summaryrefslogtreecommitdiff
path: root/lib/IR/ConstantRange.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/IR/ConstantRange.cpp')
-rw-r--r--lib/IR/ConstantRange.cpp734
1 files changed, 734 insertions, 0 deletions
diff --git a/lib/IR/ConstantRange.cpp b/lib/IR/ConstantRange.cpp
new file mode 100644
index 0000000000..f8e9ba4f42
--- /dev/null
+++ b/lib/IR/ConstantRange.cpp
@@ -0,0 +1,734 @@
+//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Represent a range of possible values that may occur when the program is run
+// for an integral value. This keeps track of a lower and upper bound for the
+// constant, which MAY wrap around the end of the numeric range. To do this, it
+// keeps track of a [lower, upper) bound, which specifies an interval just like
+// STL iterators. When used with boolean values, the following are important
+// ranges (other integral ranges use min/max values for special range values):
+//
+// [F, F) = {} = Empty set
+// [T, F) = {T}
+// [F, T) = {F}
+// [T, T) = {F, T} = Full set
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// Initialize a full (the default) or empty set for the specified type.
+///
+ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
+ if (Full)
+ Lower = Upper = APInt::getMaxValue(BitWidth);
+ else
+ Lower = Upper = APInt::getMinValue(BitWidth);
+}
+
+/// Initialize a range to hold the single specified value.
+///
+ConstantRange::ConstantRange(APIntMoveTy V)
+ : Lower(std::move(V)), Upper(Lower + 1) {}
+
+ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
+ : Lower(std::move(L)), Upper(std::move(U)) {
+ assert(Lower.getBitWidth() == Upper.getBitWidth() &&
+ "ConstantRange with unequal bit widths");
+ assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
+ "Lower == Upper, but they aren't min or max value!");
+}
+
+ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
+ const ConstantRange &CR) {
+ if (CR.isEmptySet())
+ return CR;
+
+ uint32_t W = CR.getBitWidth();
+ switch (Pred) {
+ default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
+ case CmpInst::ICMP_EQ:
+ return CR;
+ case CmpInst::ICMP_NE:
+ if (CR.isSingleElement())
+ return ConstantRange(CR.getUpper(), CR.getLower());
+ return ConstantRange(W);
+ case CmpInst::ICMP_ULT: {
+ APInt UMax(CR.getUnsignedMax());
+ if (UMax.isMinValue())
+ return ConstantRange(W, /* empty */ false);
+ return ConstantRange(APInt::getMinValue(W), UMax);
+ }
+ case CmpInst::ICMP_SLT: {
+ APInt SMax(CR.getSignedMax());
+ if (SMax.isMinSignedValue())
+ return ConstantRange(W, /* empty */ false);
+ return ConstantRange(APInt::getSignedMinValue(W), SMax);
+ }
+ case CmpInst::ICMP_ULE: {
+ APInt UMax(CR.getUnsignedMax());
+ if (UMax.isMaxValue())
+ return ConstantRange(W);
+ return ConstantRange(APInt::getMinValue(W), UMax + 1);
+ }
+ case CmpInst::ICMP_SLE: {
+ APInt SMax(CR.getSignedMax());
+ if (SMax.isMaxSignedValue())
+ return ConstantRange(W);
+ return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
+ }
+ case CmpInst::ICMP_UGT: {
+ APInt UMin(CR.getUnsignedMin());
+ if (UMin.isMaxValue())
+ return ConstantRange(W, /* empty */ false);
+ return ConstantRange(UMin + 1, APInt::getNullValue(W));
+ }
+ case CmpInst::ICMP_SGT: {
+ APInt SMin(CR.getSignedMin());
+ if (SMin.isMaxSignedValue())
+ return ConstantRange(W, /* empty */ false);
+ return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
+ }
+ case CmpInst::ICMP_UGE: {
+ APInt UMin(CR.getUnsignedMin());
+ if (UMin.isMinValue())
+ return ConstantRange(W);
+ return ConstantRange(UMin, APInt::getNullValue(W));
+ }
+ case CmpInst::ICMP_SGE: {
+ APInt SMin(CR.getSignedMin());
+ if (SMin.isMinSignedValue())
+ return ConstantRange(W);
+ return ConstantRange(SMin, APInt::getSignedMinValue(W));
+ }
+ }
+}
+
+/// isFullSet - Return true if this set contains all of the elements possible
+/// for this data-type
+bool ConstantRange::isFullSet() const {
+ return Lower == Upper && Lower.isMaxValue();
+}
+
+/// isEmptySet - Return true if this set contains no members.
+///
+bool ConstantRange::isEmptySet() const {
+ return Lower == Upper && Lower.isMinValue();
+}
+
+/// isWrappedSet - Return true if this set wraps around the top of the range,
+/// for example: [100, 8)
+///
+bool ConstantRange::isWrappedSet() const {
+ return Lower.ugt(Upper);
+}
+
+/// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
+/// its bitwidth, for example: i8 [120, 140).
+///
+bool ConstantRange::isSignWrappedSet() const {
+ return contains(APInt::getSignedMaxValue(getBitWidth())) &&
+ contains(APInt::getSignedMinValue(getBitWidth()));
+}
+
+/// getSetSize - Return the number of elements in this set.
+///
+APInt ConstantRange::getSetSize() const {
+ if (isFullSet()) {
+ APInt Size(getBitWidth()+1, 0);
+ Size.setBit(getBitWidth());
+ return Size;
+ }
+
+ // This is also correct for wrapped sets.
+ return (Upper - Lower).zext(getBitWidth()+1);
+}
+
+/// getUnsignedMax - Return the largest unsigned value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getUnsignedMax() const {
+ if (isFullSet() || isWrappedSet())
+ return APInt::getMaxValue(getBitWidth());
+ return getUpper() - 1;
+}
+
+/// getUnsignedMin - Return the smallest unsigned value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getUnsignedMin() const {
+ if (isFullSet() || (isWrappedSet() && getUpper() != 0))
+ return APInt::getMinValue(getBitWidth());
+ return getLower();
+}
+
+/// getSignedMax - Return the largest signed value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getSignedMax() const {
+ APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
+ if (!isWrappedSet()) {
+ if (getLower().sle(getUpper() - 1))
+ return getUpper() - 1;
+ return SignedMax;
+ }
+ if (getLower().isNegative() == getUpper().isNegative())
+ return SignedMax;
+ return getUpper() - 1;
+}
+
+/// getSignedMin - Return the smallest signed value contained in the
+/// ConstantRange.
+///
+APInt ConstantRange::getSignedMin() const {
+ APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
+ if (!isWrappedSet()) {
+ if (getLower().sle(getUpper() - 1))
+ return getLower();
+ return SignedMin;
+ }
+ if ((getUpper() - 1).slt(getLower())) {
+ if (getUpper() != SignedMin)
+ return SignedMin;
+ }
+ return getLower();
+}
+
+/// contains - Return true if the specified value is in the set.
+///
+bool ConstantRange::contains(const APInt &V) const {
+ if (Lower == Upper)
+ return isFullSet();
+
+ if (!isWrappedSet())
+ return Lower.ule(V) && V.ult(Upper);
+ return Lower.ule(V) || V.ult(Upper);
+}
+
+/// contains - Return true if the argument is a subset of this range.
+/// Two equal sets contain each other. The empty set contained by all other
+/// sets.
+///
+bool ConstantRange::contains(const ConstantRange &Other) const {
+ if (isFullSet() || Other.isEmptySet()) return true;
+ if (isEmptySet() || Other.isFullSet()) return false;
+
+ if (!isWrappedSet()) {
+ if (Other.isWrappedSet())
+ return false;
+
+ return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
+ }
+
+ if (!Other.isWrappedSet())
+ return Other.getUpper().ule(Upper) ||
+ Lower.ule(Other.getLower());
+
+ return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
+}
+
+/// subtract - Subtract the specified constant from the endpoints of this
+/// constant range.
+ConstantRange ConstantRange::subtract(const APInt &Val) const {
+ assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
+ // If the set is empty or full, don't modify the endpoints.
+ if (Lower == Upper)
+ return *this;
+ return ConstantRange(Lower - Val, Upper - Val);
+}
+
+/// \brief Subtract the specified range from this range (aka relative complement
+/// of the sets).
+ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
+ return intersectWith(CR.inverse());
+}
+
+/// intersectWith - Return the range that results from the intersection of this
+/// range with another range. The resultant range is guaranteed to include all
+/// elements contained in both input ranges, and to have the smallest possible
+/// set size that does so. Because there may be two intersections with the
+/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
+ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
+ assert(getBitWidth() == CR.getBitWidth() &&
+ "ConstantRange types don't agree!");
+
+ // Handle common cases.
+ if ( isEmptySet() || CR.isFullSet()) return *this;
+ if (CR.isEmptySet() || isFullSet()) return CR;
+
+ if (!isWrappedSet() && CR.isWrappedSet())
+ return CR.intersectWith(*this);
+
+ if (!isWrappedSet() && !CR.isWrappedSet()) {
+ if (Lower.ult(CR.Lower)) {
+ if (Upper.ule(CR.Lower))
+ return ConstantRange(getBitWidth(), false);
+
+ if (Upper.ult(CR.Upper))
+ return ConstantRange(CR.Lower, Upper);
+
+ return CR;
+ }
+ if (Upper.ult(CR.Upper))
+ return *this;
+
+ if (Lower.ult(CR.Upper))
+ return ConstantRange(Lower, CR.Upper);
+
+ return ConstantRange(getBitWidth(), false);
+ }
+
+ if (isWrappedSet() && !CR.isWrappedSet()) {
+ if (CR.Lower.ult(Upper)) {
+ if (CR.Upper.ult(Upper))
+ return CR;
+
+ if (CR.Upper.ule(Lower))
+ return ConstantRange(CR.Lower, Upper);
+
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ return CR;
+ }
+ if (CR.Lower.ult(Lower)) {
+ if (CR.Upper.ule(Lower))
+ return ConstantRange(getBitWidth(), false);
+
+ return ConstantRange(Lower, CR.Upper);
+ }
+ return CR;
+ }
+
+ if (CR.Upper.ult(Upper)) {
+ if (CR.Lower.ult(Upper)) {
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ return CR;
+ }
+
+ if (CR.Lower.ult(Lower))
+ return ConstantRange(Lower, CR.Upper);
+
+ return CR;
+ }
+ if (CR.Upper.ule(Lower)) {
+ if (CR.Lower.ult(Lower))
+ return *this;
+
+ return ConstantRange(CR.Lower, Upper);
+ }
+ if (getSetSize().ult(CR.getSetSize()))
+ return *this;
+ return CR;
+}
+
+
+/// unionWith - Return the range that results from the union of this range with
+/// another range. The resultant range is guaranteed to include the elements of
+/// both sets, but may contain more. For example, [3, 9) union [12,15) is
+/// [3, 15), which includes 9, 10, and 11, which were not included in either
+/// set before.
+///
+ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
+ assert(getBitWidth() == CR.getBitWidth() &&
+ "ConstantRange types don't agree!");
+
+ if ( isFullSet() || CR.isEmptySet()) return *this;
+ if (CR.isFullSet() || isEmptySet()) return CR;
+
+ if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
+
+ if (!isWrappedSet() && !CR.isWrappedSet()) {
+ if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
+ // If the two ranges are disjoint, find the smaller gap and bridge it.
+ APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
+ if (d1.ult(d2))
+ return ConstantRange(Lower, CR.Upper);
+ return ConstantRange(CR.Lower, Upper);
+ }
+
+ APInt L = Lower, U = Upper;
+ if (CR.Lower.ult(L))
+ L = CR.Lower;
+ if ((CR.Upper - 1).ugt(U - 1))
+ U = CR.Upper;
+
+ if (L == 0 && U == 0)
+ return ConstantRange(getBitWidth());
+
+ return ConstantRange(L, U);
+ }
+
+ if (!CR.isWrappedSet()) {
+ // ------U L----- and ------U L----- : this
+ // L--U L--U : CR
+ if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
+ return *this;
+
+ // ------U L----- : this
+ // L---------U : CR
+ if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
+ return ConstantRange(getBitWidth());
+
+ // ----U L---- : this
+ // L---U : CR
+ // <d1> <d2>
+ if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
+ APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
+ if (d1.ult(d2))
+ return ConstantRange(Lower, CR.Upper);
+ return ConstantRange(CR.Lower, Upper);
+ }
+
+ // ----U L----- : this
+ // L----U : CR
+ if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
+ return ConstantRange(CR.Lower, Upper);
+
+ // ------U L---- : this
+ // L-----U : CR
+ assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
+ "ConstantRange::unionWith missed a case with one range wrapped");
+ return ConstantRange(Lower, CR.Upper);
+ }
+
+ // ------U L---- and ------U L---- : this
+ // -U L----------- and ------------U L : CR
+ if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
+ return ConstantRange(getBitWidth());
+
+ APInt L = Lower, U = Upper;
+ if (CR.Upper.ugt(U))
+ U = CR.Upper;
+ if (CR.Lower.ult(L))
+ L = CR.Lower;
+
+ return ConstantRange(L, U);
+}
+
+/// zeroExtend - Return a new range in the specified integer type, which must
+/// be strictly larger than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// zero extended.
+ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
+ if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
+
+ unsigned SrcTySize = getBitWidth();
+ assert(SrcTySize < DstTySize && "Not a value extension");
+ if (isFullSet() || isWrappedSet()) {
+ // Change into [0, 1 << src bit width)
+ APInt LowerExt(DstTySize, 0);
+ if (!Upper) // special case: [X, 0) -- not really wrapping around
+ LowerExt = Lower.zext(DstTySize);
+ return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
+ }
+
+ return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
+}
+
+/// signExtend - Return a new range in the specified integer type, which must
+/// be strictly larger than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// sign extended.
+ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
+ if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
+
+ unsigned SrcTySize = getBitWidth();
+ assert(SrcTySize < DstTySize && "Not a value extension");
+
+ // special case: [X, INT_MIN) -- not really wrapping around
+ if (Upper.isMinSignedValue())
+ return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
+
+ if (isFullSet() || isSignWrappedSet()) {
+ return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
+ APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
+ }
+
+ return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
+}
+
+/// truncate - Return a new range in the specified integer type, which must be
+/// strictly smaller than the current type. The returned range will
+/// correspond to the possible range of values as if the source range had been
+/// truncated to the specified type.
+ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
+ assert(getBitWidth() > DstTySize && "Not a value truncation");
+ if (isEmptySet())
+ return ConstantRange(DstTySize, /*isFullSet=*/false);
+ if (isFullSet())
+ return ConstantRange(DstTySize, /*isFullSet=*/true);
+
+ APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
+ APInt MaxBitValue(getBitWidth(), 0);
+ MaxBitValue.setBit(DstTySize);
+
+ APInt LowerDiv(Lower), UpperDiv(Upper);
+ ConstantRange Union(DstTySize, /*isFullSet=*/false);
+
+ // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
+ // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
+ // then we do the union with [MaxValue, Upper)
+ if (isWrappedSet()) {
+ // if Upper is greater than Max Value, it covers the whole truncated range.
+ if (Upper.uge(MaxValue))
+ return ConstantRange(DstTySize, /*isFullSet=*/true);
+
+ Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
+ UpperDiv = APInt::getMaxValue(getBitWidth());
+
+ // Union covers the MaxValue case, so return if the remaining range is just
+ // MaxValue.
+ if (LowerDiv == UpperDiv)
+ return Union;
+ }
+
+ // Chop off the most significant bits that are past the destination bitwidth.
+ if (LowerDiv.uge(MaxValue)) {
+ APInt Div(getBitWidth(), 0);
+ APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
+ UpperDiv = UpperDiv - MaxBitValue * Div;
+ }
+
+ if (UpperDiv.ule(MaxValue))
+ return ConstantRange(LowerDiv.trunc(DstTySize),
+ UpperDiv.trunc(DstTySize)).unionWith(Union);
+
+ // The truncated value wrapps around. Check if we can do better than fullset.
+ APInt UpperModulo = UpperDiv - MaxBitValue;
+ if (UpperModulo.ult(LowerDiv))
+ return ConstantRange(LowerDiv.trunc(DstTySize),
+ UpperModulo.trunc(DstTySize)).unionWith(Union);
+
+ return ConstantRange(DstTySize, /*isFullSet=*/true);
+}
+
+/// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
+/// value is zero extended, truncated, or left alone to make it that width.
+ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
+ unsigned SrcTySize = getBitWidth();
+ if (SrcTySize > DstTySize)
+ return truncate(DstTySize);
+ if (SrcTySize < DstTySize)
+ return zeroExtend(DstTySize);
+ return *this;
+}
+
+/// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
+/// value is sign extended, truncated, or left alone to make it that width.
+ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
+ unsigned SrcTySize = getBitWidth();
+ if (SrcTySize > DstTySize)
+ return truncate(DstTySize);
+ if (SrcTySize < DstTySize)
+ return signExtend(DstTySize);
+ return *this;
+}
+
+ConstantRange
+ConstantRange::add(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (isFullSet() || Other.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
+ APInt NewLower = getLower() + Other.getLower();
+ APInt NewUpper = getUpper() + Other.getUpper() - 1;
+ if (NewLower == NewUpper)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ ConstantRange X = ConstantRange(NewLower, NewUpper);
+ if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
+ // We've wrapped, therefore, full set.
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return X;
+}
+
+ConstantRange
+ConstantRange::sub(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (isFullSet() || Other.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
+ APInt NewLower = getLower() - Other.getUpper() + 1;
+ APInt NewUpper = getUpper() - Other.getLower();
+ if (NewLower == NewUpper)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ ConstantRange X = ConstantRange(NewLower, NewUpper);
+ if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
+ // We've wrapped, therefore, full set.
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return X;
+}
+
+ConstantRange
+ConstantRange::multiply(const ConstantRange &Other) const {
+ // TODO: If either operand is a single element and the multiply is known to
+ // be non-wrapping, round the result min and max value to the appropriate
+ // multiple of that element. If wrapping is possible, at least adjust the
+ // range according to the greatest power-of-two factor of the single element.
+
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+
+ APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
+ APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
+ APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
+ APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
+
+ ConstantRange Result_zext = ConstantRange(this_min * Other_min,
+ this_max * Other_max + 1);
+ return Result_zext.truncate(getBitWidth());
+}
+
+ConstantRange
+ConstantRange::smax(const ConstantRange &Other) const {
+ // X smax Y is: range(smax(X_smin, Y_smin),
+ // smax(X_smax, Y_smax))
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
+ APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
+ if (NewU == NewL)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(NewL, NewU);
+}
+
+ConstantRange
+ConstantRange::umax(const ConstantRange &Other) const {
+ // X umax Y is: range(umax(X_umin, Y_umin),
+ // umax(X_umax, Y_umax))
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
+ APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
+ if (NewU == NewL)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(NewL, NewU);
+}
+
+ConstantRange
+ConstantRange::udiv(const ConstantRange &RHS) const {
+ if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (RHS.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
+
+ APInt RHS_umin = RHS.getUnsignedMin();
+ if (RHS_umin == 0) {
+ // We want the lowest value in RHS excluding zero. Usually that would be 1
+ // except for a range in the form of [X, 1) in which case it would be X.
+ if (RHS.getUpper() == 1)
+ RHS_umin = RHS.getLower();
+ else
+ RHS_umin = APInt(getBitWidth(), 1);
+ }
+
+ APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
+
+ // If the LHS is Full and the RHS is a wrapped interval containing 1 then
+ // this could occur.
+ if (Lower == Upper)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return ConstantRange(Lower, Upper);
+}
+
+ConstantRange
+ConstantRange::binaryAnd(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+
+ // TODO: replace this with something less conservative
+
+ APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
+ if (umin.isAllOnesValue())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
+}
+
+ConstantRange
+ConstantRange::binaryOr(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+
+ // TODO: replace this with something less conservative
+
+ APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
+ if (umax.isMinValue())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
+}
+
+ConstantRange
+ConstantRange::shl(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+
+ APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
+ APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
+
+ // there's no overflow!
+ APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
+ if (Zeros.ugt(Other.getUnsignedMax()))
+ return ConstantRange(min, max + 1);
+
+ // FIXME: implement the other tricky cases
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+}
+
+ConstantRange
+ConstantRange::lshr(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+
+ APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
+ APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
+ if (min == max + 1)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return ConstantRange(min, max + 1);
+}
+
+ConstantRange ConstantRange::inverse() const {
+ if (isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(Upper, Lower);
+}
+
+/// print - Print out the bounds to a stream...
+///
+void ConstantRange::print(raw_ostream &OS) const {
+ if (isFullSet())
+ OS << "full-set";
+ else if (isEmptySet())
+ OS << "empty-set";
+ else
+ OS << "[" << Lower << "," << Upper << ")";
+}
+
+/// dump - Allow printing from a debugger easily...
+///
+void ConstantRange::dump() const {
+ print(dbgs());
+}