summaryrefslogtreecommitdiff
path: root/lib/CodeGen
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/MachineScheduler.cpp908
1 files changed, 762 insertions, 146 deletions
diff --git a/lib/CodeGen/MachineScheduler.cpp b/lib/CodeGen/MachineScheduler.cpp
index 2438eb1087..de16932c06 100644
--- a/lib/CodeGen/MachineScheduler.cpp
+++ b/lib/CodeGen/MachineScheduler.cpp
@@ -49,6 +49,15 @@ static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
+// Threshold to very roughly model an out-of-order processor's instruction
+// buffers. If the actual value of this threshold matters much in practice, then
+// it can be specified by the machine model. For now, it's an experimental
+// tuning knob to determine when and if it matters.
+static cl::opt<unsigned> ILPWindow("ilp-window", cl::Hidden,
+ cl::desc("Allow expected latency to exceed the critical path by N cycles "
+ "before attempting to balance ILP"),
+ cl::init(10U));
+
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//
@@ -487,6 +496,13 @@ void ScheduleDAGMI::schedule() {
assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
placeDebugValues();
+
+ DEBUG({
+ unsigned BBNum = top()->getParent()->getNumber();
+ dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
+ dumpSchedule();
+ dbgs() << '\n';
+ });
}
/// Build the DAG and setup three register pressure trackers.
@@ -627,6 +643,17 @@ void ScheduleDAGMI::placeDebugValues() {
FirstDbgValue = NULL;
}
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ScheduleDAGMI::dumpSchedule() const {
+ for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
+ if (SUnit *SU = getSUnit(&(*MI)))
+ SU->dump(this);
+ else
+ dbgs() << "Missing SUnit\n";
+ }
+}
+#endif
+
//===----------------------------------------------------------------------===//
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
//===----------------------------------------------------------------------===//
@@ -635,33 +662,127 @@ namespace {
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class ConvergingScheduler : public MachineSchedStrategy {
+public:
+ /// Represent the type of SchedCandidate found within a single queue.
+ /// pickNodeBidirectional depends on these listed by decreasing priority.
+ enum CandReason {
+ NoCand, SingleExcess, SingleCritical, ResourceReduce, ResourceDemand,
+ BotHeightReduce, BotPathReduce, TopDepthReduce, TopPathReduce,
+ SingleMax, MultiPressure, NextDefUse, NodeOrder};
+
+#ifndef NDEBUG
+ static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
+#endif
+
+ /// Policy for scheduling the next instruction in the candidate's zone.
+ struct CandPolicy {
+ bool ReduceLatency;
+ unsigned ReduceResIdx;
+ unsigned DemandResIdx;
+
+ CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
+ };
+
+ /// Status of an instruction's critical resource consumption.
+ struct SchedResourceDelta {
+ // Count critical resources in the scheduled region required by SU.
+ unsigned CritResources;
+
+ // Count critical resources from another region consumed by SU.
+ unsigned DemandedResources;
+
+ SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
+
+ bool operator==(const SchedResourceDelta &RHS) const {
+ return CritResources == RHS.CritResources
+ && DemandedResources == RHS.DemandedResources;
+ }
+ bool operator!=(const SchedResourceDelta &RHS) const {
+ return !operator==(RHS);
+ }
+ };
/// Store the state used by ConvergingScheduler heuristics, required for the
/// lifetime of one invocation of pickNode().
struct SchedCandidate {
+ CandPolicy Policy;
+
// The best SUnit candidate.
SUnit *SU;
+ // The reason for this candidate.
+ CandReason Reason;
+
// Register pressure values for the best candidate.
RegPressureDelta RPDelta;
- SchedCandidate(): SU(NULL) {}
+ // Critical resource consumption of the best candidate.
+ SchedResourceDelta ResDelta;
+
+ SchedCandidate(const CandPolicy &policy)
+ : Policy(policy), SU(NULL), Reason(NoCand) {}
+
+ bool isValid() const { return SU; }
+
+ // Copy the status of another candidate without changing policy.
+ void setBest(SchedCandidate &Best) {
+ assert(Best.Reason != NoCand && "uninitialized Sched candidate");
+ SU = Best.SU;
+ Reason = Best.Reason;
+ RPDelta = Best.RPDelta;
+ ResDelta = Best.ResDelta;
+ }
+
+ void initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel);
+ };
+
+ /// Summarize the unscheduled region.
+ struct SchedRemainder {
+ // Critical path through the DAG in expected latency.
+ unsigned CriticalPath;
+
+ // Unscheduled resources
+ SmallVector<unsigned, 16> RemainingCounts;
+ // Critical resource for the unscheduled zone.
+ unsigned CritResIdx;
+ // Number of micro-ops left to schedule.
+ unsigned RemainingMicroOps;
+ // Is the unscheduled zone resource limited.
+ bool IsResourceLimited;
+
+ unsigned MaxRemainingCount;
+
+ void reset() {
+ CriticalPath = 0;
+ RemainingCounts.clear();
+ CritResIdx = 0;
+ RemainingMicroOps = 0;
+ IsResourceLimited = false;
+ MaxRemainingCount = 0;
+ }
+
+ SchedRemainder() { reset(); }
+
+ void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
};
- /// Represent the type of SchedCandidate found within a single queue.
- enum CandResult {
- NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
/// Each Scheduling boundary is associated with ready queues. It tracks the
- /// current cycle in whichever direction at has moved, and maintains the state
+ /// current cycle in the direction of movement, and maintains the state
/// of "hazards" and other interlocks at the current cycle.
struct SchedBoundary {
ScheduleDAGMI *DAG;
const TargetSchedModel *SchedModel;
+ SchedRemainder *Rem;
ReadyQueue Available;
ReadyQueue Pending;
bool CheckPending;
+ // For heuristics, keep a list of the nodes that immediately depend on the
+ // most recently scheduled node.
+ SmallPtrSet<const SUnit*, 8> NextSUs;
+
ScheduleHazardRecognizer *HazardRec;
unsigned CurrCycle;
@@ -670,34 +791,88 @@ class ConvergingScheduler : public MachineSchedStrategy {
/// MinReadyCycle - Cycle of the soonest available instruction.
unsigned MinReadyCycle;
+ // The expected latency of the critical path in this scheduled zone.
+ unsigned ExpectedLatency;
+
+ // Resources used in the scheduled zone beyond this boundary.
+ SmallVector<unsigned, 16> ResourceCounts;
+
+ // Cache the critical resources ID in this scheduled zone.
+ unsigned CritResIdx;
+
+ // Is the scheduled region resource limited vs. latency limited.
+ bool IsResourceLimited;
+
+ unsigned ExpectedCount;
+
+ // Policy flag: attempt to find ILP until expected latency is covered.
+ bool ShouldIncreaseILP;
+
+#ifndef NDEBUG
// Remember the greatest min operand latency.
unsigned MaxMinLatency;
+#endif
+
+ void reset() {
+ Available.clear();
+ Pending.clear();
+ CheckPending = false;
+ NextSUs.clear();
+ HazardRec = 0;
+ CurrCycle = 0;
+ IssueCount = 0;
+ MinReadyCycle = UINT_MAX;
+ ExpectedLatency = 0;
+ ResourceCounts.resize(1);
+ assert(!ResourceCounts[0] && "nonzero count for bad resource");
+ CritResIdx = 0;
+ IsResourceLimited = false;
+ ExpectedCount = 0;
+ ShouldIncreaseILP = false;
+#ifndef NDEBUG
+ MaxMinLatency = 0;
+#endif
+ // Reserve a zero-count for invalid CritResIdx.
+ ResourceCounts.resize(1);
+ }
/// Pending queues extend the ready queues with the same ID and the
/// PendingFlag set.
SchedBoundary(unsigned ID, const Twine &Name):
- DAG(0), SchedModel(0), Available(ID, Name+".A"),
- Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
- CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0),
- MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}
+ DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
+ Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") {
+ reset();
+ }
~SchedBoundary() { delete HazardRec; }
- void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel) {
- DAG = dag;
- SchedModel = smodel;
- }
+ void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
+ SchedRemainder *rem);
bool isTop() const {
return Available.getID() == ConvergingScheduler::TopQID;
}
+ unsigned getUnscheduledLatency(SUnit *SU) const {
+ if (isTop())
+ return SU->getHeight();
+ return SU->getDepth();
+ }
+
+ unsigned getCriticalCount() const {
+ return ResourceCounts[CritResIdx];
+ }
+
bool checkHazard(SUnit *SU);
+ void checkILPPolicy();
+
void releaseNode(SUnit *SU, unsigned ReadyCycle);
void bumpCycle();
+ void countResource(unsigned PIdx, unsigned Cycles);
+
void bumpNode(SUnit *SU);
void releasePending();
@@ -707,11 +882,13 @@ class ConvergingScheduler : public MachineSchedStrategy {
SUnit *pickOnlyChoice();
};
+private:
ScheduleDAGMI *DAG;
const TargetSchedModel *SchedModel;
const TargetRegisterInfo *TRI;
// State of the top and bottom scheduled instruction boundaries.
+ SchedRemainder Rem;
SchedBoundary Top;
SchedBoundary Bot;
@@ -736,25 +913,75 @@ public:
virtual void releaseBottomNode(SUnit *SU);
+ virtual void registerRoots();
+
protected:
- SUnit *pickNodeBidrectional(bool &IsTopNode);
+ void balanceZones(
+ ConvergingScheduler::SchedBoundary &CriticalZone,
+ ConvergingScheduler::SchedCandidate &CriticalCand,
+ ConvergingScheduler::SchedBoundary &OppositeZone,
+ ConvergingScheduler::SchedCandidate &OppositeCand);
+
+ void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
+ ConvergingScheduler::SchedCandidate &BotCand);
+
+ void tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker);
+
+ SUnit *pickNodeBidirectional(bool &IsTopNode);
+
+ void pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate);
- CandResult pickNodeFromQueue(ReadyQueue &Q,
- const RegPressureTracker &RPTracker,
- SchedCandidate &Candidate);
#ifndef NDEBUG
- void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU,
- PressureElement P = PressureElement());
+ void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone);
#endif
};
} // namespace
+void ConvergingScheduler::SchedRemainder::
+init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
+ reset();
+ if (!SchedModel->hasInstrSchedModel())
+ return;
+ RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
+ for (std::vector<SUnit>::iterator
+ I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
+ const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
+ RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ unsigned PIdx = PI->ProcResourceIdx;
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ RemainingCounts[PIdx] += (Factor * PI->Cycles);
+ }
+ }
+}
+
+void ConvergingScheduler::SchedBoundary::
+init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
+ reset();
+ DAG = dag;
+ SchedModel = smodel;
+ Rem = rem;
+ if (SchedModel->hasInstrSchedModel())
+ ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
+}
+
void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
DAG = dag;
SchedModel = DAG->getSchedModel();
TRI = DAG->TRI;
- Top.init(DAG, SchedModel);
- Bot.init(DAG, SchedModel);
+ Rem.init(DAG, SchedModel);
+ Top.init(DAG, SchedModel, &Rem);
+ Bot.init(DAG, SchedModel, &Rem);
+
+ // Initialize resource counts.
// Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
// are disabled, then these HazardRecs will be disabled.
@@ -803,6 +1030,17 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
Bot.releaseNode(SU, SU->BotReadyCycle);
}
+void ConvergingScheduler::registerRoots() {
+ Rem.CriticalPath = DAG->ExitSU.getDepth();
+ // Some roots may not feed into ExitSU. Check all of them in case.
+ for (std::vector<SUnit*>::const_iterator
+ I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
+ if ((*I)->getDepth() > Rem.CriticalPath)
+ Rem.CriticalPath = (*I)->getDepth();
+ }
+ DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+}
+
/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
@@ -821,14 +1059,26 @@ bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
- if (IssueCount + uops > SchedModel->getIssueWidth())
+ if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
+ DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
+ << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
return true;
-
+ }
return false;
}
+/// If expected latency is covered, disable ILP policy.
+void ConvergingScheduler::SchedBoundary::checkILPPolicy() {
+ if (ShouldIncreaseILP
+ && (IsResourceLimited || ExpectedLatency <= CurrCycle)) {
+ ShouldIncreaseILP = false;
+ DEBUG(dbgs() << "Disable ILP: " << Available.getName() << '\n');
+ }
+}
+
void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
unsigned ReadyCycle) {
+
if (ReadyCycle < MinReadyCycle)
MinReadyCycle = ReadyCycle;
@@ -838,6 +1088,18 @@ void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
Pending.push(SU);
else
Available.push(SU);
+
+ // Record this node as an immediate dependent of the scheduled node.
+ NextSUs.insert(SU);
+
+ // If CriticalPath has been computed, then check if the unscheduled nodes
+ // exceed the ILP window. Before registerRoots, CriticalPath==0.
+ if (Rem->CriticalPath && (ExpectedLatency + getUnscheduledLatency(SU)
+ > Rem->CriticalPath + ILPWindow)) {
+ ShouldIncreaseILP = true;
+ DEBUG(dbgs() << "Increase ILP: " << Available.getName() << " "
+ << ExpectedLatency << " + " << getUnscheduledLatency(SU) << '\n');
+ }
}
/// Move the boundary of scheduled code by one cycle.
@@ -845,8 +1107,12 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
unsigned Width = SchedModel->getIssueWidth();
IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
+ unsigned NextCycle = CurrCycle + 1;
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
- unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
+ if (MinReadyCycle > NextCycle) {
+ IssueCount = 0;
+ NextCycle = MinReadyCycle;
+ }
if (!HazardRec->isEnabled()) {
// Bypass HazardRec virtual calls.
@@ -862,11 +1128,39 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
}
}
CheckPending = true;
+ IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
- DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
+ DEBUG(dbgs() << " *** " << Available.getName() << " cycle "
<< CurrCycle << '\n');
}
+/// Add the given processor resource to this scheduled zone.
+void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
+ unsigned Cycles) {
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name
+ << " +(" << Cycles << "x" << Factor
+ << ") / " << SchedModel->getLatencyFactor() << '\n');
+
+ unsigned Count = Factor * Cycles;
+ ResourceCounts[PIdx] += Count;
+ assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
+ Rem->RemainingCounts[PIdx] -= Count;
+
+ // Reset MaxRemainingCount for sanity.
+ Rem->MaxRemainingCount = 0;
+
+ // Check if this resource exceeds the current critical resource by a full
+ // cycle. If so, it becomes the critical resource.
+ if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
+ >= (int)SchedModel->getLatencyFactor()) {
+ CritResIdx = PIdx;
+ DEBUG(dbgs() << " *** Critical resource "
+ << SchedModel->getProcResource(PIdx)->Name << " x"
+ << ResourceCounts[PIdx] << '\n');
+ }
+}
+
/// Move the boundary of scheduled code by one SUnit.
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
// Update the reservation table.
@@ -878,11 +1172,38 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
}
HazardRec->EmitInstruction(SU);
}
+ // Update resource counts and critical resource.
+ if (SchedModel->hasInstrSchedModel()) {
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ countResource(PI->ProcResourceIdx, PI->Cycles);
+ }
+ }
+ if (isTop()) {
+ if (SU->getDepth() > ExpectedLatency)
+ ExpectedLatency = SU->getDepth();
+ }
+ else {
+ if (SU->getHeight() > ExpectedLatency)
+ ExpectedLatency = SU->getHeight();
+ }
+
+ IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
+
// Check the instruction group dispatch limit.
// TODO: Check if this SU must end a dispatch group.
IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
+
+ // checkHazard prevents scheduling multiple instructions per cycle that exceed
+ // issue width. However, we commonly reach the maximum. In this case
+ // opportunistically bump the cycle to avoid uselessly checking everything in
+ // the readyQ. Furthermore, a single instruction may produce more than one
+ // cycle's worth of micro-ops.
if (IssueCount >= SchedModel->getIssueWidth()) {
- DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
+ DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n');
bumpCycle();
}
}
@@ -913,6 +1234,7 @@ void ConvergingScheduler::SchedBoundary::releasePending() {
Pending.remove(Pending.begin()+i);
--i; --e;
}
+ DEBUG(if (!Pending.empty()) Pending.dump());
CheckPending = false;
}
@@ -927,12 +1249,23 @@ void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
}
/// If this queue only has one ready candidate, return it. As a side effect,
-/// advance the cycle until at least one node is ready. If multiple instructions
-/// are ready, return NULL.
+/// defer any nodes that now hit a hazard, and advance the cycle until at least
+/// one node is ready. If multiple instructions are ready, return NULL.
SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
if (CheckPending)
releasePending();
+ if (IssueCount > 0) {
+ // Defer any ready instrs that now have a hazard.
+ for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
+ if (checkHazard(*I)) {
+ Pending.push(*I);
+ I = Available.remove(I);
+ continue;
+ }
+ ++I;
+ }
+ }
for (unsigned i = 0; Available.empty(); ++i) {
assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
"permanent hazard"); (void)i;
@@ -944,18 +1277,262 @@ SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
return NULL;
}
-#ifndef NDEBUG
-void ConvergingScheduler::traceCandidate(const char *Label, const ReadyQueue &Q,
- SUnit *SU, PressureElement P) {
- dbgs() << Label << " " << Q.getName() << " ";
- if (P.isValid())
- dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
- << " ";
- else
- dbgs() << " ";
- SU->dump(DAG);
+/// Record the candidate policy for opposite zones with different critical
+/// resources.
+///
+/// If the CriticalZone is latency limited, don't force a policy for the
+/// candidates here. Instead, When releasing each candidate, releaseNode
+/// compares the region's critical path to the candidate's height or depth and
+/// the scheduled zone's expected latency then sets ShouldIncreaseILP.
+void ConvergingScheduler::balanceZones(
+ ConvergingScheduler::SchedBoundary &CriticalZone,
+ ConvergingScheduler::SchedCandidate &CriticalCand,
+ ConvergingScheduler::SchedBoundary &OppositeZone,
+ ConvergingScheduler::SchedCandidate &OppositeCand) {
+
+ if (!CriticalZone.IsResourceLimited)
+ return;
+
+ SchedRemainder *Rem = CriticalZone.Rem;
+
+ // If the critical zone is overconsuming a resource relative to the
+ // remainder, try to reduce it.
+ unsigned RemainingCritCount =
+ Rem->RemainingCounts[CriticalZone.CritResIdx];
+ if ((int)(Rem->MaxRemainingCount - RemainingCritCount)
+ > (int)SchedModel->getLatencyFactor()) {
+ CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
+ DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
+ << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
+ << '\n');
+ }
+ // If the other zone is underconsuming a resource relative to the full zone,
+ // try to increase it.
+ unsigned OppositeCount =
+ OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
+ if ((int)(OppositeZone.ExpectedCount - OppositeCount)
+ > (int)SchedModel->getLatencyFactor()) {
+ OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
+ DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
+ << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
+ << '\n');
+ }
+}
+
+/// Determine if the scheduled zones exceed resource limits or critical path and
+/// set each candidate's ReduceHeight policy accordingly.
+void ConvergingScheduler::checkResourceLimits(
+ ConvergingScheduler::SchedCandidate &TopCand,
+ ConvergingScheduler::SchedCandidate &BotCand) {
+
+ Bot.checkILPPolicy();
+ Top.checkILPPolicy();
+ if (Bot.ShouldIncreaseILP)
+ BotCand.Policy.ReduceLatency = true;
+ if (Top.ShouldIncreaseILP)
+ TopCand.Policy.ReduceLatency = true;
+
+ // Handle resource-limited regions.
+ if (Top.IsResourceLimited && Bot.IsResourceLimited
+ && Top.CritResIdx == Bot.CritResIdx) {
+ // If the scheduled critical resource in both zones is no longer the
+ // critical remaining resource, attempt to reduce resource height both ways.
+ if (Top.CritResIdx != Rem.CritResIdx) {
+ TopCand.Policy.ReduceResIdx = Top.CritResIdx;
+ BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
+ DEBUG(dbgs() << "Reduce scheduled "
+ << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
+ }
+ return;
+ }
+ // Handle latency-limited regions.
+ if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
+ // If the total scheduled expected latency exceeds the region's critical
+ // path then reduce latency both ways.
+ //
+ // Just because a zone is not resource limited does not mean it is latency
+ // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
+ // to exceed expected latency.
+ if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
+ && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
+ TopCand.Policy.ReduceLatency = true;
+ BotCand.Policy.ReduceLatency = true;
+ DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
+ << " + " << Bot.ExpectedLatency << '\n');
+ }
+ return;
+ }
+ // The critical resource is different in each zone, so request balancing.
+
+ // Compute the cost of each zone.
+ Rem.MaxRemainingCount = std::max(
+ Rem.RemainingMicroOps * SchedModel->getMicroOpFactor(),
+ Rem.RemainingCounts[Rem.CritResIdx]);
+ Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
+ Top.ExpectedCount = std::max(
+ Top.getCriticalCount(),
+ Top.ExpectedCount * SchedModel->getLatencyFactor());
+ Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
+ Bot.ExpectedCount = std::max(
+ Bot.getCriticalCount(),
+ Bot.ExpectedCount * SchedModel->getLatencyFactor());
+
+ balanceZones(Top, TopCand, Bot, BotCand);
+ balanceZones(Bot, BotCand, Top, TopCand);
+}
+
+void ConvergingScheduler::SchedCandidate::
+initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel) {
+ if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
+ return;
+
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ if (PI->ProcResourceIdx == Policy.ReduceResIdx)
+ ResDelta.CritResources += PI->Cycles;
+ if (PI->ProcResourceIdx == Policy.DemandResIdx)
+ ResDelta.DemandedResources += PI->Cycles;
+ }
+}
+
+/// Return true if this heuristic determines order.
+static bool tryLess(unsigned TryVal, unsigned CandVal,
+ ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::CandReason Reason) {
+ if (TryVal < CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal > CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ return false;
+}
+static bool tryGreater(unsigned TryVal, unsigned CandVal,
+ ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::CandReason Reason) {
+ if (TryVal > CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal < CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ return false;
+}
+
+/// Apply a set of heursitics to a new candidate. Heuristics are currently
+/// hierarchical. This may be more efficient than a graduated cost model because
+/// we don't need to evaluate all aspects of the model for each node in the
+/// queue. But it's really done to make the heuristics easier to debug and
+/// statistically analyze.
+///
+/// \param Cand provides the policy and current best candidate.
+/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
+/// \param Zone describes the scheduled zone that we are extending.
+/// \param RPTracker describes reg pressure within the scheduled zone.
+/// \param TempTracker is a scratch pressure tracker to reuse in queries.
+void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker) {
+
+ // Always initialize TryCand's RPDelta.
+ TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+
+ // Initialize the candidate if needed.
+ if (!Cand.isValid()) {
+ TryCand.Reason = NodeOrder;
+ return;
+ }
+ // Avoid exceeding the target's limit.
+ if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
+ Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
+ return;
+ if (Cand.Reason == SingleExcess)
+ Cand.Reason = MultiPressure;
+
+ // Avoid increasing the max critical pressure in the scheduled region.
+ if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
+ Cand.RPDelta.CriticalMax.UnitIncrease,
+ TryCand, Cand, SingleCritical))
+ return;
+ if (Cand.Reason == SingleCritical)
+ Cand.Reason = MultiPressure;
+
+ // Avoid critical resource consumption and balance the schedule.
+ TryCand.initResourceDelta(DAG, SchedModel);
+ if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
+ TryCand, Cand, ResourceReduce))
+ return;
+ if (tryGreater(TryCand.ResDelta.DemandedResources,
+ Cand.ResDelta.DemandedResources,
+ TryCand, Cand, ResourceDemand))
+ return;
+
+ // Avoid serializing long latency dependence chains.
+ if (Cand.Policy.ReduceLatency) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
+ > Zone.ExpectedCount) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, TopDepthReduce))
+ return;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, TopPathReduce))
+ return;
+ }
+ else {
+ if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
+ > Zone.ExpectedCount) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, BotHeightReduce))
+ return;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, BotPathReduce))
+ return;
+ }
+ }
+
+ // Avoid increasing the max pressure of the entire region.
+ if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
+ Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
+ return;
+ if (Cand.Reason == SingleMax)
+ Cand.Reason = MultiPressure;
+
+ // Prefer immediate defs/users of the last scheduled instruction. This is a
+ // nice pressure avoidance strategy that also conserves the processor's
+ // register renaming resources and keeps the machine code readable.
+ if (Zone.NextSUs.count(TryCand.SU) && !Zone.NextSUs.count(Cand.SU)) {
+ TryCand.Reason = NextDefUse;
+ return;
+ }
+ if (!Zone.NextSUs.count(TryCand.SU) && Zone.NextSUs.count(Cand.SU)) {
+ if (Cand.Reason > NextDefUse)
+ Cand.Reason = NextDefUse;
+ return;
+ }
+ // Fall through to original instruction order.
+ if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
+ || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
+ TryCand.Reason = NodeOrder;
+ }
}
-#endif
/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
/// more desirable than RHS from scheduling standpoint.
@@ -966,109 +1543,143 @@ static bool compareRPDelta(const RegPressureDelta &LHS,
// have UnitIncrease==0, so are neutral.
// Avoid increasing the max critical pressure in the scheduled region.
- if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease)
+ if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
+ DEBUG(dbgs() << "RP excess top - bot: "
+ << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
-
+ }
// Avoid increasing the max critical pressure in the scheduled region.
- if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease)
+ if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
+ DEBUG(dbgs() << "RP critical top - bot: "
+ << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
+ << '\n');
return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
-
+ }
// Avoid increasing the max pressure of the entire region.
- if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease)
+ if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
+ DEBUG(dbgs() << "RP current top - bot: "
+ << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
+ << '\n');
return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
-
+ }
return false;
}
+#ifndef NDEBUG
+const char *ConvergingScheduler::getReasonStr(
+ ConvergingScheduler::CandReason Reason) {
+ switch (Reason) {
+ case NoCand: return "NOCAND ";
+ case SingleExcess: return "REG-EXCESS";
+ case SingleCritical: return "REG-CRIT ";
+ case SingleMax: return "REG-MAX ";
+ case MultiPressure: return "REG-MULTI ";
+ case ResourceReduce: return "RES-REDUCE";
+ case ResourceDemand: return "RES-DEMAND";
+ case TopDepthReduce: return "TOP-DEPTH ";
+ case TopPathReduce: return "TOP-PATH ";
+ case BotHeightReduce:return "BOT-HEIGHT";
+ case BotPathReduce: return "BOT-PATH ";
+ case NextDefUse: return "DEF-USE ";
+ case NodeOrder: return "ORDER ";
+ };
+}
+
+void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand,
+ const SchedBoundary &Zone) {
+ const char *Label = getReasonStr(Cand.Reason);
+ PressureElement P;
+ unsigned ResIdx = 0;
+ unsigned Latency = 0;
+ switch (Cand.Reason) {
+ default:
+ break;
+ case SingleExcess:
+ P = Cand.RPDelta.Excess;
+ break;
+ case SingleCritical:
+ P = Cand.RPDelta.CriticalMax;
+ break;
+ case SingleMax:
+ P = Cand.RPDelta.CurrentMax;
+ break;
+ case ResourceReduce:
+ ResIdx = Cand.Policy.ReduceResIdx;
+ break;
+ case ResourceDemand:
+ ResIdx = Cand.Policy.DemandResIdx;
+ break;
+ case TopDepthReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ case TopPathReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotHeightReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotPathReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ }
+ dbgs() << Label << " " << Zone.Available.getName() << " ";
+ if (P.isValid())
+ dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
+ << " ";
+ else
+ dbgs() << " ";
+ if (ResIdx)
+ dbgs() << SchedModel->getProcResource(ResIdx)->Name << " ";
+ else
+ dbgs() << " ";
+ if (Latency)
+ dbgs() << Latency << " cycles ";
+ else
+ dbgs() << " ";
+ Cand.SU->dump(DAG);
+}
+#endif
+
/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
-ConvergingScheduler::CandResult ConvergingScheduler::
-pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
- SchedCandidate &Candidate) {
+void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Cand) {
+ ReadyQueue &Q = Zone.Available;
+
DEBUG(Q.dump());
// getMaxPressureDelta temporarily modifies the tracker.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
- // BestSU remains NULL if no top candidates beat the best existing candidate.
- CandResult FoundCandidate = NoCand;
for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
- RegPressureDelta RPDelta;
- TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
- DAG->getRegionCriticalPSets(),
- DAG->getRegPressure().MaxSetPressure);
-
- // Initialize the candidate if needed.
- if (!Candidate.SU) {
- Candidate.SU = *I;
- Candidate.RPDelta = RPDelta;
- FoundCandidate = NodeOrder;
- continue;
- }
- // Avoid exceeding the target's limit.
- if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) {
- DEBUG(traceCandidate("ECAND", Q, *I, RPDelta.Excess));
- Candidate.SU = *I;
- Candidate.RPDelta = RPDelta;
- FoundCandidate = SingleExcess;
- continue;
- }
- if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease)
- continue;
- if (FoundCandidate == SingleExcess)
- FoundCandidate = MultiPressure;
-
- // Avoid increasing the max critical pressure in the scheduled region.
- if (RPDelta.CriticalMax.UnitIncrease
- < Candidate.RPDelta.CriticalMax.UnitIncrease) {
- DEBUG(traceCandidate("PCAND", Q, *I, RPDelta.CriticalMax));
- Candidate.SU = *I;
- Candidate.RPDelta = RPDelta;
- FoundCandidate = SingleCritical;
- continue;
- }
- if (RPDelta.CriticalMax.UnitIncrease
- > Candidate.RPDelta.CriticalMax.UnitIncrease)
- continue;
- if (FoundCandidate == SingleCritical)
- FoundCandidate = MultiPressure;
-
- // Avoid increasing the max pressure of the entire region.
- if (RPDelta.CurrentMax.UnitIncrease
- < Candidate.RPDelta.CurrentMax.UnitIncrease) {
- DEBUG(traceCandidate("MCAND", Q, *I, RPDelta.CurrentMax));
- Candidate.SU = *I;
- Candidate.RPDelta = RPDelta;
- FoundCandidate = SingleMax;
- continue;
- }
- if (RPDelta.CurrentMax.UnitIncrease
- > Candidate.RPDelta.CurrentMax.UnitIncrease)
- continue;
- if (FoundCandidate == SingleMax)
- FoundCandidate = MultiPressure;
-
- // Fall through to original instruction order.
- // Only consider node order if Candidate was chosen from this Q.
- if (FoundCandidate == NoCand)
- continue;
- if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
- || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
- DEBUG(traceCandidate("NCAND", Q, *I));
- Candidate.SU = *I;
- Candidate.RPDelta = RPDelta;
- FoundCandidate = NodeOrder;
+ SchedCandidate TryCand(Cand.Policy);
+ TryCand.SU = *I;
+ tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
+ if (TryCand.Reason != NoCand) {
+ // Initialize resource delta if needed in case future heuristics query it.
+ if (TryCand.ResDelta == SchedResourceDelta())
+ TryCand.initResourceDelta(DAG, SchedModel);
+ Cand.setBest(TryCand);
+ DEBUG(traceCandidate(Cand, Zone));
}
+ TryCand.SU = *I;
}
- return FoundCandidate;
+}
+
+static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
+ bool IsTop) {
+ DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot")
+ << " SU(" << Cand.SU->NodeNum << ") "
+ << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
}
/// Pick the best candidate node from either the top or bottom queue.
-SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
+SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
@@ -1079,11 +1690,14 @@ SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
IsTopNode = true;
return SU;
}
- SchedCandidate BotCand;
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ SchedCandidate TopCand(NoPolicy);
+ checkResourceLimits(TopCand, BotCand);
+
// Prefer bottom scheduling when heuristics are silent.
- CandResult BotResult = pickNodeFromQueue(Bot.Available,
- DAG->getBotRPTracker(), BotCand);
- assert(BotResult != NoCand && "failed to find the first candidate");
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find the first candidate");
// If either Q has a single candidate that provides the least increase in
// Excess pressure, we can immediately schedule from that Q.
@@ -1092,37 +1706,41 @@ SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
// affects picking from either Q. If scheduling in one direction must
// increase pressure for one of the excess PSets, then schedule in that
// direction first to provide more freedom in the other direction.
- if (BotResult == SingleExcess || BotResult == SingleCritical) {
+ if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
return BotCand.SU;
}
// Check if the top Q has a better candidate.
- SchedCandidate TopCand;
- CandResult TopResult = pickNodeFromQueue(Top.Available,
- DAG->getTopRPTracker(), TopCand);
- assert(TopResult != NoCand && "failed to find the first candidate");
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find the first candidate");
- if (TopResult == SingleExcess || TopResult == SingleCritical) {
- IsTopNode = true;
- return TopCand.SU;
- }
// If either Q has a single candidate that minimizes pressure above the
// original region's pressure pick it.
- if (BotResult == SingleMax) {
+ if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
+ if (TopCand.Reason < BotCand.Reason) {
+ IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
+ return TopCand.SU;
+ }
IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
return BotCand.SU;
}
- if (TopResult == SingleMax) {
+ // Check for a salient pressure difference and pick the best from either side.
+ if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
return TopCand.SU;
}
- // Check for a salient pressure difference and pick the best from either side.
- if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
+ // Otherwise prefer the bottom candidate, in node order if all else failed.
+ if (TopCand.Reason < BotCand.Reason) {
IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
return TopCand.SU;
}
- // Otherwise prefer the bottom candidate in node order.
IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
return BotCand.SU;
}
@@ -1138,11 +1756,10 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
if (ForceTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
- SchedCandidate TopCand;
- CandResult TopResult =
- pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
- assert(TopResult != NoCand && "failed to find the first candidate");
- (void)TopResult;
+ CandPolicy NoPolicy;
+ SchedCandidate TopCand(NoPolicy);
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find the first candidate");
SU = TopCand.SU;
}
IsTopNode = true;
@@ -1150,17 +1767,16 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
else if (ForceBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
- SchedCandidate BotCand;
- CandResult BotResult =
- pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
- assert(BotResult != NoCand && "failed to find the first candidate");
- (void)BotResult;
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find the first candidate");
SU = BotCand.SU;
}
IsTopNode = false;
}
else {
- SU = pickNodeBidrectional(IsTopNode);
+ SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);