, false otherwise
+ /// @brief Rename one file as another.
+ bool renamePathOnDisk(const Path& newName, std::string* ErrMsg);
+
+ /// This method attempts to destroy the file or directory named by the
+ /// last component of the Path. If the Path refers to a directory and the
+ /// \p destroy_contents is false, an attempt will be made to remove just
+ /// the directory (the final Path component). If \p destroy_contents is
+ /// true, an attempt will be made to remove the entire contents of the
+ /// directory, recursively. If the Path refers to a file, the
+ /// \p destroy_contents parameter is ignored.
+ /// @param destroy_contents Indicates whether the contents of a destroyed
+ /// @param Err An optional string to receive an error message.
+ /// directory should also be destroyed (recursively).
+ /// @returns false if the file/directory was destroyed, true on error.
+ /// @brief Removes the file or directory from the filesystem.
+ bool eraseFromDisk(bool destroy_contents = false,
+ std::string *Err = 0) const;
+
+
+ /// MapInFilePages - This is a low level system API to map in the file
+ /// that is currently opened as FD into the current processes' address
+ /// space for read only access. This function may return null on failure
+ /// or if the system cannot provide the following constraints:
+ /// 1) The pages must be valid after the FD is closed, until
+ /// UnMapFilePages is called.
+ /// 2) Any padding after the end of the file must be zero filled, if
+ /// present.
+ /// 3) The pages must be contiguous.
+ ///
+ /// This API is not intended for general use, clients should use
+ /// MemoryBuffer::getFile instead.
+ static const char *MapInFilePages(int FD, uint64_t FileSize);
+
+ /// UnMapFilePages - Free pages mapped into the current process by
+ /// MapInFilePages.
+ ///
+ /// This API is not intended for general use, clients should use
+ /// MemoryBuffer::getFile instead.
+ static void UnMapFilePages(const char *Base, uint64_t FileSize);
+
+ /// @}
+ /// @name Data
+ /// @{
+ protected:
+ // Our win32 implementation relies on this string being mutable.
+ mutable std::string path; ///< Storage for the path name.
+
+
+ /// @}
+ };
+
+ /// This class is identical to Path class except it allows you to obtain the
+ /// file status of the Path as well. The reason for the distinction is one of
+ /// efficiency. First, the file status requires additional space and the space
+ /// is incorporated directly into PathWithStatus without an additional malloc.
+ /// Second, obtaining status information is an expensive operation on most
+ /// operating systems so we want to be careful and explicity about where we
+ /// allow this operation in LLVM.
+ /// @brief Path with file status class.
+ class PathWithStatus : public Path {
+ /// @name Constructors
+ /// @{
+ public:
+ /// @brief Default constructor
+ PathWithStatus() : Path(), status(), fsIsValid(false) {}
+
+ /// @brief Copy constructor
+ PathWithStatus(const PathWithStatus &that)
+ : Path(static_cast<const Path&>(that)), status(that.status),
+ fsIsValid(that.fsIsValid) {}
+
+ /// This constructor allows construction from a Path object
+ /// @brief Path constructor
+ PathWithStatus(const Path &other)
+ : Path(other), status(), fsIsValid(false) {}
+
+ /// This constructor will accept a char* or std::string as a path. No
+ /// checking is done on this path to determine if it is valid. To
+ /// determine validity of the path, use the isValid method.
+ /// @brief Construct a Path from a string.
+ explicit PathWithStatus(
+ StringRef p ///< The path to assign.
+ ) : Path(p), status(), fsIsValid(false) {}
+
+ /// This constructor will accept a character range as a path. No checking
+ /// is done on this path to determine if it is valid. To determine
+ /// validity of the path, use the isValid method.
+ /// @brief Construct a Path from a string.
+ explicit PathWithStatus(
+ const char *StrStart, ///< Pointer to the first character of the path
+ unsigned StrLen ///< Length of the path.
+ ) : Path(StrStart, StrLen), status(), fsIsValid(false) {}
+
+ /// Makes a copy of \p that to \p this.
+ /// @returns \p this
+ /// @brief Assignment Operator
+ PathWithStatus &operator=(const PathWithStatus &that) {
+ static_cast<Path&>(*this) = static_cast<const Path&>(that);
+ status = that.status;
+ fsIsValid = that.fsIsValid;
+ return *this;
+ }
+
+ /// Makes a copy of \p that to \p this.
+ /// @returns \p this
+ /// @brief Assignment Operator
+ PathWithStatus &operator=(const Path &that) {
+ static_cast<Path&>(*this) = static_cast<const Path&>(that);
+ fsIsValid = false;
+ return *this;
+ }
+
+ /// @}
+ /// @name Methods
+ /// @{
+ public:
+ /// This function returns status information about the file. The type of
+ /// path (file or directory) is updated to reflect the actual contents
+ /// of the file system.
+ /// @returns 0 on failure, with Error explaining why (if non-zero)
+ /// @returns a pointer to a FileStatus structure on success.
+ /// @brief Get file status.
+ const FileStatus *getFileStatus(
+ bool forceUpdate = false, ///< Force an update from the file system
+ std::string *Error = 0 ///< Optional place to return an error msg.
+ ) const;
+
+ /// @}
+ /// @name Data
+ /// @{
+ private:
+ mutable FileStatus status; ///< Status information.
+ mutable bool fsIsValid; ///< Whether we've obtained it or not
+
+ /// @}
+ };
+
+ /// This enumeration delineates the kinds of files that LLVM knows about.
+ enum LLVMFileType {
+ Unknown_FileType = 0, ///< Unrecognized file
+ Bitcode_FileType, ///< Bitcode file
+ Archive_FileType, ///< ar style archive file
+ ELF_Relocatable_FileType, ///< ELF Relocatable object file
+ ELF_Executable_FileType, ///< ELF Executable image
+ ELF_SharedObject_FileType, ///< ELF dynamically linked shared lib
+ ELF_Core_FileType, ///< ELF core image
+ Mach_O_Object_FileType, ///< Mach-O Object file
+ Mach_O_Executable_FileType, ///< Mach-O Executable
+ Mach_O_FixedVirtualMemorySharedLib_FileType, ///< Mach-O Shared Lib, FVM
+ Mach_O_Core_FileType, ///< Mach-O Core File
+ Mach_O_PreloadExecutable_FileType, ///< Mach-O Preloaded Executable
+ Mach_O_DynamicallyLinkedSharedLib_FileType, ///< Mach-O dynlinked shared lib
+ Mach_O_DynamicLinker_FileType, ///< The Mach-O dynamic linker
+ Mach_O_Bundle_FileType, ///< Mach-O Bundle file
+ Mach_O_DynamicallyLinkedSharedLibStub_FileType, ///< Mach-O Shared lib stub
+ COFF_FileType ///< COFF object file or lib
+ };
+
+ /// This utility function allows any memory block to be examined in order
+ /// to determine its file type.
+ LLVMFileType IdentifyFileType(const char*magic, unsigned length);
+
+ /// This function can be used to copy the file specified by Src to the
+ /// file specified by Dest. If an error occurs, Dest is removed.
+ /// @returns true if an error occurs, false otherwise
+ /// @brief Copy one file to another.
+ bool CopyFile(const Path& Dest, const Path& Src, std::string* ErrMsg);
+
+ /// This is the OS-specific path separator: a colon on Unix or a semicolon
+ /// on Windows.
+ extern const char PathSeparator;
+}
+
+}
+
+#endif