summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r--lib/Target/AArch64/AArch64ISelLowering.cpp7926
1 files changed, 7926 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64ISelLowering.cpp b/lib/Target/AArch64/AArch64ISelLowering.cpp
new file mode 100644
index 0000000000..4ddba00733
--- /dev/null
+++ b/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -0,0 +1,7926 @@
+//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ISelLowering.h"
+#include "AArch64PerfectShuffle.h"
+#include "AArch64Subtarget.h"
+#include "AArch64CallingConv.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64TargetMachine.h"
+#include "AArch64TargetObjectFile.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumShiftInserts, "Number of vector shift inserts");
+
+enum AlignMode {
+ StrictAlign,
+ NoStrictAlign
+};
+
+static cl::opt<AlignMode>
+Align(cl::desc("Load/store alignment support"),
+ cl::Hidden, cl::init(NoStrictAlign),
+ cl::values(
+ clEnumValN(StrictAlign, "aarch64-strict-align",
+ "Disallow all unaligned memory accesses"),
+ clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
+ "Allow unaligned memory accesses"),
+ clEnumValEnd));
+
+// Place holder until extr generation is tested fully.
+static cl::opt<bool>
+EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
+ cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
+ cl::init(true));
+
+static cl::opt<bool>
+EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
+ cl::desc("Allow AArch64 SLI/SRI formation"),
+ cl::init(false));
+
+//===----------------------------------------------------------------------===//
+// AArch64 Lowering public interface.
+//===----------------------------------------------------------------------===//
+static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
+ if (TM.getSubtarget<AArch64Subtarget>().isTargetDarwin())
+ return new AArch64_MachoTargetObjectFile();
+
+ return new AArch64_ELFTargetObjectFile();
+}
+
+AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(TM)) {
+ Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+
+ // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
+ // we have to make something up. Arbitrarily, choose ZeroOrOne.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // When comparing vectors the result sets the different elements in the
+ // vector to all-one or all-zero.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
+ addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
+
+ if (Subtarget->hasFPARMv8()) {
+ addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
+ addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
+ }
+
+ if (Subtarget->hasNEON()) {
+ addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
+ addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
+ // Someone set us up the NEON.
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+ addDRTypeForNEON(MVT::v1f64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+ }
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Provide all sorts of operation actions
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f80, Expand);
+
+ // Custom lowering hooks are needed for XOR
+ // to fold it into CSINC/CSINV.
+ setOperationAction(ISD::XOR, MVT::i32, Custom);
+ setOperationAction(ISD::XOR, MVT::i64, Custom);
+
+ // Virtually no operation on f128 is legal, but LLVM can't expand them when
+ // there's a valid register class, so we need custom operations in most cases.
+ setOperationAction(ISD::FABS, MVT::f128, Expand);
+ setOperationAction(ISD::FADD, MVT::f128, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
+ setOperationAction(ISD::FCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FDIV, MVT::f128, Custom);
+ setOperationAction(ISD::FMA, MVT::f128, Expand);
+ setOperationAction(ISD::FMUL, MVT::f128, Custom);
+ setOperationAction(ISD::FNEG, MVT::f128, Expand);
+ setOperationAction(ISD::FPOW, MVT::f128, Expand);
+ setOperationAction(ISD::FREM, MVT::f128, Expand);
+ setOperationAction(ISD::FRINT, MVT::f128, Expand);
+ setOperationAction(ISD::FSIN, MVT::f128, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f128, Expand);
+ setOperationAction(ISD::FSUB, MVT::f128, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
+ setOperationAction(ISD::SETCC, MVT::f128, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f128, Custom);
+ setOperationAction(ISD::SELECT, MVT::f128, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
+
+ // Lowering for many of the conversions is actually specified by the non-f128
+ // type. The LowerXXX function will be trivial when f128 isn't involved.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
+
+ // Variable arguments.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+
+ // Variable-sized objects.
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+
+ // Exception handling.
+ // FIXME: These are guesses. Has this been defined yet?
+ setExceptionPointerRegister(AArch64::X0);
+ setExceptionSelectorRegister(AArch64::X1);
+
+ // Constant pool entries
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+
+ // BlockAddress
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+
+ // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
+ setOperationAction(ISD::ADDC, MVT::i32, Custom);
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBC, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+ setOperationAction(ISD::ADDC, MVT::i64, Custom);
+ setOperationAction(ISD::ADDE, MVT::i64, Custom);
+ setOperationAction(ISD::SUBC, MVT::i64, Custom);
+ setOperationAction(ISD::SUBE, MVT::i64, Custom);
+
+ // AArch64 lacks both left-rotate and popcount instructions.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+
+ // AArch64 doesn't have {U|S}MUL_LOHI.
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+
+
+ // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
+ // counterparts, which AArch64 supports directly.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i64, Custom);
+
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Custom lower Add/Sub/Mul with overflow.
+ setOperationAction(ISD::SADDO, MVT::i32, Custom);
+ setOperationAction(ISD::SADDO, MVT::i64, Custom);
+ setOperationAction(ISD::UADDO, MVT::i32, Custom);
+ setOperationAction(ISD::UADDO, MVT::i64, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i32, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i64, Custom);
+ setOperationAction(ISD::USUBO, MVT::i32, Custom);
+ setOperationAction(ISD::USUBO, MVT::i64, Custom);
+ setOperationAction(ISD::SMULO, MVT::i32, Custom);
+ setOperationAction(ISD::SMULO, MVT::i64, Custom);
+ setOperationAction(ISD::UMULO, MVT::i32, Custom);
+ setOperationAction(ISD::UMULO, MVT::i64, Custom);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // AArch64 has implementations of a lot of rounding-like FP operations.
+ static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
+ for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
+ MVT Ty = RoundingTypes[I];
+ setOperationAction(ISD::FFLOOR, Ty, Legal);
+ setOperationAction(ISD::FNEARBYINT, Ty, Legal);
+ setOperationAction(ISD::FCEIL, Ty, Legal);
+ setOperationAction(ISD::FRINT, Ty, Legal);
+ setOperationAction(ISD::FTRUNC, Ty, Legal);
+ setOperationAction(ISD::FROUND, Ty, Legal);
+ }
+
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ if (Subtarget->isTargetMachO()) {
+ // For iOS, we don't want to the normal expansion of a libcall to
+ // sincos. We want to issue a libcall to __sincos_stret to avoid memory
+ // traffic.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ } else {
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ }
+
+ // AArch64 does not have floating-point extending loads, i1 sign-extending
+ // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f80, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f16, Expand);
+ // Indexed loads and stores are supported.
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedLoadAction(im, MVT::i64, Legal);
+ setIndexedLoadAction(im, MVT::f64, Legal);
+ setIndexedLoadAction(im, MVT::f32, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i64, Legal);
+ setIndexedStoreAction(im, MVT::f64, Legal);
+ setIndexedStoreAction(im, MVT::f32, Legal);
+ }
+
+ // Trap.
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // We combine OR nodes for bitfield operations.
+ setTargetDAGCombine(ISD::OR);
+
+ // Vector add and sub nodes may conceal a high-half opportunity.
+ // Also, try to fold ADD into CSINC/CSINV..
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+
+ setTargetDAGCombine(ISD::XOR);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::BITCAST);
+ setTargetDAGCombine(ISD::CONCAT_VECTORS);
+ setTargetDAGCombine(ISD::STORE);
+
+ setTargetDAGCombine(ISD::MUL);
+
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::VSELECT);
+
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+
+ MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
+ MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
+ MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
+
+ setStackPointerRegisterToSaveRestore(AArch64::SP);
+
+ setSchedulingPreference(Sched::Hybrid);
+
+ // Enable TBZ/TBNZ
+ MaskAndBranchFoldingIsLegal = true;
+
+ setMinFunctionAlignment(2);
+
+ RequireStrictAlign = (Align == StrictAlign);
+
+ setHasExtractBitsInsn(true);
+
+ if (Subtarget->hasNEON()) {
+ // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
+ // silliness like this:
+ setOperationAction(ISD::FABS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FADD, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
+ setOperationAction(ISD::FMA, MVT::v1f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v1f64, Expand);
+ setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
+ setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
+
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+
+ // AArch64 doesn't have a direct vector ->f32 conversion instructions for
+ // elements smaller than i32, so promote the input to i32 first.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
+ // Similarly, there is no direct i32 -> f64 vector conversion instruction.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
+
+ // AArch64 doesn't have MUL.2d:
+ setOperationAction(ISD::MUL, MVT::v2i64, Expand);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
+ setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
+ // Likewise, narrowing and extending vector loads/stores aren't handled
+ // directly.
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
+ Expand);
+
+ setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+
+ setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
+
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction((MVT::SimpleValueType)VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // AArch64 has implementations of a lot of rounding-like FP operations.
+ static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
+ for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
+ MVT Ty = RoundingVecTypes[I];
+ setOperationAction(ISD::FFLOOR, Ty, Legal);
+ setOperationAction(ISD::FNEARBYINT, Ty, Legal);
+ setOperationAction(ISD::FCEIL, Ty, Legal);
+ setOperationAction(ISD::FRINT, Ty, Legal);
+ setOperationAction(ISD::FTRUNC, Ty, Legal);
+ setOperationAction(ISD::FROUND, Ty, Legal);
+ }
+ }
+}
+
+void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
+ if (VT == MVT::v2f32) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
+ } else if (VT == MVT::v2f64 || VT == MVT::v4f32) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
+ }
+
+ // Mark vector float intrinsics as expand.
+ if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
+ setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
+ }
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
+
+ setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
+
+ // CNT supports only B element sizes.
+ if (VT != MVT::v8i8 && VT != MVT::v16i8)
+ setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
+
+ setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
+
+ setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
+
+ if (Subtarget->isLittleEndian()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
+ setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
+ }
+ }
+}
+
+void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &AArch64::FPR64RegClass);
+ addTypeForNEON(VT, MVT::v2i32);
+}
+
+void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &AArch64::FPR128RegClass);
+ addTypeForNEON(VT, MVT::v4i32);
+}
+
+EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// computeKnownBitsForTargetNode - Determine which of the bits specified in
+/// Mask are known to be either zero or one and return them in the
+/// KnownZero/KnownOne bitsets.
+void AArch64TargetLowering::computeKnownBitsForTargetNode(
+ const SDValue Op, APInt &KnownZero, APInt &KnownOne,
+ const SelectionDAG &DAG, unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ default:
+ break;
+ case AArch64ISD::CSEL: {
+ APInt KnownZero2, KnownOne2;
+ DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
+ DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
+ Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
+ switch (IntID) {
+ default: return;
+ case Intrinsic::aarch64_ldaxr:
+ case Intrinsic::aarch64_ldxr: {
+ unsigned BitWidth = KnownOne.getBitWidth();
+ EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
+ return;
+ }
+ }
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_VOID: {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_umaxv:
+ case Intrinsic::aarch64_neon_uminv: {
+ // Figure out the datatype of the vector operand. The UMINV instruction
+ // will zero extend the result, so we can mark as known zero all the
+ // bits larger than the element datatype. 32-bit or larget doesn't need
+ // this as those are legal types and will be handled by isel directly.
+ MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
+ unsigned BitWidth = KnownZero.getBitWidth();
+ if (VT == MVT::v8i8 || VT == MVT::v16i8) {
+ assert(BitWidth >= 8 && "Unexpected width!");
+ APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
+ KnownZero |= Mask;
+ } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
+ assert(BitWidth >= 16 && "Unexpected width!");
+ APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
+ KnownZero |= Mask;
+ }
+ break;
+ } break;
+ }
+ }
+ }
+}
+
+MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
+ return MVT::i64;
+}
+
+unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
+ // FIXME: On AArch64, this depends on the type.
+ // Basically, the addressable offsets are o to 4095 * Ty.getSizeInBytes().
+ // and the offset has to be a multiple of the related size in bytes.
+ return 4095;
+}
+
+FastISel *
+AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return AArch64::createFastISel(funcInfo, libInfo);
+}
+
+const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default:
+ return nullptr;
+ case AArch64ISD::CALL: return "AArch64ISD::CALL";
+ case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
+ case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
+ case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
+ case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
+ case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
+ case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
+ case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
+ case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
+ case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
+ case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
+ case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
+ case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
+ case AArch64ISD::ADC: return "AArch64ISD::ADC";
+ case AArch64ISD::SBC: return "AArch64ISD::SBC";
+ case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
+ case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
+ case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
+ case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
+ case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
+ case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
+ case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
+ case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
+ case AArch64ISD::DUP: return "AArch64ISD::DUP";
+ case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
+ case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
+ case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
+ case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
+ case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
+ case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
+ case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
+ case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
+ case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
+ case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
+ case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
+ case AArch64ISD::BICi: return "AArch64ISD::BICi";
+ case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
+ case AArch64ISD::BSL: return "AArch64ISD::BSL";
+ case AArch64ISD::NEG: return "AArch64ISD::NEG";
+ case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
+ case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
+ case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
+ case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
+ case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
+ case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
+ case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
+ case AArch64ISD::REV16: return "AArch64ISD::REV16";
+ case AArch64ISD::REV32: return "AArch64ISD::REV32";
+ case AArch64ISD::REV64: return "AArch64ISD::REV64";
+ case AArch64ISD::EXT: return "AArch64ISD::EXT";
+ case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
+ case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
+ case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
+ case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
+ case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
+ case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
+ case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
+ case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
+ case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
+ case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
+ case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
+ case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
+ case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
+ case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
+ case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
+ case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
+ case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
+ case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
+ case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
+ case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
+ case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
+ case AArch64ISD::NOT: return "AArch64ISD::NOT";
+ case AArch64ISD::BIT: return "AArch64ISD::BIT";
+ case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
+ case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
+ case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
+ case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
+ case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
+ case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
+ case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
+ case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
+ case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
+ case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
+ case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
+ case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
+ case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
+ case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
+ case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
+ case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
+ case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
+ case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
+ case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
+ case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
+ case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
+ case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
+ case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
+ case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
+ case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
+ case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
+ case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
+ case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
+ case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
+ case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
+ case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
+ case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
+ case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
+ case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
+ case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
+ case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
+ }
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // We materialise the F128CSEL pseudo-instruction as some control flow and a
+ // phi node:
+
+ // OrigBB:
+ // [... previous instrs leading to comparison ...]
+ // b.ne TrueBB
+ // b EndBB
+ // TrueBB:
+ // ; Fallthrough
+ // EndBB:
+ // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
+
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineFunction *MF = MBB->getParent();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction::iterator It = MBB;
+ ++It;
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned IfTrueReg = MI->getOperand(1).getReg();
+ unsigned IfFalseReg = MI->getOperand(2).getReg();
+ unsigned CondCode = MI->getOperand(3).getImm();
+ bool NZCVKilled = MI->getOperand(4).isKill();
+
+ MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, TrueBB);
+ MF->insert(It, EndBB);
+
+ // Transfer rest of current basic-block to EndBB
+ EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
+ MBB->end());
+ EndBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
+ BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
+ MBB->addSuccessor(TrueBB);
+ MBB->addSuccessor(EndBB);
+
+ // TrueBB falls through to the end.
+ TrueBB->addSuccessor(EndBB);
+
+ if (!NZCVKilled) {
+ TrueBB->addLiveIn(AArch64::NZCV);
+ EndBB->addLiveIn(AArch64::NZCV);
+ }
+
+ BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
+ .addReg(IfTrueReg)
+ .addMBB(TrueBB)
+ .addReg(IfFalseReg)
+ .addMBB(MBB);
+
+ MI->eraseFromParent();
+ return EndBB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ MI->dump();
+#endif
+ assert(0 && "Unexpected instruction for custom inserter!");
+ break;
+
+ case AArch64::F128CSEL:
+ return EmitF128CSEL(MI, BB);
+
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::PATCHPOINT:
+ return emitPatchPoint(MI, BB);
+ }
+ llvm_unreachable("Unexpected instruction for custom inserter!");
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Lowering private implementation.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
+/// CC
+static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE:
+ return AArch64CC::NE;
+ case ISD::SETEQ:
+ return AArch64CC::EQ;
+ case ISD::SETGT:
+ return AArch64CC::GT;
+ case ISD::SETGE:
+ return AArch64CC::GE;
+ case ISD::SETLT:
+ return AArch64CC::LT;
+ case ISD::SETLE:
+ return AArch64CC::LE;
+ case ISD::SETUGT:
+ return AArch64CC::HI;
+ case ISD::SETUGE:
+ return AArch64CC::HS;
+ case ISD::SETULT:
+ return AArch64CC::LO;
+ case ISD::SETULE:
+ return AArch64CC::LS;
+ }
+}
+
+/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
+static void changeFPCCToAArch64CC(ISD::CondCode CC,
+ AArch64CC::CondCode &CondCode,
+ AArch64CC::CondCode &CondCode2) {
+ CondCode2 = AArch64CC::AL;
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ CondCode = AArch64CC::EQ;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ CondCode = AArch64CC::GT;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ CondCode = AArch64CC::GE;
+ break;
+ case ISD::SETOLT:
+ CondCode = AArch64CC::MI;
+ break;
+ case ISD::SETOLE:
+ CondCode = AArch64CC::LS;
+ break;
+ case ISD::SETONE:
+ CondCode = AArch64CC::MI;
+ CondCode2 = AArch64CC::GT;
+ break;
+ case ISD::SETO:
+ CondCode = AArch64CC::VC;
+ break;
+ case ISD::SETUO:
+ CondCode = AArch64CC::VS;
+ break;
+ case ISD::SETUEQ:
+ CondCode = AArch64CC::EQ;
+ CondCode2 = AArch64CC::VS;
+ break;
+ case ISD::SETUGT:
+ CondCode = AArch64CC::HI;
+ break;
+ case ISD::SETUGE:
+ CondCode = AArch64CC::PL;
+ break;
+ case ISD::SETLT:
+ case ISD::SETULT:
+ CondCode = AArch64CC::LT;
+ break;
+ case ISD::SETLE:
+ case ISD::SETULE:
+ CondCode = AArch64CC::LE;
+ break;
+ case ISD::SETNE:
+ case ISD::SETUNE:
+ CondCode = AArch64CC::NE;
+ break;
+ }
+}
+
+/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
+/// CC usable with the vector instructions. Fewer operations are available
+/// without a real NZCV register, so we have to use less efficient combinations
+/// to get the same effect.
+static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
+ AArch64CC::CondCode &CondCode,
+ AArch64CC::CondCode &CondCode2,
+ bool &Invert) {
+ Invert = false;
+ switch (CC) {
+ default:
+ // Mostly the scalar mappings work fine.
+ changeFPCCToAArch64CC(CC, CondCode, CondCode2);
+ break;
+ case ISD::SETUO:
+ Invert = true; // Fallthrough
+ case ISD::SETO:
+ CondCode = AArch64CC::MI;
+ CondCode2 = AArch64CC::GE;
+ break;
+ case ISD::SETUEQ:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ // All of the compare-mask comparisons are ordered, but we can switch
+ // between the two by a double inversion. E.g. ULE == !OGT.
+ Invert = true;
+ changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
+ break;
+ }
+}
+
+static bool isLegalArithImmed(uint64_t C) {
+ // Matches AArch64DAGToDAGISel::SelectArithImmed().
+ return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
+}
+
+static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) {
+ EVT VT = LHS.getValueType();
+
+ if (VT.isFloatingPoint())
+ return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
+
+ // The CMP instruction is just an alias for SUBS, and representing it as
+ // SUBS means that it's possible to get CSE with subtract operations.
+ // A later phase can perform the optimization of setting the destination
+ // register to WZR/XZR if it ends up being unused.
+ unsigned Opcode = AArch64ISD::SUBS;
+
+ if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
+ cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
+ // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
+ // can be set differently by this operation. It comes down to whether
+ // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
+ // everything is fine. If not then the optimization is wrong. Thus general
+ // comparisons are only valid if op2 != 0.
+
+ // So, finally, the only LLVM-native comparisons that don't mention C and V
+ // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
+ // the absence of information about op2.
+ Opcode = AArch64ISD::ADDS;
+ RHS = RHS.getOperand(1);
+ } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
+ cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
+ !isUnsignedIntSetCC(CC)) {
+ // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
+ // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
+ // of the signed comparisons.
+ Opcode = AArch64ISD::ANDS;
+ RHS = LHS.getOperand(1);
+ LHS = LHS.getOperand(0);
+ }
+
+ return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
+ .getValue(1);
+}
+
+static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ EVT VT = RHS.getValueType();
+ uint64_t C = RHSC->getZExtValue();
+ if (!isLegalArithImmed(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if ((VT == MVT::i32 && C != 0x80000000 &&
+ isLegalArithImmed((uint32_t)(C - 1))) ||
+ (VT == MVT::i64 && C != 0x80000000ULL &&
+ isLegalArithImmed(C - 1ULL))) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if ((VT == MVT::i32 && C != 0 &&
+ isLegalArithImmed((uint32_t)(C - 1))) ||
+ (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if ((VT == MVT::i32 && C != 0x7fffffff &&
+ isLegalArithImmed((uint32_t)(C + 1))) ||
+ (VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
+ isLegalArithImmed(C + 1ULL))) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if ((VT == MVT::i32 && C != 0xffffffff &&
+ isLegalArithImmed((uint32_t)(C + 1))) ||
+ (VT == MVT::i64 && C != 0xfffffffffffffffULL &&
+ isLegalArithImmed(C + 1ULL))) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
+ RHS = DAG.getConstant(C, VT);
+ }
+ break;
+ }
+ }
+ }
+
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+ AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
+ AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
+ return Cmp;
+}
+
+static std::pair<SDValue, SDValue>
+getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
+ assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
+ "Unsupported value type");
+ SDValue Value, Overflow;
+ SDLoc DL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ unsigned Opc = 0;
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown overflow instruction!");
+ case ISD::SADDO:
+ Opc = AArch64ISD::ADDS;
+ CC = AArch64CC::VS;
+ break;
+ case ISD::UADDO:
+ Opc = AArch64ISD::ADDS;
+ CC = AArch64CC::HS;
+ break;
+ case ISD::SSUBO:
+ Opc = AArch64ISD::SUBS;
+ CC = AArch64CC::VS;
+ break;
+ case ISD::USUBO:
+ Opc = AArch64ISD::SUBS;
+ CC = AArch64CC::LO;
+ break;
+ // Multiply needs a little bit extra work.
+ case ISD::SMULO:
+ case ISD::UMULO: {
+ CC = AArch64CC::NE;
+ bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
+ if (Op.getValueType() == MVT::i32) {
+ unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ // For a 32 bit multiply with overflow check we want the instruction
+ // selector to generate a widening multiply (SMADDL/UMADDL). For that we
+ // need to generate the following pattern:
+ // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
+ LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
+ RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
+ SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
+ DAG.getConstant(0, MVT::i64));
+ // On AArch64 the upper 32 bits are always zero extended for a 32 bit
+ // operation. We need to clear out the upper 32 bits, because we used a
+ // widening multiply that wrote all 64 bits. In the end this should be a
+ // noop.
+ Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
+ if (IsSigned) {
+ // The signed overflow check requires more than just a simple check for
+ // any bit set in the upper 32 bits of the result. These bits could be
+ // just the sign bits of a negative number. To perform the overflow
+ // check we have to arithmetic shift right the 32nd bit of the result by
+ // 31 bits. Then we compare the result to the upper 32 bits.
+ SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
+ DAG.getConstant(32, MVT::i64));
+ UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
+ SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
+ DAG.getConstant(31, MVT::i64));
+ // It is important that LowerBits is last, otherwise the arithmetic
+ // shift will not be folded into the compare (SUBS).
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
+ .getValue(1);
+ } else {
+ // The overflow check for unsigned multiply is easy. We only need to
+ // check if any of the upper 32 bits are set. This can be done with a
+ // CMP (shifted register). For that we need to generate the following
+ // pattern:
+ // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
+ SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
+ DAG.getConstant(32, MVT::i64));
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow =
+ DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
+ UpperBits).getValue(1);
+ }
+ break;
+ }
+ assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
+ // For the 64 bit multiply
+ Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
+ if (IsSigned) {
+ SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
+ SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
+ DAG.getConstant(63, MVT::i64));
+ // It is important that LowerBits is last, otherwise the arithmetic
+ // shift will not be folded into the compare (SUBS).
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
+ .getValue(1);
+ } else {
+ SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
+ Overflow =
+ DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
+ UpperBits).getValue(1);
+ }
+ break;
+ }
+ } // switch (...)
+
+ if (Opc) {
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
+
+ // Emit the AArch64 operation with overflow check.
+ Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
+ Overflow = Value.getValue(1);
+ }
+ return std::make_pair(Value, Overflow);
+}
+
+SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
+ RTLIB::Libcall Call) const {
+ SmallVector<SDValue, 2> Ops;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
+ Ops.push_back(Op.getOperand(i));
+
+ return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
+ SDLoc(Op)).first;
+}
+
+static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
+ SDValue Sel = Op.getOperand(0);
+ SDValue Other = Op.getOperand(1);
+
+ // If neither operand is a SELECT_CC, give up.
+ if (Sel.getOpcode() != ISD::SELECT_CC)
+ std::swap(Sel, Other);
+ if (Sel.getOpcode() != ISD::SELECT_CC)
+ return Op;
+
+ // The folding we want to perform is:
+ // (xor x, (select_cc a, b, cc, 0, -1) )
+ // -->
+ // (csel x, (xor x, -1), cc ...)
+ //
+ // The latter will get matched to a CSINV instruction.
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
+ SDValue LHS = Sel.getOperand(0);
+ SDValue RHS = Sel.getOperand(1);
+ SDValue TVal = Sel.getOperand(2);
+ SDValue FVal = Sel.getOperand(3);
+ SDLoc dl(Sel);
+
+ // FIXME: This could be generalized to non-integer comparisons.
+ if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
+ return Op;
+
+ ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
+ ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
+
+ // The the values aren't constants, this isn't the pattern we're looking for.
+ if (!CFVal || !CTVal)
+ return Op;
+
+ // We can commute the SELECT_CC by inverting the condition. This
+ // might be needed to make this fit into a CSINV pattern.
+ if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+
+ // If the constants line up, perform the transform!
+ if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+
+ FVal = Other;
+ TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
+ DAG.getConstant(-1ULL, Other.getValueType()));
+
+ return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
+ CCVal, Cmp);
+ }
+
+ return Op;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default:
+ assert(0 && "Invalid code");
+ case ISD::ADDC:
+ Opc = AArch64ISD::ADDS;
+ break;
+ case ISD::SUBC:
+ Opc = AArch64ISD::SUBS;
+ break;
+ case ISD::ADDE:
+ Opc = AArch64ISD::ADCS;
+ ExtraOp = true;
+ break;
+ case ISD::SUBE:
+ Opc = AArch64ISD::SBCS;
+ ExtraOp = true;
+ break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(2));
+}
+
+static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
+ return SDValue();
+
+ AArch64CC::CondCode CC;
+ // The actual operation that sets the overflow or carry flag.
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
+
+ // We use 0 and 1 as false and true values.
+ SDValue TVal = DAG.getConstant(1, MVT::i32);
+ SDValue FVal = DAG.getConstant(0, MVT::i32);
+
+ // We use an inverted condition, because the conditional select is inverted
+ // too. This will allow it to be selected to a single instruction:
+ // CSINC Wd, WZR, WZR, invert(cond).
+ SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
+ Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
+ CCVal, Overflow);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
+}
+
+// Prefetch operands are:
+// 1: Address to prefetch
+// 2: bool isWrite
+// 3: int locality (0 = no locality ... 3 = extreme locality)
+// 4: bool isDataCache
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
+ // The data thing is not used.
+ // unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+
+ bool IsStream = !Locality;
+ // When the locality number is set
+ if (Locality) {
+ // The front-end should have filtered out the out-of-range values
+ assert(Locality <= 3 && "Prefetch locality out-of-range");
+ // The locality degree is the opposite of the cache speed.
+ // Put the number the other way around.
+ // The encoding starts at 0 for level 1
+ Locality = 3 - Locality;
+ }
+
+ // built the mask value encoding the expected behavior.
+ unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
+ (Locality << 1) | // Cache level bits
+ (unsigned)IsStream; // Stream bit
+ return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
+}
+
+SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128Call(Op, DAG, LC);
+}
+
+SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ // FP_ROUND node has a second operand indicating whether it is known to be
+ // precise. That doesn't take part in the LibCall so we can't directly use
+ // LowerF128Call.
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
+ /*isSigned*/ false, SDLoc(Op)).first;
+}
+
+static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
+ // Any additional optimization in this function should be recorded
+ // in the cost tables.
+ EVT InVT = Op.getOperand(0).getValueType();
+ EVT VT = Op.getValueType();
+
+ // FP_TO_XINT conversion from the same type are legal.
+ if (VT.getSizeInBits() == InVT.getSizeInBits())
+ return Op;
+
+ if (InVT == MVT::v2f64 || InVT == MVT::v4f32) {
+ SDLoc dl(Op);
+ SDValue Cv =
+ DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
+ Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
+ } else if (InVT == MVT::v2f32) {
+ SDLoc dl(Op);
+ SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Op.getOperand(0));
+ return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
+ }
+
+ // Type changing conversions are illegal.
+ return SDValue();
+}
+
+SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getOperand(0).getValueType().isVector())
+ return LowerVectorFP_TO_INT(Op, DAG);
+
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::FP_TO_SINT)
+ LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SmallVector<SDValue, 2> Ops;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
+ Ops.push_back(Op.getOperand(i));
+
+ return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
+ SDLoc(Op)).first;
+}
+
+static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
+ // Any additional optimization in this function should be recorded
+ // in the cost tables.
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ SDValue In = Op.getOperand(0);
+ EVT InVT = In.getValueType();
+
+ // v2i32 to v2f32 is legal.
+ if (VT == MVT::v2f32 && InVT == MVT::v2i32)
+ return Op;
+
+ // This function only handles v2f64 outputs.
+ if (VT == MVT::v2f64) {
+ // Extend the input argument to a v2i64 that we can feed into the
+ // floating point conversion. Zero or sign extend based on whether
+ // we're doing a signed or unsigned float conversion.
+ unsigned Opc =
+ Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
+ assert(Op.getNumOperands() == 1 && "FP conversions take one argument");
+ SDValue Promoted = DAG.getNode(Opc, dl, MVT::v2i64, Op.getOperand(0));
+ return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Promoted);
+ }
+
+ // Scalarize v2i64 to v2f32 conversions.
+ std::vector<SDValue> BuildVectorOps;
+ for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
+ SDValue Sclr = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, In,
+ DAG.getConstant(i, MVT::i64));
+ Sclr = DAG.getNode(Op->getOpcode(), dl, MVT::f32, Sclr);
+ BuildVectorOps.push_back(Sclr);
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BuildVectorOps);
+}
+
+SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType().isVector())
+ return LowerVectorINT_TO_FP(Op, DAG);
+
+ // i128 conversions are libcalls.
+ if (Op.getOperand(0).getValueType() == MVT::i128)
+ return SDValue();
+
+ // Other conversions are legal, unless it's to the completely software-based
+ // fp128.
+ if (Op.getValueType() != MVT::f128)
+ return Op;
+
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::SINT_TO_FP)
+ LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128Call(Op, DAG, LC);
+}
+
+SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
+ SelectionDAG &DAG) const {
+ // For iOS, we want to call an alternative entry point: __sincos_stret,
+ // which returns the values in two S / D registers.
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ const char *LibcallName =
+ (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
+
+ StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::Fast, RetTy, Callee, &Args, 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.first;
+}
+
+SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("unimplemented operand");
+ return SDValue();
+ case ISD::GlobalAddress:
+ return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress:
+ return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SETCC:
+ return LowerSETCC(Op, DAG);
+ case ISD::BR_CC:
+ return LowerBR_CC(Op, DAG);
+ case ISD::SELECT:
+ return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC:
+ return LowerSELECT_CC(Op, DAG);
+ case ISD::JumpTable:
+ return LowerJumpTable(Op, DAG);
+ case ISD::ConstantPool:
+ return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress:
+ return LowerBlockAddress(Op, DAG);
+ case ISD::VASTART:
+ return LowerVASTART(Op, DAG);
+ case ISD::VACOPY:
+ return LowerVACOPY(Op, DAG);
+ case ISD::VAARG:
+ return LowerVAARG(Op, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE:
+ return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ return LowerXALUO(Op, DAG);
+ case ISD::FADD:
+ return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
+ case ISD::FSUB:
+ return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
+ case ISD::FMUL:
+ return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
+ case ISD::FDIV:
+ return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
+ case ISD::FP_ROUND:
+ return LowerFP_ROUND(Op, DAG);
+ case ISD::FP_EXTEND:
+ return LowerFP_EXTEND(Op, DAG);
+ case ISD::FRAMEADDR:
+ return LowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR:
+ return LowerRETURNADDR(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT:
+ return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT:
+ return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::BUILD_VECTOR:
+ return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE:
+ return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR:
+ return LowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL:
+ return LowerVectorSRA_SRL_SHL(Op, DAG);
+ case ISD::SHL_PARTS:
+ return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS:
+ return LowerShiftRightParts(Op, DAG);
+ case ISD::CTPOP:
+ return LowerCTPOP(Op, DAG);
+ case ISD::FCOPYSIGN:
+ return LowerFCOPYSIGN(Op, DAG);
+ case ISD::AND:
+ return LowerVectorAND(Op, DAG);
+ case ISD::OR:
+ return LowerVectorOR(Op, DAG);
+ case ISD::XOR:
+ return LowerXOR(Op, DAG);
+ case ISD::PREFETCH:
+ return LowerPREFETCH(Op, DAG);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ return LowerFP_TO_INT(Op, DAG);
+ case ISD::FSINCOS:
+ return LowerFSINCOS(Op, DAG);
+ }
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
+ return 2;
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "AArch64GenCallingConv.inc"
+
+/// Selects the correct CCAssignFn for a the given CallingConvention
+/// value.
+CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
+ bool IsVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention.");
+ case CallingConv::WebKit_JS:
+ return CC_AArch64_WebKit_JS;
+ case CallingConv::C:
+ case CallingConv::Fast:
+ if (!Subtarget->isTargetDarwin())
+ return CC_AArch64_AAPCS;
+ return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
+ }
+}
+
+SDValue AArch64TargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ // At this point, Ins[].VT may already be promoted to i32. To correctly
+ // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
+ // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
+ // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
+ // we use a special version of AnalyzeFormalArguments to pass in ValVT and
+ // LocVT.
+ unsigned NumArgs = Ins.size();
+ Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ValVT = Ins[i].VT;
+ std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
+ CurArgIdx = Ins[i].OrigArgIndex;
+
+ // Get type of the original argument.
+ EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
+ MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
+ // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
+ MVT LocVT = ValVT;
+ if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
+ LocVT = MVT::i8;
+ else if (ActualMVT == MVT::i16)
+ LocVT = MVT::i16;
+
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
+ bool Res =
+ AssignFn(i, ValVT, LocVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ assert(ArgLocs.size() == Ins.size());
+ SmallVector<SDValue, 16> ArgValues;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (Ins[i].Flags.isByVal()) {
+ // Byval is used for HFAs in the PCS, but the system should work in a
+ // non-compliant manner for larger structs.
+ EVT PtrTy = getPointerTy();
+ int Size = Ins[i].Flags.getByValSize();
+ unsigned NumRegs = (Size + 7) / 8;
+
+ // FIXME: This works on big-endian for composite byvals, which are the common
+ // case. It should also work for fundamental types too.
+ unsigned FrameIdx =
+ MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
+ SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
+ InVals.push_back(FrameIdxN);
+
+ continue;
+ } if (VA.isRegLoc()) {
+ // Arguments stored in registers.
+ EVT RegVT = VA.getLocVT();
+
+ SDValue ArgValue;
+ const TargetRegisterClass *RC;
+
+ if (RegVT == MVT::i32)
+ RC = &AArch64::GPR32RegClass;
+ else if (RegVT == MVT::i64)
+ RC = &AArch64::GPR64RegClass;
+ else if (RegVT == MVT::f32)
+ RC = &AArch64::FPR32RegClass;
+ else if (RegVT == MVT::f64 || RegVT.is64BitVector())
+ RC = &AArch64::FPR64RegClass;
+ else if (RegVT == MVT::f128 || RegVT.is128BitVector())
+ RC = &AArch64::FPR128RegClass;
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
+
+ // If this is an 8, 16 or 32-bit value, it is really passed promoted
+ // to 64 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+ assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
+ unsigned ArgOffset = VA.getLocMemOffset();
+ unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
+
+ uint32_t BEAlign = 0;
+ if (ArgSize < 8 && !Subtarget->isLittleEndian())
+ BEAlign = 8 - ArgSize;
+
+ int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ SDValue ArgValue;
+
+ // If the loc type and val type are not the same, create an anyext load.
+ if (VA.getLocVT().getSizeInBits() != VA.getValVT().getSizeInBits()) {
+ // We should only get here if this is a pure integer.
+ assert(!VA.getValVT().isVector() && VA.getValVT().isInteger() &&
+ "Only integer extension supported!");
+ ArgValue = DAG.getExtLoad(ISD::EXTLOAD, DL, VA.getValVT(), Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ VA.getLocVT(),
+ false, false, false, 0);
+ } else {
+ ArgValue = DAG.getLoad(VA.getValVT(), DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI), false,
+ false, false, 0);
+ }
+
+ InVals.push_back(ArgValue);
+ }
+ }
+
+ // varargs
+ if (isVarArg) {
+ if (!Subtarget->isTargetDarwin()) {
+ // The AAPCS variadic function ABI is identical to the non-variadic
+ // one. As a result there may be more arguments in registers and we should
+ // save them for future reference.
+ saveVarArgRegisters(CCInfo, DAG, DL, Chain);
+ }
+
+ AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
+ // This will point to the next argument passed via stack.
+ unsigned StackOffset = CCInfo.getNextStackOffset();
+ // We currently pass all varargs at 8-byte alignment.
+ StackOffset = ((StackOffset + 7) & ~7);
+ AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
+ }
+
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ unsigned StackArgSize = CCInfo.getNextStackOffset();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+ if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
+ // This is a non-standard ABI so by fiat I say we're allowed to make full
+ // use of the stack area to be popped, which must be aligned to 16 bytes in
+ // any case:
+ StackArgSize = RoundUpToAlignment(StackArgSize, 16);
+
+ // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
+ // a multiple of 16.
+ FuncInfo->setArgumentStackToRestore(StackArgSize);
+
+ // This realignment carries over to the available bytes below. Our own
+ // callers will guarantee the space is free by giving an aligned value to
+ // CALLSEQ_START.
+ }
+ // Even if we're not expected to free up the space, it's useful to know how
+ // much is there while considering tail calls (because we can reuse it).
+ FuncInfo->setBytesInStackArgArea(StackArgSize);
+
+ return Chain;
+}
+
+void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
+ SelectionDAG &DAG, SDLoc DL,
+ SDValue &Chain) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+
+ SmallVector<SDValue, 8> MemOps;
+
+ static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
+ AArch64::X3, AArch64::X4, AArch64::X5,
+ AArch64::X6, AArch64::X7 };
+ static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
+ unsigned FirstVariadicGPR =
+ CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
+
+ unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
+ int GPRIdx = 0;
+ if (GPRSaveSize != 0) {
+ GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
+
+ SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 8), false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(8, getPointerTy()));
+ }
+ }
+ FuncInfo->setVarArgsGPRIndex(GPRIdx);
+ FuncInfo->setVarArgsGPRSize(GPRSaveSize);
+
+ if (Subtarget->hasFPARMv8()) {
+ static const MCPhysReg FPRArgRegs[] = {
+ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
+ AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
+ static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
+ unsigned FirstVariadicFPR =
+ CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
+
+ unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
+ int FPRIdx = 0;
+ if (FPRSaveSize != 0) {
+ FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
+
+ SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
+
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 16), false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(16, getPointerTy()));
+ }
+ }
+ FuncInfo->setVarArgsFPRIndex(FPRIdx);
+ FuncInfo->setVarArgsFPRSize(FPRSaveSize);
+ }
+
+ if (!MemOps.empty()) {
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue AArch64TargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
+ SDValue ThisVal) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ // Pass 'this' value directly from the argument to return value, to avoid
+ // reg unit interference
+ if (i == 0 && isThisReturn) {
+ assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
+ "unexpected return calling convention register assignment");
+ InVals.push_back(ThisVal);
+ continue;
+ }
+
+ SDValue Val =
+ DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+bool AArch64TargetLowering::isEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
+ bool isCalleeStructRet, bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
+ // For CallingConv::C this function knows whether the ABI needs
+ // changing. That's not true for other conventions so they will have to opt in
+ // manually.
+ if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
+ return false;
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = MF.getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // Byval parameters hand the function a pointer directly into the stack area
+ // we want to reuse during a tail call. Working around this *is* possible (see
+ // X86) but less efficient and uglier in LowerCall.
+ for (Function::const_arg_iterator i = CallerF->arg_begin(),
+ e = CallerF->arg_end();
+ i != e; ++i)
+ if (i->hasByValAttr())
+ return false;
+
+ if (getTargetMachine().Options.GuaranteedTailCallOpt) {
+ if (IsTailCallConvention(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Now we search for cases where we can use a tail call without changing the
+ // ABI. Sibcall is used in some places (particularly gcc) to refer to this
+ // concept.
+
+ // I want anyone implementing a new calling convention to think long and hard
+ // about this assert.
+ assert((!isVarArg || CalleeCC == CallingConv::C) &&
+ "Unexpected variadic calling convention");
+
+ if (isVarArg && !Outs.empty()) {
+ // At least two cases here: if caller is fastcc then we can't have any
+ // memory arguments (we'd be expected to clean up the stack afterwards). If
+ // caller is C then we could potentially use its argument area.
+
+ // FIXME: for now we take the most conservative of these in both cases:
+ // disallow all variadic memory operands.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs1, *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs2, *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // Nothing more to check if the callee is taking no arguments
+ if (Outs.empty())
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
+
+ const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+
+ // If the stack arguments for this call would fit into our own save area then
+ // the call can be made tail.
+ return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
+}
+
+SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
+ SelectionDAG &DAG,
+ MachineFrameInfo *MFI,
+ int ClobberedFI) const {
+ SmallVector<SDValue, 8> ArgChains;
+ int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
+ int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument corresponding
+ for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
+ UE = DAG.getEntryNode().getNode()->use_end();
+ U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0) {
+ int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
+ int64_t InLastByte = InFirstByte;
+ InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
+
+ if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
+ (FirstByte <= InFirstByte && InFirstByte <= LastByte))
+ ArgChains.push_back(SDValue(L, 1));
+ }
+
+ // Build a tokenfactor for all the chains.
+ return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
+}
+
+bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
+ bool TailCallOpt) const {
+ return CallCC == CallingConv::Fast && TailCallOpt;
+}
+
+bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
+ return CallCC == CallingConv::Fast;
+}
+
+/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
+/// and add input and output parameter nodes.
+SDValue
+AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ bool IsThisReturn = false;
+
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+ bool IsSibCall = false;
+
+ if (IsTailCall) {
+ // Check if it's really possible to do a tail call.
+ IsTailCall = isEligibleForTailCallOptimization(
+ Callee, CallConv, IsVarArg, IsStructRet,
+ MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
+ if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ // A sibling call is one where we're under the usual C ABI and not planning
+ // to change that but can still do a tail call:
+ if (!TailCallOpt && IsTailCall)
+ IsSibCall = true;
+
+ if (IsTailCall)
+ ++NumTailCalls;
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ if (IsVarArg) {
+ // Handle fixed and variable vector arguments differently.
+ // Variable vector arguments always go into memory.
+ unsigned NumArgs = Outs.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
+ /*IsVarArg=*/ !Outs[i].IsFixed);
+ bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ } else {
+ // At this point, Outs[].VT may already be promoted to i32. To correctly
+ // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
+ // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
+ // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
+ // we use a special version of AnalyzeCallOperands to pass in ValVT and
+ // LocVT.
+ unsigned NumArgs = Outs.size();
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ValVT = Outs[i].VT;
+ // Get type of the original argument.
+ EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
+ /*AllowUnknown*/ true);
+ MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
+ MVT LocVT = ValVT;
+ if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
+ LocVT = MVT::i8;
+ else if (ActualMVT == MVT::i16)
+ LocVT = MVT::i16;
+
+ CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
+ bool Res = AssignFn(i, ValVT, LocVT, CCValAssign::Full, ArgFlags, CCInfo);
+ assert(!Res && "Call operand has unhandled type");
+ (void)Res;
+ }
+ }
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ if (IsSibCall) {
+ // Since we're not changing the ABI to make this a tail call, the memory
+ // operands are already available in the caller's incoming argument space.
+ NumBytes = 0;
+ }
+
+ // FPDiff is the byte offset of the call's argument area from the callee's.
+ // Stores to callee stack arguments will be placed in FixedStackSlots offset
+ // by this amount for a tail call. In a sibling call it must be 0 because the
+ // caller will deallocate the entire stack and the callee still expects its
+ // arguments to begin at SP+0. Completely unused for non-tail calls.
+ int FPDiff = 0;
+
+ if (IsTailCall && !IsSibCall) {
+ unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
+
+ // Since callee will pop argument stack as a tail call, we must keep the
+ // popped size 16-byte aligned.
+ NumBytes = RoundUpToAlignment(NumBytes, 16);
+
+ // FPDiff will be negative if this tail call requires more space than we
+ // would automatically have in our incoming argument space. Positive if we
+ // can actually shrink the stack.
+ FPDiff = NumReusableBytes - NumBytes;
+
+ // The stack pointer must be 16-byte aligned at all times it's used for a
+ // memory operation, which in practice means at *all* times and in
+ // particular across call boundaries. Therefore our own arguments started at
+ // a 16-byte aligned SP and the delta applied for the tail call should
+ // satisfy the same constraint.
+ assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
+ }
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!IsSibCall)
+ Chain =
+ DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::FPExt:
+ Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isRegLoc()) {
+ if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
+ assert(VA.getLocVT() == MVT::i64 &&
+ "unexpected calling convention register assignment");
+ assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
+ "unexpected use of 'returned'");
+ IsThisReturn = true;
+ }
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ SDValue DstAddr;
+ MachinePointerInfo DstInfo;
+
+ // FIXME: This works on big-endian for composite byvals, which are the
+ // common case. It should also work for fundamental types too.
+ uint32_t BEAlign = 0;
+ unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
+ : VA.getLocVT().getSizeInBits();
+ OpSize = (OpSize + 7) / 8;
+ if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
+ if (OpSize < 8)
+ BEAlign = 8 - OpSize;
+ }
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ int32_t Offset = LocMemOffset + BEAlign;
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+ PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
+
+ if (IsTailCall) {
+ Offset = Offset + FPDiff;
+ int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+
+ DstAddr = DAG.getFrameIndex(FI, getPointerTy());
+ DstInfo = MachinePointerInfo::getFixedStack(FI);
+
+ // Make sure any stack arguments overlapping with where we're storing
+ // are loaded before this eventual operation. Otherwise they'll be
+ // clobbered.
+ Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
+ } else {
+ SDValue PtrOff = DAG.getIntPtrConstant(Offset);
+
+ DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
+ DstInfo = MachinePointerInfo::getStack(LocMemOffset);
+ }
+
+ if (Outs[i].Flags.isByVal()) {
+ SDValue SizeNode =
+ DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
+ SDValue Cpy = DAG.getMemcpy(
+ Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
+ /*isVolatile = */ false,
+ /*alwaysInline = */ false, DstInfo, MachinePointerInfo());
+
+ MemOpChains.push_back(Cpy);
+ } else {
+ // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
+ // promoted to a legal register type i32, we should truncate Arg back to
+ // i1/i8/i16.
+ if (Arg.getValueType().isSimple() &&
+ Arg.getValueType().getSimpleVT() == MVT::i32 &&
+ (VA.getLocVT() == MVT::i1 || VA.getLocVT() == MVT::i8 ||
+ VA.getLocVT() == MVT::i16))
+ Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getLocVT(), Arg);
+
+ SDValue Store =
+ DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
+ MemOpChains.push_back(Store);
+ }
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ Subtarget->isTargetMachO()) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ bool InternalLinkage = GV->hasInternalLinkage();
+ if (InternalLinkage)
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
+ else {
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
+ AArch64II::MO_GOT);
+ Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
+ }
+ } else if (ExternalSymbolSDNode *S =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+ Callee =
+ DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
+ Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
+ }
+
+ // We don't usually want to end the call-sequence here because we would tidy
+ // the frame up *after* the call, however in the ABI-changing tail-call case
+ // we've carefully laid out the parameters so that when sp is reset they'll be
+ // in the correct location.
+ if (IsTailCall && !IsSibCall) {
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (IsTailCall) {
+ // Each tail call may have to adjust the stack by a different amount, so
+ // this information must travel along with the operation for eventual
+ // consumption by emitEpilogue.
+ Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
+ }
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const uint32_t *Mask;
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ if (IsThisReturn) {
+ // For 'this' returns, use the X0-preserving mask if applicable
+ Mask = ARI->getThisReturnPreservedMask(CallConv);
+ if (!Mask) {
+ IsThisReturn = false;
+ Mask = ARI->getCallPreservedMask(CallConv);
+ }
+ } else
+ Mask = ARI->getCallPreservedMask(CallConv);
+
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ // If we're doing a tall call, use a TC_RETURN here rather than an
+ // actual call instruction.
+ if (IsTailCall)
+ return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
+
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
+ ? RoundUpToAlignment(NumBytes, 16)
+ : 0;
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(CalleePopBytes, true),
+ InFlag, DL);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
+ InVals, IsThisReturn,
+ IsThisReturn ? OutVals[0] : SDValue());
+}
+
+bool AArch64TargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC);
+}
+
+SDValue
+AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
+ ? RetCC_AArch64_WebKit_JS
+ : RetCC_AArch64_AAPCS;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC);
+
+ // Copy the result values into the output registers.
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+ for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
+
+ assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
+ "unexpected offset in global node");
+
+ // This also catched the large code model case for Darwin.
+ if ((OpFlags & AArch64II::MO_GOT) != 0) {
+ SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes instead of using a wrapper node.
+ return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
+ }
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
+ } else {
+ // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
+ // the only correct model on Darwin.
+ SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ OpFlags | AArch64II::MO_PAGE);
+ unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
+ SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
+
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+/// \brief Convert a TLS address reference into the correct sequence of loads
+/// and calls to compute the variable's address (for Darwin, currently) and
+/// return an SDValue containing the final node.
+
+/// Darwin only has one TLS scheme which must be capable of dealing with the
+/// fully general situation, in the worst case. This means:
+/// + "extern __thread" declaration.
+/// + Defined in a possibly unknown dynamic library.
+///
+/// The general system is that each __thread variable has a [3 x i64] descriptor
+/// which contains information used by the runtime to calculate the address. The
+/// only part of this the compiler needs to know about is the first xword, which
+/// contains a function pointer that must be called with the address of the
+/// entire descriptor in "x0".
+///
+/// Since this descriptor may be in a different unit, in general even the
+/// descriptor must be accessed via an indirect load. The "ideal" code sequence
+/// is:
+/// adrp x0, _var@TLVPPAGE
+/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
+/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
+/// ; the function pointer
+/// blr x1 ; Uses descriptor address in x0
+/// ; Address of _var is now in x0.
+///
+/// If the address of _var's descriptor *is* known to the linker, then it can
+/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
+/// a slight efficiency gain.
+SDValue
+AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
+
+ SDLoc DL(Op);
+ MVT PtrVT = getPointerTy();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+
+ SDValue TLVPAddr =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+ SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
+
+ // The first entry in the descriptor is a function pointer that we must call
+ // to obtain the address of the variable.
+ SDValue Chain = DAG.getEntryNode();
+ SDValue FuncTLVGet =
+ DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
+ false, true, true, 8);
+ Chain = FuncTLVGet.getValue(1);
+
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setAdjustsStack(true);
+
+ // TLS calls preserve all registers except those that absolutely must be
+ // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
+ // silly).
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ const uint32_t *Mask = ARI->getTLSCallPreservedMask();
+
+ // Finally, we can make the call. This is just a degenerate version of a
+ // normal AArch64 call node: x0 takes the address of the descriptor, and
+ // returns the address of the variable in this thread.
+ Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
+ Chain =
+ DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
+ Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
+ DAG.getRegisterMask(Mask), Chain.getValue(1));
+ return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
+}
+
+/// When accessing thread-local variables under either the general-dynamic or
+/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
+/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
+/// is a function pointer to carry out the resolution. This function takes the
+/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
+/// other registers (except LR, NZCV) are preserved.
+///
+/// Thus, the ideal call sequence on AArch64 is:
+///
+/// adrp x0, :tlsdesc:thread_var
+/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
+/// add x0, x0, :tlsdesc_lo12:thread_var
+/// .tlsdesccall thread_var
+/// blr x8
+/// (TPIDR_EL0 offset now in x0).
+///
+/// The ".tlsdesccall" directive instructs the assembler to insert a particular
+/// relocation to help the linker relax this sequence if it turns out to be too
+/// conservative.
+///
+/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
+/// is harmless.
+SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
+ SDValue DescAddr, SDLoc DL,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+
+ // The function we need to call is simply the first entry in the GOT for this
+ // descriptor, load it in preparation.
+ SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
+
+ // TLS calls preserve all registers except those that absolutely must be
+ // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
+ // silly).
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *ARI =
+ static_cast<const AArch64RegisterInfo *>(TRI);
+ const uint32_t *Mask = ARI->getTLSCallPreservedMask();
+
+ // The function takes only one argument: the address of the descriptor itself
+ // in X0.
+ SDValue Glue, Chain;
+ Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
+ Glue = Chain.getValue(1);
+
+ // We're now ready to populate the argument list, as with a normal call:
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Func);
+ Ops.push_back(SymAddr);
+ Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ Ops.push_back(Glue);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
+ Glue = Chain.getValue(1);
+
+ return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
+}
+
+SDValue
+AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() && "This function expects an ELF target");
+ assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
+ "ELF TLS only supported in small memory model");
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ SDValue TPOff;
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ const GlobalValue *GV = GA->getGlobal();
+
+ SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
+
+ if (Model == TLSModel::LocalExec) {
+ SDValue HiVar = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0,
+ AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
+
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(16, MVT::i32)),
+ 0);
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)),
+ 0);
+ } else if (Model == TLSModel::InitialExec) {
+ TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+ TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
+ } else if (Model == TLSModel::LocalDynamic) {
+ // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
+ // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
+ // the beginning of the module's TLS region, followed by a DTPREL offset
+ // calculation.
+
+ // These accesses will need deduplicating if there's more than one.
+ AArch64FunctionInfo *MFI =
+ DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+ // Accesses used in this sequence go via the TLS descriptor which lives in
+ // the GOT. Prepare an address we can use to handle this.
+ SDValue HiDesc = DAG.getTargetExternalSymbol(
+ "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
+ SDValue LoDesc = DAG.getTargetExternalSymbol(
+ "_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ // First argument to the descriptor call is the address of the descriptor
+ // itself.
+ SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
+ DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
+
+ // The call needs a relocation too for linker relaxation. It doesn't make
+ // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
+ // the address.
+ SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLS);
+
+ // Now we can calculate the offset from TPIDR_EL0 to this module's
+ // thread-local area.
+ TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
+
+ // Now use :dtprel_whatever: operations to calculate this variable's offset
+ // in its thread-storage area.
+ SDValue HiVar = DAG.getTargetGlobalAddress(
+ GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(
+ GV, DL, MVT::i64, 0,
+ AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
+
+ SDValue DTPOff =
+ SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(16, MVT::i32)),
+ 0);
+ DTPOff =
+ SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)),
+ 0);
+
+ TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
+ } else if (Model == TLSModel::GeneralDynamic) {
+ // Accesses used in this sequence go via the TLS descriptor which lives in
+ // the GOT. Prepare an address we can use to handle this.
+ SDValue HiDesc = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
+ SDValue LoDesc = DAG.getTargetGlobalAddress(
+ GV, DL, PtrVT, 0,
+ AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ // First argument to the descriptor call is the address of the descriptor
+ // itself.
+ SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
+ DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
+
+ // The call needs a relocation too for linker relaxation. It doesn't make
+ // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
+ // the address.
+ SDValue SymAddr =
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
+
+ // Finally we can make a call to calculate the offset from tpidr_el0.
+ TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
+ } else
+ llvm_unreachable("Unsupported ELF TLS access model");
+
+ return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
+}
+
+SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isTargetDarwin())
+ return LowerDarwinGlobalTLSAddress(Op, DAG);
+ else if (Subtarget->isTargetELF())
+ return LowerELFGlobalTLSAddress(Op, DAG);
+
+ llvm_unreachable("Unexpected platform trying to use TLS");
+}
+SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ // Handle f128 first, since lowering it will result in comparing the return
+ // value of a libcall against zero, which is just what the rest of LowerBR_CC
+ // is expecting to deal with.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
+ // instruction.
+ unsigned Opc = LHS.getOpcode();
+ if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
+ cast<ConstantSDNode>(RHS)->isOne() &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
+ assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ "Unexpected condition code.");
+ // Only lower legal XALUO ops.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
+ return SDValue();
+
+ // The actual operation with overflow check.
+ AArch64CC::CondCode OFCC;
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
+
+ if (CC == ISD::SETNE)
+ OFCC = getInvertedCondCode(OFCC);
+ SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
+
+ return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
+ CCVal, Overflow);
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ assert((LHS.getValueType() == RHS.getValueType()) &&
+ (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
+
+ // If the RHS of the comparison is zero, we can potentially fold this
+ // to a specialized branch.
+ const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
+ if (RHSC && RHSC->getZExtValue() == 0) {
+ if (CC == ISD::SETEQ) {
+ // See if we can use a TBZ to fold in an AND as well.
+ // TBZ has a smaller branch displacement than CBZ. If the offset is
+ // out of bounds, a late MI-layer pass rewrites branches.
+ // 403.gcc is an example that hits this case.
+ if (LHS.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ isPowerOf2_64(LHS.getConstantOperandVal(1))) {
+ SDValue Test = LHS.getOperand(0);
+ uint64_t Mask = LHS.getConstantOperandVal(1);
+
+ // TBZ only operates on i64's, but the ext should be free.
+ if (Test.getValueType() == MVT::i32)
+ Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
+
+ return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
+ DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
+ }
+
+ return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
+ } else if (CC == ISD::SETNE) {
+ // See if we can use a TBZ to fold in an AND as well.
+ // TBZ has a smaller branch displacement than CBZ. If the offset is
+ // out of bounds, a late MI-layer pass rewrites branches.
+ // 403.gcc is an example that hits this case.
+ if (LHS.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ isPowerOf2_64(LHS.getConstantOperandVal(1))) {
+ SDValue Test = LHS.getOperand(0);
+ uint64_t Mask = LHS.getConstantOperandVal(1);
+
+ // TBNZ only operates on i64's, but the ext should be free.
+ if (Test.getValueType() == MVT::i32)
+ Test = DAG.getAnyExtOrTrunc(Test, dl, MVT::i64);
+
+ return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
+ DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
+ }
+
+ return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
+ }
+ }
+
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+ return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
+ Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two branches to implement.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue BR1 =
+ DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
+ if (CC2 != AArch64CC::AL) {
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
+ Cmp);
+ }
+
+ return BR1;
+}
+
+SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+
+ SDValue In1 = Op.getOperand(0);
+ SDValue In2 = Op.getOperand(1);
+ EVT SrcVT = In2.getValueType();
+ if (SrcVT != VT) {
+ if (SrcVT == MVT::f32 && VT == MVT::f64)
+ In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
+ else if (SrcVT == MVT::f64 && VT == MVT::f32)
+ In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
+ else
+ // FIXME: Src type is different, bail out for now. Can VT really be a
+ // vector type?
+ return SDValue();
+ }
+
+ EVT VecVT;
+ EVT EltVT;
+ SDValue EltMask, VecVal1, VecVal2;
+ if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
+ EltVT = MVT::i32;
+ VecVT = MVT::v4i32;
+ EltMask = DAG.getConstant(0x80000000ULL, EltVT);
+
+ if (!VT.isVector()) {
+ VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In1);
+ VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In2);
+ } else {
+ VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
+ VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
+ }
+ } else if (VT == MVT::f64 || VT == MVT::v2f64) {
+ EltVT = MVT::i64;
+ VecVT = MVT::v2i64;
+
+ // We want to materialize a mask with the the high bit set, but the AdvSIMD
+ // immediate moves cannot materialize that in a single instruction for
+ // 64-bit elements. Instead, materialize zero and then negate it.
+ EltMask = DAG.getConstant(0, EltVT);
+
+ if (!VT.isVector()) {
+ VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In1);
+ VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
+ DAG.getUNDEF(VecVT), In2);
+ } else {
+ VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
+ VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
+ }
+ } else {
+ llvm_unreachable("Invalid type for copysign!");
+ }
+
+ std::vector<SDValue> BuildVectorOps;
+ for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
+ BuildVectorOps.push_back(EltMask);
+
+ SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
+
+ // If we couldn't materialize the mask above, then the mask vector will be
+ // the zero vector, and we need to negate it here.
+ if (VT == MVT::f64 || VT == MVT::v2f64) {
+ BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
+ BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
+ BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
+ }
+
+ SDValue Sel =
+ DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
+
+ if (VT == MVT::f32)
+ return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
+ else if (VT == MVT::f64)
+ return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
+ else
+ return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
+}
+
+SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
+ if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
+ return SDValue();
+
+ // While there is no integer popcount instruction, it can
+ // be more efficiently lowered to the following sequence that uses
+ // AdvSIMD registers/instructions as long as the copies to/from
+ // the AdvSIMD registers are cheap.
+ // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
+ // CNT V0.8B, V0.8B // 8xbyte pop-counts
+ // ADDV B0, V0.8B // sum 8xbyte pop-counts
+ // UMOV X0, V0.B[0] // copy byte result back to integer reg
+ SDValue Val = Op.getOperand(0);
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
+
+ SDValue VecVal;
+ if (VT == MVT::i32) {
+ VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
+ VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
+ VecVal);
+ } else {
+ VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
+ }
+
+ SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
+ SDValue UaddLV = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
+ DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
+
+ if (VT == MVT::i64)
+ UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
+ return UaddLV;
+}
+
+SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+
+ if (Op.getValueType().isVector())
+ return LowerVSETCC(Op, DAG);
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+
+ // We chose ZeroOrOneBooleanContents, so use zero and one.
+ EVT VT = Op.getValueType();
+ SDValue TVal = DAG.getConstant(1, VT);
+ SDValue FVal = DAG.getConstant(0, VT);
+
+ // Handle f128 first, since one possible outcome is a normal integer
+ // comparison which gets picked up by the next if statement.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, use it.
+ if (!RHS.getNode()) {
+ assert(LHS.getValueType() == Op.getValueType() &&
+ "Unexpected setcc expansion!");
+ return LHS;
+ }
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ SDValue CCVal;
+ SDValue Cmp =
+ getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
+
+ // Note that we inverted the condition above, so we reverse the order of
+ // the true and false operands here. This will allow the setcc to be
+ // matched to a single CSINC instruction.
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
+ }
+
+ // Now we know we're dealing with FP values.
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
+ // and do the comparison.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ if (CC2 == AArch64CC::AL) {
+ changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+
+ // Note that we inverted the condition above, so we reverse the order of
+ // the true and false operands here. This will allow the setcc to be
+ // matched to a single CSINC instruction.
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
+ } else {
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
+ // totally clean. Some of them require two CSELs to implement. As is in
+ // this case, we emit the first CSEL and then emit a second using the output
+ // of the first as the RHS. We're effectively OR'ing the two CC's together.
+
+ // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue CS1 =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
+
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
+ }
+}
+
+/// A SELECT_CC operation is really some kind of max or min if both values being
+/// compared are, in some sense, equal to the results in either case. However,
+/// it is permissible to compare f32 values and produce directly extended f64
+/// values.
+///
+/// Extending the comparison operands would also be allowed, but is less likely
+/// to happen in practice since their use is right here. Note that truncate
+/// operations would *not* be semantically equivalent.
+static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
+ if (Cmp == Result)
+ return true;
+
+ ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
+ ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
+ if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
+ Result.getValueType() == MVT::f64) {
+ bool Lossy;
+ APFloat CmpVal = CCmp->getValueAPF();
+ CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
+ return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
+ }
+
+ return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
+}
+
+SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue CC = Op->getOperand(0);
+ SDValue TVal = Op->getOperand(1);
+ SDValue FVal = Op->getOperand(2);
+ SDLoc DL(Op);
+
+ unsigned Opc = CC.getOpcode();
+ // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
+ // instruction.
+ if (CC.getResNo() == 1 &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
+ // Only lower legal XALUO ops.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
+ return SDValue();
+
+ AArch64CC::CondCode OFCC;
+ SDValue Value, Overflow;
+ std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
+ SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
+
+ return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
+ CCVal, Overflow);
+ }
+
+ if (CC.getOpcode() == ISD::SETCC)
+ return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
+ cast<CondCodeSDNode>(CC.getOperand(2))->get());
+ else
+ return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
+ FVal, ISD::SETNE);
+}
+
+SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
+ SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue TVal = Op.getOperand(2);
+ SDValue FVal = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ // Handle f128 first, because it will result in a comparison of some RTLIB
+ // call result against zero.
+ if (LHS.getValueType() == MVT::f128) {
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ // Handle integers first.
+ if (LHS.getValueType().isInteger()) {
+ assert((LHS.getValueType() == RHS.getValueType()) &&
+ (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
+
+ unsigned Opcode = AArch64ISD::CSEL;
+
+ // If both the TVal and the FVal are constants, see if we can swap them in
+ // order to for a CSINV or CSINC out of them.
+ ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
+ ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
+
+ if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (TVal.getOpcode() == ISD::XOR) {
+ // If TVal is a NOT we want to swap TVal and FVal so that we can match
+ // with a CSINV rather than a CSEL.
+ ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
+
+ if (CVal && CVal->isAllOnesValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+ } else if (TVal.getOpcode() == ISD::SUB) {
+ // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
+ // that we can match with a CSNEG rather than a CSEL.
+ ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
+
+ if (CVal && CVal->isNullValue()) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+ } else if (CTVal && CFVal) {
+ const int64_t TrueVal = CTVal->getSExtValue();
+ const int64_t FalseVal = CFVal->getSExtValue();
+ bool Swap = false;
+
+ // If both TVal and FVal are constants, see if FVal is the
+ // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
+ // instead of a CSEL in that case.
+ if (TrueVal == ~FalseVal) {
+ Opcode = AArch64ISD::CSINV;
+ } else if (TrueVal == -FalseVal) {
+ Opcode = AArch64ISD::CSNEG;
+ } else if (TVal.getValueType() == MVT::i32) {
+ // If our operands are only 32-bit wide, make sure we use 32-bit
+ // arithmetic for the check whether we can use CSINC. This ensures that
+ // the addition in the check will wrap around properly in case there is
+ // an overflow (which would not be the case if we do the check with
+ // 64-bit arithmetic).
+ const uint32_t TrueVal32 = CTVal->getZExtValue();
+ const uint32_t FalseVal32 = CFVal->getZExtValue();
+
+ if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
+ Opcode = AArch64ISD::CSINC;
+
+ if (TrueVal32 > FalseVal32) {
+ Swap = true;
+ }
+ }
+ // 64-bit check whether we can use CSINC.
+ } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
+ Opcode = AArch64ISD::CSINC;
+
+ if (TrueVal > FalseVal) {
+ Swap = true;
+ }
+ }
+
+ // Swap TVal and FVal if necessary.
+ if (Swap) {
+ std::swap(TVal, FVal);
+ std::swap(CTVal, CFVal);
+ CC = ISD::getSetCCInverse(CC, true);
+ }
+
+ if (Opcode != AArch64ISD::CSEL) {
+ // Drop FVal since we can get its value by simply inverting/negating
+ // TVal.
+ FVal = TVal;
+ }
+ }
+
+ SDValue CCVal;
+ SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
+
+ EVT VT = Op.getValueType();
+ return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
+ }
+
+ // Now we know we're dealing with FP values.
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+ assert(LHS.getValueType() == RHS.getValueType());
+ EVT VT = Op.getValueType();
+
+ // Try to match this select into a max/min operation, which have dedicated
+ // opcode in the instruction set.
+ // FIXME: This is not correct in the presence of NaNs, so we only enable this
+ // in no-NaNs mode.
+ if (getTargetMachine().Options.NoNaNsFPMath) {
+ SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
+ if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
+ selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
+ CC = ISD::getSetCCSwappedOperands(CC);
+ std::swap(MinMaxLHS, MinMaxRHS);
+ }
+
+ if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
+ selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
+ break;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
+ break;
+ }
+ }
+ }
+
+ // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
+ // and do the comparison.
+ SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two CSELs to implement.
+ AArch64CC::CondCode CC1, CC2;
+ changeFPCCToAArch64CC(CC, CC1, CC2);
+ SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
+ SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
+
+ // If we need a second CSEL, emit it, using the output of the first as the
+ // RHS. We're effectively OR'ing the two CC's together.
+ if (CC2 != AArch64CC::AL) {
+ SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
+ }
+
+ // Otherwise, return the output of the first CSEL.
+ return CS1;
+}
+
+SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
+ SelectionDAG &DAG) const {
+ // Jump table entries as PC relative offsets. No additional tweaking
+ // is necessary here. Just get the address of the jump table.
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ !Subtarget->isTargetMachO()) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
+ AArch64II::MO_G0 | MO_NC));
+ }
+
+ SDValue Hi =
+ DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
+ AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+}
+
+SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+
+ if (getTargetMachine().getCodeModel() == CodeModel::Large) {
+ // Use the GOT for the large code model on iOS.
+ if (Subtarget->isTargetMachO()) {
+ SDValue GotAddr = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
+ AArch64II::MO_GOT);
+ return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
+ }
+
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G3),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_G0 | MO_NC));
+ } else {
+ // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
+ // ELF, the only valid one on Darwin.
+ SDValue Hi =
+ DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
+ CP->getOffset(), AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
+ AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
+
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ EVT PtrVT = getPointerTy();
+ SDLoc DL(Op);
+ if (getTargetMachine().getCodeModel() == CodeModel::Large &&
+ !Subtarget->isTargetMachO()) {
+ const unsigned char MO_NC = AArch64II::MO_NC;
+ return DAG.getNode(
+ AArch64ISD::WrapperLarge, DL, PtrVT,
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
+ } else {
+ SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
+ SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
+ AArch64II::MO_NC);
+ SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
+ return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ AArch64FunctionInfo *FuncInfo =
+ DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
+
+ SDLoc DL(Op);
+ SDValue FR =
+ DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ // The layout of the va_list struct is specified in the AArch64 Procedure Call
+ // Standard, section B.3.
+ MachineFunction &MF = DAG.getMachineFunction();
+ AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
+ SDLoc DL(Op);
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue VAList = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SmallVector<SDValue, 4> MemOps;
+
+ // void *__stack at offset 0
+ SDValue Stack =
+ DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
+ MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
+ MachinePointerInfo(SV), false, false, 8));
+
+ // void *__gr_top at offset 8
+ int GPRSize = FuncInfo->getVarArgsGPRSize();
+ if (GPRSize > 0) {
+ SDValue GRTop, GRTopAddr;
+
+ GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(8, getPointerTy()));
+
+ GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
+ GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
+ DAG.getConstant(GPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
+ MachinePointerInfo(SV, 8), false, false, 8));
+ }
+
+ // void *__vr_top at offset 16
+ int FPRSize = FuncInfo->getVarArgsFPRSize();
+ if (FPRSize > 0) {
+ SDValue VRTop, VRTopAddr;
+ VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(16, getPointerTy()));
+
+ VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
+ VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
+ DAG.getConstant(FPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
+ MachinePointerInfo(SV, 16), false, false, 8));
+ }
+
+ // int __gr_offs at offset 24
+ SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(24, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
+ GROffsAddr, MachinePointerInfo(SV, 24), false,
+ false, 4));
+
+ // int __vr_offs at offset 28
+ SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(28, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
+ VROffsAddr, MachinePointerInfo(SV, 28), false,
+ false, 4));
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
+ SelectionDAG &DAG) const {
+ return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
+ : LowerAAPCS_VASTART(Op, DAG);
+}
+
+SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
+ SelectionDAG &DAG) const {
+ // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
+ // pointer.
+ unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
+ const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+
+ return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
+ Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
+ 8, false, false, MachinePointerInfo(DestSV),
+ MachinePointerInfo(SrcSV));
+}
+
+SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin() &&
+ "automatic va_arg instruction only works on Darwin");
+
+ const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Addr = Op.getOperand(1);
+ unsigned Align = Op.getConstantOperandVal(3);
+
+ SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
+ MachinePointerInfo(V), false, false, false, 0);
+ Chain = VAList.getValue(1);
+
+ if (Align > 8) {
+ assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
+ VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(Align - 1, getPointerTy()));
+ VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
+ DAG.getConstant(-(int64_t)Align, getPointerTy()));
+ }
+
+ Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+ uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
+
+ // Scalar integer and FP values smaller than 64 bits are implicitly extended
+ // up to 64 bits. At the very least, we have to increase the striding of the
+ // vaargs list to match this, and for FP values we need to introduce
+ // FP_ROUND nodes as well.
+ if (VT.isInteger() && !VT.isVector())
+ ArgSize = 8;
+ bool NeedFPTrunc = false;
+ if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
+ ArgSize = 8;
+ NeedFPTrunc = true;
+ }
+
+ // Increment the pointer, VAList, to the next vaarg
+ SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(ArgSize, getPointerTy()));
+ // Store the incremented VAList to the legalized pointer
+ SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
+ false, false, 0);
+
+ // Load the actual argument out of the pointer VAList
+ if (NeedFPTrunc) {
+ // Load the value as an f64.
+ SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
+ MachinePointerInfo(), false, false, false, 0);
+ // Round the value down to an f32.
+ SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
+ DAG.getIntPtrConstant(1));
+ SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
+ // Merge the rounded value with the chain output of the load.
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
+ false, false, 0);
+}
+
+SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDValue FrameAddr =
+ DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(), false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
+ EVT VT) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("sp", AArch64::SP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ report_fatal_error("Invalid register name global variable");
+}
+
+SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(8, getPointerTy());
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
+ return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i64 values and take a 2 x i64 value to shift plus a shift amount.
+SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(VTBits, MVT::i64), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
+ DAG.getConstant(VTBits, MVT::i64));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+
+ SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
+ ISD::SETGE, dl, DAG);
+ SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
+
+ SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+ SDValue Lo =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
+
+ // AArch64 shifts larger than the register width are wrapped rather than
+ // clamped, so we can't just emit "hi >> x".
+ SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue TrueValHi = Opc == ISD::SRA
+ ? DAG.getNode(Opc, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, MVT::i64))
+ : DAG.getConstant(0, VT);
+ SDValue Hi =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i64 values and take a 2 x i64 value to shift plus a shift amount.
+SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(VTBits, MVT::i64), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
+ DAG.getConstant(VTBits, MVT::i64));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+
+ SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
+ ISD::SETGE, dl, DAG);
+ SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
+ SDValue Hi =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
+
+ // AArch64 shifts of larger than register sizes are wrapped rather than
+ // clamped, so we can't just emit "lo << a" if a is too big.
+ SDValue TrueValLo = DAG.getConstant(0, VT);
+ SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Lo =
+ DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+bool AArch64TargetLowering::isOffsetFoldingLegal(
+ const GlobalAddressSDNode *GA) const {
+ // The AArch64 target doesn't support folding offsets into global addresses.
+ return false;
+}
+
+bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
+ // FIXME: We should be able to handle f128 as well with a clever lowering.
+ if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
+ return true;
+
+ if (VT == MVT::f64)
+ return AArch64_AM::getFP64Imm(Imm) != -1;
+ else if (VT == MVT::f32)
+ return AArch64_AM::getFP32Imm(Imm) != -1;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// AArch64 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+// Table of Constraints
+// TODO: This is the current set of constraints supported by ARM for the
+// compiler, not all of them may make sense, e.g. S may be difficult to support.
+//
+// r - A general register
+// w - An FP/SIMD register of some size in the range v0-v31
+// x - An FP/SIMD register of some size in the range v0-v15
+// I - Constant that can be used with an ADD instruction
+// J - Constant that can be used with a SUB instruction
+// K - Constant that can be used with a 32-bit logical instruction
+// L - Constant that can be used with a 64-bit logical instruction
+// M - Constant that can be used as a 32-bit MOV immediate
+// N - Constant that can be used as a 64-bit MOV immediate
+// Q - A memory reference with base register and no offset
+// S - A symbolic address
+// Y - Floating point constant zero
+// Z - Integer constant zero
+//
+// Note that general register operands will be output using their 64-bit x
+// register name, whatever the size of the variable, unless the asm operand
+// is prefixed by the %w modifier. Floating-point and SIMD register operands
+// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
+// %q modifier.
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+AArch64TargetLowering::ConstraintType
+AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'z':
+ return C_Other;
+ case 'x':
+ case 'w':
+ return C_RegisterClass;
+ // An address with a single base register. Due to the way we
+ // currently handle addresses it is the same as 'r'.
+ case 'Q':
+ return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+AArch64TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'x':
+ case 'w':
+ if (type->isFloatingPointTy() || type->isVectorTy())
+ weight = CW_Register;
+ break;
+ case 'z':
+ weight = CW_Constant;
+ break;
+ }
+ return weight;
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+AArch64TargetLowering::getRegForInlineAsmConstraint(
+ const std::string &Constraint, MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, &AArch64::GPR64commonRegClass);
+ return std::make_pair(0U, &AArch64::GPR32commonRegClass);
+ case 'w':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, &AArch64::FPR32RegClass);
+ if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, &AArch64::FPR64RegClass);
+ if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, &AArch64::FPR128RegClass);
+ break;
+ // The instructions that this constraint is designed for can
+ // only take 128-bit registers so just use that regclass.
+ case 'x':
+ if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, &AArch64::FPR128_loRegClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass *> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // Not found as a standard register?
+ if (!Res.second) {
+ unsigned Size = Constraint.size();
+ if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
+ const std::string Reg =
+ std::string(&Constraint[2], &Constraint[Size - 1]);
+ int RegNo = atoi(Reg.c_str());
+ if (RegNo >= 0 && RegNo <= 31) {
+ // v0 - v31 are aliases of q0 - q31.
+ // By default we'll emit v0-v31 for this unless there's a modifier where
+ // we'll emit the correct register as well.
+ Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
+ Res.second = &AArch64::FPR128RegClass;
+ }
+ }
+ }
+
+ return Res;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void AArch64TargetLowering::LowerAsmOperandForConstraint(
+ SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1)
+ return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default:
+ break;
+
+ // This set of constraints deal with valid constants for various instructions.
+ // Validate and return a target constant for them if we can.
+ case 'z': {
+ // 'z' maps to xzr or wzr so it needs an input of 0.
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C || C->getZExtValue() != 0)
+ return;
+
+ if (Op.getValueType() == MVT::i64)
+ Result = DAG.getRegister(AArch64::XZR, MVT::i64);
+ else
+ Result = DAG.getRegister(AArch64::WZR, MVT::i32);
+ break;
+ }
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ // Grab the value and do some validation.
+ uint64_t CVal = C->getZExtValue();
+ switch (ConstraintLetter) {
+ // The I constraint applies only to simple ADD or SUB immediate operands:
+ // i.e. 0 to 4095 with optional shift by 12
+ // The J constraint applies only to ADD or SUB immediates that would be
+ // valid when negated, i.e. if [an add pattern] were to be output as a SUB
+ // instruction [or vice versa], in other words -1 to -4095 with optional
+ // left shift by 12.
+ case 'I':
+ if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
+ break;
+ return;
+ case 'J': {
+ uint64_t NVal = -C->getSExtValue();
+ if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal))
+ break;
+ return;
+ }
+ // The K and L constraints apply *only* to logical immediates, including
+ // what used to be the MOVI alias for ORR (though the MOVI alias has now
+ // been removed and MOV should be used). So these constraints have to
+ // distinguish between bit patterns that are valid 32-bit or 64-bit
+ // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
+ // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
+ // versa.
+ case 'K':
+ if (AArch64_AM::isLogicalImmediate(CVal, 32))
+ break;
+ return;
+ case 'L':
+ if (AArch64_AM::isLogicalImmediate(CVal, 64))
+ break;
+ return;
+ // The M and N constraints are a superset of K and L respectively, for use
+ // with the MOV (immediate) alias. As well as the logical immediates they
+ // also match 32 or 64-bit immediates that can be loaded either using a
+ // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
+ // (M) or 64-bit 0x1234000000000000 (N) etc.
+ // As a note some of this code is liberally stolen from the asm parser.
+ case 'M': {
+ if (!isUInt<32>(CVal))
+ return;
+ if (AArch64_AM::isLogicalImmediate(CVal, 32))
+ break;
+ if ((CVal & 0xFFFF) == CVal)
+ break;
+ if ((CVal & 0xFFFF0000ULL) == CVal)
+ break;
+ uint64_t NCVal = ~(uint32_t)CVal;
+ if ((NCVal & 0xFFFFULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF0000ULL) == NCVal)
+ break;
+ return;
+ }
+ case 'N': {
+ if (AArch64_AM::isLogicalImmediate(CVal, 64))
+ break;
+ if ((CVal & 0xFFFFULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF0000ULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF00000000ULL) == CVal)
+ break;
+ if ((CVal & 0xFFFF000000000000ULL) == CVal)
+ break;
+ uint64_t NCVal = ~CVal;
+ if ((NCVal & 0xFFFFULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF0000ULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF00000000ULL) == NCVal)
+ break;
+ if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
+ break;
+ return;
+ }
+ default:
+ return;
+ }
+
+ // All assembler immediates are 64-bit integers.
+ Result = DAG.getTargetConstant(CVal, MVT::i64);
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// AArch64 Advanced SIMD Support
+//===----------------------------------------------------------------------===//
+
+/// WidenVector - Given a value in the V64 register class, produce the
+/// equivalent value in the V128 register class.
+static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
+ EVT VT = V64Reg.getValueType();
+ unsigned NarrowSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
+ SDLoc DL(V64Reg);
+
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
+ V64Reg, DAG.getConstant(0, MVT::i32));
+}
+
+/// getExtFactor - Determine the adjustment factor for the position when
+/// generating an "extract from vector registers" instruction.
+static unsigned getExtFactor(SDValue &V) {
+ EVT EltType = V.getValueType().getVectorElementType();
+ return EltType.getSizeInBits() / 8;
+}
+
+/// NarrowVector - Given a value in the V128 register class, produce the
+/// equivalent value in the V64 register class.
+static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
+ EVT VT = V128Reg.getValueType();
+ unsigned WideSize = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType().getSimpleVT();
+ MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
+ SDLoc DL(V128Reg);
+
+ return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
+}
+
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 2> SourceVecs;
+ SmallVector<unsigned, 2> MinElts;
+ SmallVector<unsigned, 2> MaxElts;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ }
+
+ // Record this extraction against the appropriate vector if possible...
+ SDValue SourceVec = V.getOperand(0);
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ bool FoundSource = false;
+ for (unsigned j = 0; j < SourceVecs.size(); ++j) {
+ if (SourceVecs[j] == SourceVec) {
+ if (MinElts[j] > EltNo)
+ MinElts[j] = EltNo;
+ if (MaxElts[j] < EltNo)
+ MaxElts[j] = EltNo;
+ FoundSource = true;
+ break;
+ }
+ }
+
+ // Or record a new source if not...
+ if (!FoundSource) {
+ SourceVecs.push_back(SourceVec);
+ MinElts.push_back(EltNo);
+ MaxElts.push_back(EltNo);
+ }
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // involved.
+ if (SourceVecs.size() > 2)
+ return SDValue();
+
+ SDValue ShuffleSrcs[2] = { DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
+ int VEXTOffsets[2] = { 0, 0 };
+
+ // This loop extracts the usage patterns of the source vectors
+ // and prepares appropriate SDValues for a shuffle if possible.
+ for (unsigned i = 0; i < SourceVecs.size(); ++i) {
+ if (SourceVecs[i].getValueType() == VT) {
+ // No VEXT necessary
+ ShuffleSrcs[i] = SourceVecs[i];
+ VEXTOffsets[i] = 0;
+ continue;
+ } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
+ // We can pad out the smaller vector for free, so if it's part of a
+ // shuffle...
+ ShuffleSrcs[i] = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, SourceVecs[i],
+ DAG.getUNDEF(SourceVecs[i].getValueType()));
+ continue;
+ }
+
+ // Don't attempt to extract subvectors from BUILD_VECTOR sources
+ // that expand or trunc the original value.
+ // TODO: We can try to bitcast and ANY_EXTEND the result but
+ // we need to consider the cost of vector ANY_EXTEND, and the
+ // legality of all the types.
+ if (SourceVecs[i].getValueType().getVectorElementType() !=
+ VT.getVectorElementType())
+ return SDValue();
+
+ // Since only 64-bit and 128-bit vectors are legal on ARM and
+ // we've eliminated the other cases...
+ assert(SourceVecs[i].getValueType().getVectorNumElements() == 2 * NumElts &&
+ "unexpected vector sizes in ReconstructShuffle");
+
+ if (MaxElts[i] - MinElts[i] >= NumElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (MinElts[i] >= NumElts) {
+ // The extraction can just take the second half
+ VEXTOffsets[i] = NumElts;
+ ShuffleSrcs[i] =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ } else if (MaxElts[i] < NumElts) {
+ // The extraction can just take the first half
+ VEXTOffsets[i] = 0;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i], DAG.getIntPtrConstant(0));
+ } else {
+ // An actual VEXT is needed
+ VEXTOffsets[i] = MinElts[i];
+ SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i], DAG.getIntPtrConstant(0));
+ SDValue VEXTSrc2 =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ unsigned Imm = VEXTOffsets[i] * getExtFactor(VEXTSrc1);
+ ShuffleSrcs[i] = DAG.getNode(AArch64ISD::EXT, dl, VT, VEXTSrc1, VEXTSrc2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+ }
+
+ SmallVector<int, 8> Mask;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ SDValue ExtractVec = Entry.getOperand(0);
+ int ExtractElt =
+ cast<ConstantSDNode>(Op.getOperand(i).getOperand(1))->getSExtValue();
+ if (ExtractVec == SourceVecs[0]) {
+ Mask.push_back(ExtractElt - VEXTOffsets[0]);
+ } else {
+ Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
+ }
+ }
+
+ // Final check before we try to produce nonsense...
+ if (isShuffleMaskLegal(Mask, VT))
+ return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
+ &Mask[0]);
+
+ return SDValue();
+}
+
+// check if an EXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are the same.
+static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, just follow it
+ // back to index zero and keep going.
+ ++ExpectedElt;
+ if (ExpectedElt == NumElts)
+ ExpectedElt = 0;
+
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ return true;
+}
+
+// check if an EXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are different.
+static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
+ unsigned &Imm) {
+ // Look for the first non-undef element.
+ const int *FirstRealElt = std::find_if(M.begin(), M.end(),
+ [](int Elt) {return Elt >= 0;});
+
+ // Benefit form APInt to handle overflow when calculating expected element.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
+ APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
+ // The following shuffle indices must be the successive elements after the
+ // first real element.
+ const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
+ [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
+ if (FirstWrongElt != M.end())
+ return false;
+
+ // The index of an EXT is the first element if it is not UNDEF.
+ // Watch out for the beginning UNDEFs. The EXT index should be the expected
+ // value of the first element. E.g.
+ // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
+ // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
+ // ExpectedElt is the last mask index plus 1.
+ Imm = ExpectedElt.getZExtValue();
+
+ // There are two difference cases requiring to reverse input vectors.
+ // For example, for vector <4 x i32> we have the following cases,
+ // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
+ // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
+ // For both cases, we finally use mask <5, 6, 7, 0>, which requires
+ // to reverse two input vectors.
+ if (Imm < NumElts)
+ ReverseEXT = true;
+ else
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isREVMask - Check if a vector shuffle corresponds to a REV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
+ "Only possible block sizes for REV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+
+ return true;
+}
+
+static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if ((unsigned)M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ return true;
+}
+
+static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
+ return false;
+ Idx += 1;
+ }
+
+ return true;
+}
+
+/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned Half = VT.getVectorNumElements() / 2;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned j = 0; j != 2; ++j) {
+ unsigned Idx = WhichResult;
+ for (unsigned i = 0; i != Half; ++i) {
+ int MIdx = M[i + j * Half];
+ if (MIdx >= 0 && (unsigned)MIdx != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+
+ return true;
+}
+
+/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
+ (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+static bool isINSMask(ArrayRef<int> M, int NumInputElements,
+ bool &DstIsLeft, int &Anomaly) {
+ if (M.size() != static_cast<size_t>(NumInputElements))
+ return false;
+
+ int NumLHSMatch = 0, NumRHSMatch = 0;
+ int LastLHSMismatch = -1, LastRHSMismatch = -1;
+
+ for (int i = 0; i < NumInputElements; ++i) {
+ if (M[i] == -1) {
+ ++NumLHSMatch;
+ ++NumRHSMatch;
+ continue;
+ }
+
+ if (M[i] == i)
+ ++NumLHSMatch;
+ else
+ LastLHSMismatch = i;
+
+ if (M[i] == i + NumInputElements)
+ ++NumRHSMatch;
+ else
+ LastRHSMismatch = i;
+ }
+
+ if (NumLHSMatch == NumInputElements - 1) {
+ DstIsLeft = true;
+ Anomaly = LastLHSMismatch;
+ return true;
+ } else if (NumRHSMatch == NumInputElements - 1) {
+ DstIsLeft = false;
+ Anomaly = LastRHSMismatch;
+ return true;
+ }
+
+ return false;
+}
+
+static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
+ if (VT.getSizeInBits() != 128)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ for (int I = 0, E = NumElts / 2; I != E; I++) {
+ if (Mask[I] != I)
+ return false;
+ }
+
+ int Offset = NumElts / 2;
+ for (int I = NumElts / 2, E = NumElts; I != E; I++) {
+ if (Mask[I] != I + SplitLHS * Offset)
+ return false;
+ }
+
+ return true;
+}
+
+static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue V0 = Op.getOperand(0);
+ SDValue V1 = Op.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
+ VT.getVectorElementType() != V1.getValueType().getVectorElementType())
+ return SDValue();
+
+ bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
+
+ if (!isConcatMask(Mask, VT, SplitV0))
+ return SDValue();
+
+ EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ if (SplitV0) {
+ V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
+ DAG.getConstant(0, MVT::i64));
+ }
+ if (V1.getValueType().getSizeInBits() == 128) {
+ V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
+ DAG.getConstant(0, MVT::i64));
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1 * 9 + 2) * 9 + 3)
+ return LHS;
+ assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default:
+ llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ // VREV divides the vector in half and swaps within the half.
+ if (VT.getVectorElementType() == MVT::i32 ||
+ VT.getVectorElementType() == MVT::f32)
+ return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
+ // vrev <4 x i16> -> REV32
+ if (VT.getVectorElementType() == MVT::i16)
+ return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
+ // vrev <4 x i8> -> REV16
+ assert(VT.getVectorElementType() == MVT::i8);
+ return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3: {
+ EVT EltTy = VT.getVectorElementType();
+ unsigned Opcode;
+ if (EltTy == MVT::i8)
+ Opcode = AArch64ISD::DUPLANE8;
+ else if (EltTy == MVT::i16)
+ Opcode = AArch64ISD::DUPLANE16;
+ else if (EltTy == MVT::i32 || EltTy == MVT::f32)
+ Opcode = AArch64ISD::DUPLANE32;
+ else if (EltTy == MVT::i64 || EltTy == MVT::f64)
+ Opcode = AArch64ISD::DUPLANE64;
+ else
+ llvm_unreachable("Invalid vector element type?");
+
+ if (VT.getSizeInBits() == 64)
+ OpLHS = WidenVector(OpLHS, DAG);
+ SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
+ return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
+ }
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3: {
+ unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
+ return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+ case OP_VUZPL:
+ return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VUZPR:
+ return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VZIPL:
+ return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VZIPR:
+ return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VTRNL:
+ return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ case OP_VTRNR:
+ return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
+ OpRHS);
+ }
+}
+
+static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
+ SelectionDAG &DAG) {
+ // Check to see if we can use the TBL instruction.
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ EVT EltVT = Op.getValueType().getVectorElementType();
+ unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
+
+ SmallVector<SDValue, 8> TBLMask;
+ for (int Val : ShuffleMask) {
+ for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
+ unsigned Offset = Byte + Val * BytesPerElt;
+ TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
+ }
+ }
+
+ MVT IndexVT = MVT::v8i8;
+ unsigned IndexLen = 8;
+ if (Op.getValueType().getSizeInBits() == 128) {
+ IndexVT = MVT::v16i8;
+ IndexLen = 16;
+ }
+
+ SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
+ SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
+
+ SDValue Shuffle;
+ if (V2.getNode()->getOpcode() == ISD::UNDEF) {
+ if (IndexLen == 8)
+ V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ } else {
+ if (IndexLen == 8) {
+ V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ } else {
+ // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
+ // cannot currently represent the register constraints on the input
+ // table registers.
+ // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
+ // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ // &TBLMask[0], IndexLen));
+ Shuffle = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
+ DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
+ makeArrayRef(TBLMask.data(), IndexLen)));
+ }
+ }
+ return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
+}
+
+static unsigned getDUPLANEOp(EVT EltType) {
+ if (EltType == MVT::i8)
+ return AArch64ISD::DUPLANE8;
+ if (EltType == MVT::i16)
+ return AArch64ISD::DUPLANE16;
+ if (EltType == MVT::i32 || EltType == MVT::f32)
+ return AArch64ISD::DUPLANE32;
+ if (EltType == MVT::i64 || EltType == MVT::f64)
+ return AArch64ISD::DUPLANE64;
+
+ llvm_unreachable("Invalid vector element type?");
+}
+
+SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
+ V1.getValueType().getSimpleVT())) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1)
+ Lane = 0;
+
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
+ V1.getOperand(0));
+ // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
+ // constant. If so, we can just reference the lane's definition directly.
+ if (V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(Lane)))
+ return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
+
+ // Otherwise, duplicate from the lane of the input vector.
+ unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
+
+ // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
+ // to make a vector of the same size as this SHUFFLE. We can ignore the
+ // extract entirely, and canonicalise the concat using WidenVector.
+ if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
+ V1 = V1.getOperand(0);
+ } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
+ unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
+ Lane -= Idx * VT.getVectorNumElements() / 2;
+ V1 = WidenVector(V1.getOperand(Idx), DAG);
+ } else if (VT.getSizeInBits() == 64)
+ V1 = WidenVector(V1, DAG);
+
+ return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
+ }
+
+ if (isREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
+ if (isREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
+ if (isREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
+
+ bool ReverseEXT = false;
+ unsigned Imm;
+ if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
+ if (ReverseEXT)
+ std::swap(V1, V2);
+ Imm *= getExtFactor(V1);
+ return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ } else if (V2->getOpcode() == ISD::UNDEF &&
+ isSingletonEXTMask(ShuffleMask, VT, Imm)) {
+ Imm *= getExtFactor(V1);
+ return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ unsigned WhichResult;
+ if (isZIPMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+ if (isUZPMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+ if (isTRNMask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
+ }
+
+ if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+ if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+ if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
+ unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
+ return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
+ }
+
+ SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
+ if (Concat.getNode())
+ return Concat;
+
+ bool DstIsLeft;
+ int Anomaly;
+ int NumInputElements = V1.getValueType().getVectorNumElements();
+ if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
+ SDValue DstVec = DstIsLeft ? V1 : V2;
+ SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
+
+ SDValue SrcVec = V1;
+ int SrcLane = ShuffleMask[Anomaly];
+ if (SrcLane >= NumInputElements) {
+ SrcVec = V2;
+ SrcLane -= VT.getVectorNumElements();
+ }
+ SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
+
+ EVT ScalarVT = VT.getVectorElementType();
+ if (ScalarVT.getSizeInBits() < 32)
+ ScalarVT = MVT::i32;
+
+ return DAG.getNode(
+ ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
+ DstLaneV);
+ }
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
+ PFIndexes[2] * 9 + PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ return GenerateTBL(Op, ShuffleMask, DAG);
+}
+
+static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
+ APInt &UndefBits) {
+ EVT VT = BVN->getValueType(0);
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
+
+ for (unsigned i = 0; i < NumSplats; ++i) {
+ CnstBits <<= SplatBitSize;
+ UndefBits <<= SplatBitSize;
+ CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
+ UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
+ SelectionDAG &DAG) const {
+ BuildVectorSDNode *BVN =
+ dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
+ SDValue LHS = Op.getOperand(0);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ if (!BVN)
+ return Op;
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We only have BIC vector immediate instruction, which is and-not.
+ CnstBits = ~CnstBits;
+
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = ~UndefBits;
+ goto AttemptModImm;
+ }
+
+// We can always fall back to a non-immediate AND.
+FailedModImm:
+ return Op;
+}
+
+// Specialized code to quickly find if PotentialBVec is a BuildVector that
+// consists of only the same constant int value, returned in reference arg
+// ConstVal
+static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
+ uint64_t &ConstVal) {
+ BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
+ if (!Bvec)
+ return false;
+ ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
+ if (!FirstElt)
+ return false;
+ EVT VT = Bvec->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 1; i < NumElts; ++i)
+ if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
+ return false;
+ ConstVal = FirstElt->getZExtValue();
+ return true;
+}
+
+static unsigned getIntrinsicID(const SDNode *N) {
+ unsigned Opcode = N->getOpcode();
+ switch (Opcode) {
+ default:
+ return Intrinsic::not_intrinsic;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ if (IID < Intrinsic::num_intrinsics)
+ return IID;
+ return Intrinsic::not_intrinsic;
+ }
+ }
+}
+
+// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
+// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
+// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
+// Also, logical shift right -> sri, with the same structure.
+static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Is the first op an AND?
+ const SDValue And = N->getOperand(0);
+ if (And.getOpcode() != ISD::AND)
+ return SDValue();
+
+ // Is the second op an shl or lshr?
+ SDValue Shift = N->getOperand(1);
+ // This will have been turned into: AArch64ISD::VSHL vector, #shift
+ // or AArch64ISD::VLSHR vector, #shift
+ unsigned ShiftOpc = Shift.getOpcode();
+ if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
+ return SDValue();
+ bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
+
+ // Is the shift amount constant?
+ ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
+ if (!C2node)
+ return SDValue();
+
+ // Is the and mask vector all constant?
+ uint64_t C1;
+ if (!isAllConstantBuildVector(And.getOperand(1), C1))
+ return SDValue();
+
+ // Is C1 == ~C2, taking into account how much one can shift elements of a
+ // particular size?
+ uint64_t C2 = C2node->getZExtValue();
+ unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
+ if (C2 > ElemSizeInBits)
+ return SDValue();
+ unsigned ElemMask = (1 << ElemSizeInBits) - 1;
+ if ((C1 & ElemMask) != (~C2 & ElemMask))
+ return SDValue();
+
+ SDValue X = And.getOperand(0);
+ SDValue Y = Shift.getOperand(0);
+
+ unsigned Intrin =
+ IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
+ SDValue ResultSLI =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
+
+ DEBUG(dbgs() << "aarch64-lower: transformed: \n");
+ DEBUG(N->dump(&DAG));
+ DEBUG(dbgs() << "into: \n");
+ DEBUG(ResultSLI->dump(&DAG));
+
+ ++NumShiftInserts;
+ return ResultSLI;
+}
+
+SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
+ if (EnableAArch64SlrGeneration) {
+ SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
+ if (Res.getNode())
+ return Res;
+ }
+
+ BuildVectorSDNode *BVN =
+ dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
+ SDValue LHS = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ // OR commutes, so try swapping the operands.
+ if (!BVN) {
+ LHS = Op.getOperand(0);
+ BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
+ }
+ if (!BVN)
+ return Op;
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = UndefBits;
+ goto AttemptModImm;
+ }
+
+// We can always fall back to a non-immediate OR.
+FailedModImm:
+ return Op;
+}
+
+SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
+ // We make use of a little bit of goto ickiness in order to avoid having to
+ // duplicate the immediate matching logic for the undef toggled case.
+ bool SecondTry = false;
+ AttemptModImm:
+
+ if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
+ CnstBits = CnstBits.zextOrTrunc(64);
+ uint64_t CnstVal = CnstBits.getZExtValue();
+
+ // Certain magic vector constants (used to express things like NOT
+ // and NEG) are passed through unmodified. This allows codegen patterns
+ // for these operations to match. Special-purpose patterns will lower
+ // these immediates to MOVIs if it proves necessary.
+ if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
+ return Op;
+
+ // The many faces of MOVI...
+ if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
+ if (VT.getSizeInBits() == 128) {
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // Support the V64 version via subregister insertion.
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(264, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(272, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
+ SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // The few faces of FMOV...
+ if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
+ SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
+ VT.getSizeInBits() == 128) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
+ SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
+ DAG.getConstant(CnstVal, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ // The many faces of MVNI...
+ CnstVal = ~CnstVal;
+ if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(16, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(24, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(8, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(264, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+
+ if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
+ CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
+ MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
+ SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
+ DAG.getConstant(CnstVal, MVT::i32),
+ DAG.getConstant(272, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Mov);
+ }
+ }
+
+ if (SecondTry)
+ goto FailedModImm;
+ SecondTry = true;
+ CnstBits = UndefBits;
+ goto AttemptModImm;
+ }
+FailedModImm:
+
+ // Scan through the operands to find some interesting properties we can
+ // exploit:
+ // 1) If only one value is used, we can use a DUP, or
+ // 2) if only the low element is not undef, we can just insert that, or
+ // 3) if only one constant value is used (w/ some non-constant lanes),
+ // we can splat the constant value into the whole vector then fill
+ // in the non-constant lanes.
+ // 4) FIXME: If different constant values are used, but we can intelligently
+ // select the values we'll be overwriting for the non-constant
+ // lanes such that we can directly materialize the vector
+ // some other way (MOVI, e.g.), we can be sneaky.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool usesOnlyOneConstantValue = true;
+ bool isConstant = true;
+ unsigned NumConstantLanes = 0;
+ SDValue Value;
+ SDValue ConstantValue;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
+ ++NumConstantLanes;
+ if (!ConstantValue.getNode())
+ ConstantValue = V;
+ else if (ConstantValue != V)
+ usesOnlyOneConstantValue = false;
+ }
+
+ if (!Value.getNode())
+ Value = V;
+ else if (V != Value)
+ usesOnlyOneValue = false;
+ }
+
+ if (!Value.getNode())
+ return DAG.getUNDEF(VT);
+
+ if (isOnlyLowElement)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ // Use DUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (usesOnlyOneValue) {
+ if (!isConstant) {
+ if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Value.getValueType() != VT)
+ return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
+
+ // This is actually a DUPLANExx operation, which keeps everything vectory.
+
+ // DUPLANE works on 128-bit vectors, widen it if necessary.
+ SDValue Lane = Value.getOperand(1);
+ Value = Value.getOperand(0);
+ if (Value.getValueType().getSizeInBits() == 64)
+ Value = WidenVector(Value, DAG);
+
+ unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
+ return DAG.getNode(Opcode, dl, VT, Value, Lane);
+ }
+
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ MVT NewType =
+ (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
+ Val = LowerBUILD_VECTOR(Val, DAG);
+ if (Val.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+ }
+
+ // If there was only one constant value used and for more than one lane,
+ // start by splatting that value, then replace the non-constant lanes. This
+ // is better than the default, which will perform a separate initialization
+ // for each lane.
+ if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
+ SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
+ // Now insert the non-constant lanes.
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
+ if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
+ // Note that type legalization likely mucked about with the VT of the
+ // source operand, so we may have to convert it here before inserting.
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
+ }
+ }
+ return Val;
+ }
+
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
+ }
+
+ // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
+ // know the default expansion would otherwise fall back on something even
+ // worse. For a vector with one or two non-undef values, that's
+ // scalar_to_vector for the elements followed by a shuffle (provided the
+ // shuffle is valid for the target) and materialization element by element
+ // on the stack followed by a load for everything else.
+ if (!isConstant && !usesOnlyOneValue) {
+ SDValue Vec = DAG.getUNDEF(VT);
+ SDValue Op0 = Op.getOperand(0);
+ unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
+ unsigned i = 0;
+ // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
+ // a) Avoid a RMW dependency on the full vector register, and
+ // b) Allow the register coalescer to fold away the copy if the
+ // value is already in an S or D register.
+ if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
+ unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
+ MachineSDNode *N =
+ DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
+ DAG.getTargetConstant(SubIdx, MVT::i32));
+ Vec = SDValue(N, 0);
+ ++i;
+ }
+ for (; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
+ }
+ return Vec;
+ }
+
+ // Just use the default expansion. We failed to find a better alternative.
+ return SDValue();
+}
+
+SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
+
+ // Check for non-constant lane.
+ if (!isa<ConstantSDNode>(Op.getOperand(2)))
+ return SDValue();
+
+ EVT VT = Op.getOperand(0).getValueType();
+
+ // Insertion/extraction are legal for V128 types.
+ if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ return Op;
+
+ if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
+ VT != MVT::v1i64 && VT != MVT::v2f32)
+ return SDValue();
+
+ // For V64 types, we perform insertion by expanding the value
+ // to a V128 type and perform the insertion on that.
+ SDLoc DL(Op);
+ SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
+ EVT WideTy = WideVec.getValueType();
+
+ SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
+ Op.getOperand(1), Op.getOperand(2));
+ // Re-narrow the resultant vector.
+ return NarrowVector(Node, DAG);
+}
+
+SDValue
+AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
+
+ // Check for non-constant lane.
+ if (!isa<ConstantSDNode>(Op.getOperand(1)))
+ return SDValue();
+
+ EVT VT = Op.getOperand(0).getValueType();
+
+ // Insertion/extraction are legal for V128 types.
+ if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
+ return Op;
+
+ if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
+ VT != MVT::v1i64 && VT != MVT::v2f32)
+ return SDValue();
+
+ // For V64 types, we perform extraction by expanding the value
+ // to a V128 type and perform the extraction on that.
+ SDLoc DL(Op);
+ SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
+ EVT WideTy = WideVec.getValueType();
+
+ EVT ExtrTy = WideTy.getVectorElementType();
+ if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
+ ExtrTy = MVT::i32;
+
+ // For extractions, we just return the result directly.
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
+ Op.getOperand(1));
+}
+
+SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDLoc dl(Op);
+ // Just in case...
+ if (!VT.isVector())
+ return SDValue();
+
+ ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Cst)
+ return SDValue();
+ unsigned Val = Cst->getZExtValue();
+
+ unsigned Size = Op.getValueType().getSizeInBits();
+ if (Val == 0) {
+ switch (Size) {
+ case 8:
+ return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 16:
+ return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 32:
+ return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ case 64:
+ return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
+ Op.getOperand(0));
+ default:
+ llvm_unreachable("Unexpected vector type in extract_subvector!");
+ }
+ }
+ // If this is extracting the upper 64-bits of a 128-bit vector, we match
+ // that directly.
+ if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
+ return Op;
+
+ return SDValue();
+}
+
+bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
+ PFIndexes[2] * 9 + PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool DummyBool;
+ int DummyInt;
+ unsigned DummyUnsigned;
+
+ return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
+ isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
+ isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
+ // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
+ isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
+ isZIPMask(M, VT, DummyUnsigned) ||
+ isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
+ isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
+ isConcatMask(M, VT, VT.getSizeInBits() == 128));
+}
+
+/// getVShiftImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (isIntrinsic)
+ Cnt = -Cnt;
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
+}
+
+SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ int64_t Cnt;
+
+ if (!Op.getOperand(1).getValueType().isVector())
+ return Op;
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
+ return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
+ Op.getOperand(0), Op.getOperand(1));
+ case ISD::SRA:
+ case ISD::SRL:
+ // Right shift immediate
+ if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
+ Cnt < EltSize) {
+ unsigned Opc =
+ (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
+ return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ // Right shift register. Note, there is not a shift right register
+ // instruction, but the shift left register instruction takes a signed
+ // value, where negative numbers specify a right shift.
+ unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
+ : Intrinsic::aarch64_neon_ushl;
+ // negate the shift amount
+ SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
+ SDValue NegShiftLeft =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
+ return NegShiftLeft;
+ }
+
+ return SDValue();
+}
+
+static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
+ AArch64CC::CondCode CC, bool NoNans, EVT VT,
+ SDLoc dl, SelectionDAG &DAG) {
+ EVT SrcVT = LHS.getValueType();
+
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
+ APInt CnstBits(VT.getSizeInBits(), 0);
+ APInt UndefBits(VT.getSizeInBits(), 0);
+ bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
+ bool IsZero = IsCnst && (CnstBits == 0);
+
+ if (SrcVT.getVectorElementType().isFloatingPoint()) {
+ switch (CC) {
+ default:
+ return SDValue();
+ case AArch64CC::NE: {
+ SDValue Fcmeq;
+ if (IsZero)
+ Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
+ else
+ Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
+ return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
+ }
+ case AArch64CC::EQ:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
+ case AArch64CC::GE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
+ case AArch64CC::GT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
+ case AArch64CC::LS:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
+ case AArch64CC::LT:
+ if (!NoNans)
+ return SDValue();
+ // If we ignore NaNs then we can use to the MI implementation.
+ // Fallthrough.
+ case AArch64CC::MI:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
+ }
+ }
+
+ switch (CC) {
+ default:
+ return SDValue();
+ case AArch64CC::NE: {
+ SDValue Cmeq;
+ if (IsZero)
+ Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
+ else
+ Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
+ return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
+ }
+ case AArch64CC::EQ:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
+ case AArch64CC::GE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
+ case AArch64CC::GT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
+ case AArch64CC::LE:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
+ case AArch64CC::LS:
+ return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
+ case AArch64CC::LO:
+ return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
+ case AArch64CC::LT:
+ if (IsZero)
+ return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
+ return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
+ case AArch64CC::HI:
+ return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
+ case AArch64CC::HS:
+ return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
+ }
+}
+
+SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
+ SelectionDAG &DAG) const {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ if (LHS.getValueType().getVectorElementType().isInteger()) {
+ assert(LHS.getValueType() == RHS.getValueType());
+ AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
+ return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
+ dl, DAG);
+ }
+
+ assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
+ LHS.getValueType().getVectorElementType() == MVT::f64);
+
+ // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
+ // clean. Some of them require two branches to implement.
+ AArch64CC::CondCode CC1, CC2;
+ bool ShouldInvert;
+ changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
+
+ bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
+ SDValue Cmp =
+ EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
+ if (!Cmp.getNode())
+ return SDValue();
+
+ if (CC2 != AArch64CC::AL) {
+ SDValue Cmp2 =
+ EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
+ if (!Cmp2.getNode())
+ return SDValue();
+
+ Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
+ }
+
+ if (ShouldInvert)
+ return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
+
+ return Cmp;
+}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_ld1x2:
+ case Intrinsic::aarch64_neon_ld1x3:
+ case Intrinsic::aarch64_neon_ld1x4:
+ case Intrinsic::aarch64_neon_ld2lane:
+ case Intrinsic::aarch64_neon_ld3lane:
+ case Intrinsic::aarch64_neon_ld4lane:
+ case Intrinsic::aarch64_neon_ld2r:
+ case Intrinsic::aarch64_neon_ld3r:
+ case Intrinsic::aarch64_neon_ld4r: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.offset = 0;
+ Info.align = 0;
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ case Intrinsic::aarch64_neon_st1x2:
+ case Intrinsic::aarch64_neon_st1x3:
+ case Intrinsic::aarch64_neon_st1x4:
+ case Intrinsic::aarch64_neon_st2lane:
+ case Intrinsic::aarch64_neon_st3lane:
+ case Intrinsic::aarch64_neon_st4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.offset = 0;
+ Info.align = 0;
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::aarch64_ldaxr:
+ case Intrinsic::aarch64_ldxr: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_stlxr:
+ case Intrinsic::aarch64_stxr: {
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(1);
+ Info.offset = 0;
+ Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::aarch64_ldaxp:
+ case Intrinsic::aarch64_ldxp: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i128;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = 16;
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::aarch64_stlxp:
+ case Intrinsic::aarch64_stxp: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i128;
+ Info.ptrVal = I.getArgOperand(2);
+ Info.offset = 0;
+ Info.align = 16;
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
+
+// Truncations from 64-bit GPR to 32-bit GPR is free.
+bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ if (NumBits1 <= NumBits2)
+ return false;
+ return true;
+}
+bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ if (NumBits1 <= NumBits2)
+ return false;
+ return true;
+}
+
+// All 32-bit GPR operations implicitly zero the high-half of the corresponding
+// 64-bit GPR.
+bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ if (NumBits1 == 32 && NumBits2 == 64)
+ return true;
+ return false;
+}
+bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ if (NumBits1 == 32 && NumBits2 == 64)
+ return true;
+ return false;
+}
+
+bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ EVT VT1 = Val.getValueType();
+ if (isZExtFree(VT1, VT2)) {
+ return true;
+ }
+
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
+ return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
+ VT2.isInteger() && VT1.getSizeInBits() <= 32);
+}
+
+bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
+ unsigned &RequiredAligment) const {
+ if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
+ return false;
+ // Cyclone supports unaligned accesses.
+ RequiredAligment = 0;
+ unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
+ return NumBits == 32 || NumBits == 64;
+}
+
+bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
+ unsigned &RequiredAligment) const {
+ if (!LoadedType.isSimple() ||
+ (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
+ return false;
+ // Cyclone supports unaligned accesses.
+ RequiredAligment = 0;
+ unsigned NumBits = LoadedType.getSizeInBits();
+ return NumBits == 32 || NumBits == 64;
+}
+
+static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
+ unsigned AlignCheck) {
+ return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
+ (DstAlign == 0 || DstAlign % AlignCheck == 0));
+}
+
+EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
+ // instruction to materialize the v2i64 zero and one store (with restrictive
+ // addressing mode). Just do two i64 store of zero-registers.
+ bool Fast;
+ const Function *F = MF.getFunction();
+ if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
+ !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::NoImplicitFloat) &&
+ (memOpAlign(SrcAlign, DstAlign, 16) ||
+ (allowsUnalignedMemoryAccesses(MVT::f128, 0, &Fast) && Fast)))
+ return MVT::f128;
+
+ return Size >= 8 ? MVT::i64 : MVT::i32;
+}
+
+// 12-bit optionally shifted immediates are legal for adds.
+bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
+ if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
+ return true;
+ return false;
+}
+
+// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
+// immediates is the same as for an add or a sub.
+bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
+ if (Immed < 0)
+ Immed *= -1;
+ return isLegalAddImmediate(Immed);
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty) const {
+ // AArch64 has five basic addressing modes:
+ // reg
+ // reg + 9-bit signed offset
+ // reg + SIZE_IN_BYTES * 12-bit unsigned offset
+ // reg1 + reg2
+ // reg + SIZE_IN_BYTES * reg
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // No reg+reg+imm addressing.
+ if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
+ return false;
+
+ // check reg + imm case:
+ // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
+ uint64_t NumBytes = 0;
+ if (Ty->isSized()) {
+ uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
+ NumBytes = NumBits / 8;
+ if (!isPowerOf2_64(NumBits))
+ NumBytes = 0;
+ }
+
+ if (!AM.Scale) {
+ int64_t Offset = AM.BaseOffs;
+
+ // 9-bit signed offset
+ if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
+ return true;
+
+ // 12-bit unsigned offset
+ unsigned shift = Log2_64(NumBytes);
+ if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
+ // Must be a multiple of NumBytes (NumBytes is a power of 2)
+ (Offset >> shift) << shift == Offset)
+ return true;
+ return false;
+ }
+
+ // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
+
+ if (!AM.Scale || AM.Scale == 1 ||
+ (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
+ return true;
+ return false;
+}
+
+int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
+ Type *Ty) const {
+ // Scaling factors are not free at all.
+ // Operands | Rt Latency
+ // -------------------------------------------
+ // Rt, [Xn, Xm] | 4
+ // -------------------------------------------
+ // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
+ // Rt, [Xn, Wm, <extend> #imm] |
+ if (isLegalAddressingMode(AM, Ty))
+ // Scale represents reg2 * scale, thus account for 1 if
+ // it is not equal to 0 or 1.
+ return AM.Scale != 0 && AM.Scale != 1;
+ return -1;
+}
+
+bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+const MCPhysReg *
+AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ // LR is a callee-save register, but we must treat it as clobbered by any call
+ // site. Hence we include LR in the scratch registers, which are in turn added
+ // as implicit-defs for stackmaps and patchpoints.
+ static const MCPhysReg ScratchRegs[] = {
+ AArch64::X16, AArch64::X17, AArch64::LR, 0
+ };
+ return ScratchRegs;
+}
+
+bool
+AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
+ EVT VT = N->getValueType(0);
+ // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
+ // it with shift to let it be lowered to UBFX.
+ if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
+ isa<ConstantSDNode>(N->getOperand(1))) {
+ uint64_t TruncMask = N->getConstantOperandVal(1);
+ if (isMask_64(TruncMask) &&
+ N->getOperand(0).getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
+ return false;
+ }
+ return true;
+}
+
+bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return false;
+
+ int64_t Val = Imm.getSExtValue();
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
+ return true;
+
+ if ((int64_t)Val < 0)
+ Val = ~Val;
+ if (BitSize == 32)
+ Val &= (1LL << 32) - 1;
+
+ unsigned LZ = countLeadingZeros((uint64_t)Val);
+ unsigned Shift = (63 - LZ) / 16;
+ // MOVZ is free so return true for one or fewer MOVK.
+ return (Shift < 3) ? true : false;
+}
+
+// Generate SUBS and CSEL for integer abs.
+static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
+ // and change it to SUB and CSEL.
+ if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
+ N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
+ N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
+ if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
+ if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
+ SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
+ N0.getOperand(0));
+ // Generate SUBS & CSEL.
+ SDValue Cmp =
+ DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
+ N0.getOperand(0), DAG.getConstant(0, VT));
+ return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
+ DAG.getConstant(AArch64CC::PL, MVT::i32),
+ SDValue(Cmp.getNode(), 1));
+ }
+ return SDValue();
+}
+
+// performXorCombine - Attempts to handle integer ABS.
+static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ return performIntegerAbsCombine(N, DAG);
+}
+
+static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // Multiplication of a power of two plus/minus one can be done more
+ // cheaply as as shift+add/sub. For now, this is true unilaterally. If
+ // future CPUs have a cheaper MADD instruction, this may need to be
+ // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
+ // 64-bit is 5 cycles, so this is always a win.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ APInt Value = C->getAPIntValue();
+ EVT VT = N->getValueType(0);
+ APInt VP1 = Value + 1;
+ if (VP1.isPowerOf2()) {
+ // Multiplying by one less than a power of two, replace with a shift
+ // and a subtract.
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VP1.logBase2(), MVT::i64));
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
+ }
+ APInt VM1 = Value - 1;
+ if (VM1.isPowerOf2()) {
+ // Multiplying by one more than a power of two, replace with a shift
+ // and an add.
+ SDValue ShiftedVal =
+ DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
+ DAG.getConstant(VM1.logBase2(), MVT::i64));
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
+ }
+ }
+ return SDValue();
+}
+
+static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return SDValue();
+ // Only optimize when the source and destination types have the same width.
+ if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
+ return SDValue();
+
+ // If the result of an integer load is only used by an integer-to-float
+ // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
+ // This eliminates an "integer-to-vector-move UOP and improve throughput.
+ SDValue N0 = N->getOperand(0);
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ // Do not change the width of a volatile load.
+ !cast<LoadSDNode>(N0)->isVolatile()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
+ LN0->getPointerInfo(), LN0->isVolatile(),
+ LN0->isNonTemporal(), LN0->isInvariant(),
+ LN0->getAlignment());
+
+ // Make sure successors of the original load stay after it by updating them
+ // to use the new Chain.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
+
+ unsigned Opcode =
+ (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
+ return DAG.getNode(Opcode, SDLoc(N), VT, Load);
+ }
+
+ return SDValue();
+}
+
+/// An EXTR instruction is made up of two shifts, ORed together. This helper
+/// searches for and classifies those shifts.
+static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
+ bool &FromHi) {
+ if (N.getOpcode() == ISD::SHL)
+ FromHi = false;
+ else if (N.getOpcode() == ISD::SRL)
+ FromHi = true;
+ else
+ return false;
+
+ if (!isa<ConstantSDNode>(N.getOperand(1)))
+ return false;
+
+ ShiftAmount = N->getConstantOperandVal(1);
+ Src = N->getOperand(0);
+ return true;
+}
+
+/// EXTR instruction extracts a contiguous chunk of bits from two existing
+/// registers viewed as a high/low pair. This function looks for the pattern:
+/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
+/// EXTR. Can't quite be done in TableGen because the two immediates aren't
+/// independent.
+static SDValue tryCombineToEXTR(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ assert(N->getOpcode() == ISD::OR && "Unexpected root");
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ SDValue LHS;
+ uint32_t ShiftLHS = 0;
+ bool LHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
+ return SDValue();
+
+ SDValue RHS;
+ uint32_t ShiftRHS = 0;
+ bool RHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
+ return SDValue();
+
+ // If they're both trying to come from the high part of the register, they're
+ // not really an EXTR.
+ if (LHSFromHi == RHSFromHi)
+ return SDValue();
+
+ if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
+ return SDValue();
+
+ if (LHSFromHi) {
+ std::swap(LHS, RHS);
+ std::swap(ShiftLHS, ShiftRHS);
+ }
+
+ return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
+ DAG.getConstant(ShiftRHS, MVT::i64));
+}
+
+static SDValue tryCombineToBSL(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND)
+ return SDValue();
+
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() != ISD::AND)
+ return SDValue();
+
+ // We only have to look for constant vectors here since the general, variable
+ // case can be handled in TableGen.
+ unsigned Bits = VT.getVectorElementType().getSizeInBits();
+ uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
+ for (int i = 1; i >= 0; --i)
+ for (int j = 1; j >= 0; --j) {
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
+ if (!BVN0 || !BVN1)
+ continue;
+
+ bool FoundMatch = true;
+ for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
+ ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
+ ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
+ if (!CN0 || !CN1 ||
+ CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
+ FoundMatch = false;
+ break;
+ }
+ }
+
+ if (FoundMatch)
+ return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
+ N0->getOperand(1 - i), N1->getOperand(1 - j));
+ }
+
+ return SDValue();
+}
+
+static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
+ if (!EnableAArch64ExtrGeneration)
+ return SDValue();
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDValue Res = tryCombineToEXTR(N, DCI);
+ if (Res.getNode())
+ return Res;
+
+ Res = tryCombineToBSL(N, DCI);
+ if (Res.getNode())
+ return Res;
+
+ return SDValue();
+}
+
+static SDValue performBitcastCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // Remove extraneous bitcasts around an extract_subvector.
+ // For example,
+ // (v4i16 (bitconvert
+ // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
+ // becomes
+ // (extract_subvector ((v8i16 ...), (i64 4)))
+
+ // Only interested in 64-bit vectors as the ultimate result.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ return SDValue();
+ if (VT.getSimpleVT().getSizeInBits() != 64)
+ return SDValue();
+ // Is the operand an extract_subvector starting at the beginning or halfway
+ // point of the vector? A low half may also come through as an
+ // EXTRACT_SUBREG, so look for that, too.
+ SDValue Op0 = N->getOperand(0);
+ if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
+ !(Op0->isMachineOpcode() &&
+ Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
+ return SDValue();
+ uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
+ if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
+ return SDValue();
+ } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
+ if (idx != AArch64::dsub)
+ return SDValue();
+ // The dsub reference is equivalent to a lane zero subvector reference.
+ idx = 0;
+ }
+ // Look through the bitcast of the input to the extract.
+ if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
+ return SDValue();
+ SDValue Source = Op0->getOperand(0)->getOperand(0);
+ // If the source type has twice the number of elements as our destination
+ // type, we know this is an extract of the high or low half of the vector.
+ EVT SVT = Source->getValueType(0);
+ if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
+ return SDValue();
+
+ DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
+
+ // Create the simplified form to just extract the low or high half of the
+ // vector directly rather than bothering with the bitcasts.
+ SDLoc dl(N);
+ unsigned NumElements = VT.getVectorNumElements();
+ if (idx) {
+ SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
+ } else {
+ SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
+ return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
+ Source, SubReg),
+ 0);
+ }
+}
+
+static SDValue performConcatVectorsCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
+ // splat. The indexed instructions are going to be expecting a DUPLANE64, so
+ // canonicalise to that.
+ if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
+ assert(VT.getVectorElementType().getSizeInBits() == 64);
+ return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
+ WidenVector(N->getOperand(0), DAG),
+ DAG.getConstant(0, MVT::i64));
+ }
+
+ // Canonicalise concat_vectors so that the right-hand vector has as few
+ // bit-casts as possible before its real operation. The primary matching
+ // destination for these operations will be the narrowing "2" instructions,
+ // which depend on the operation being performed on this right-hand vector.
+ // For example,
+ // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
+ // becomes
+ // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
+
+ SDValue Op1 = N->getOperand(1);
+ if (Op1->getOpcode() != ISD::BITCAST)
+ return SDValue();
+ SDValue RHS = Op1->getOperand(0);
+ MVT RHSTy = RHS.getValueType().getSimpleVT();
+ // If the RHS is not a vector, this is not the pattern we're looking for.
+ if (!RHSTy.isVector())
+ return SDValue();
+
+ DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
+
+ MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
+ RHSTy.getVectorNumElements() * 2);
+ return DAG.getNode(
+ ISD::BITCAST, dl, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
+ DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
+}
+
+static SDValue tryCombineFixedPointConvert(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // Wait 'til after everything is legalized to try this. That way we have
+ // legal vector types and such.
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+ // Transform a scalar conversion of a value from a lane extract into a
+ // lane extract of a vector conversion. E.g., from foo1 to foo2:
+ // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
+ // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
+ //
+ // The second form interacts better with instruction selection and the
+ // register allocator to avoid cross-class register copies that aren't
+ // coalescable due to a lane reference.
+
+ // Check the operand and see if it originates from a lane extract.
+ SDValue Op1 = N->getOperand(1);
+ if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ // Yep, no additional predication needed. Perform the transform.
+ SDValue IID = N->getOperand(0);
+ SDValue Shift = N->getOperand(2);
+ SDValue Vec = Op1.getOperand(0);
+ SDValue Lane = Op1.getOperand(1);
+ EVT ResTy = N->getValueType(0);
+ EVT VecResTy;
+ SDLoc DL(N);
+
+ // The vector width should be 128 bits by the time we get here, even
+ // if it started as 64 bits (the extract_vector handling will have
+ // done so).
+ assert(Vec.getValueType().getSizeInBits() == 128 &&
+ "unexpected vector size on extract_vector_elt!");
+ if (Vec.getValueType() == MVT::v4i32)
+ VecResTy = MVT::v4f32;
+ else if (Vec.getValueType() == MVT::v2i64)
+ VecResTy = MVT::v2f64;
+ else
+ assert(0 && "unexpected vector type!");
+
+ SDValue Convert =
+ DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
+ }
+ return SDValue();
+}
+
+// AArch64 high-vector "long" operations are formed by performing the non-high
+// version on an extract_subvector of each operand which gets the high half:
+//
+// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
+//
+// However, there are cases which don't have an extract_high explicitly, but
+// have another operation that can be made compatible with one for free. For
+// example:
+//
+// (dupv64 scalar) --> (extract_high (dup128 scalar))
+//
+// This routine does the actual conversion of such DUPs, once outer routines
+// have determined that everything else is in order.
+static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
+ // We can handle most types of duplicate, but the lane ones have an extra
+ // operand saying *which* lane, so we need to know.
+ bool IsDUPLANE;
+ switch (N.getOpcode()) {
+ case AArch64ISD::DUP:
+ IsDUPLANE = false;
+ break;
+ case AArch64ISD::DUPLANE8:
+ case AArch64ISD::DUPLANE16:
+ case AArch64ISD::DUPLANE32:
+ case AArch64ISD::DUPLANE64:
+ IsDUPLANE = true;
+ break;
+ default:
+ return SDValue();
+ }
+
+ MVT NarrowTy = N.getSimpleValueType();
+ if (!NarrowTy.is64BitVector())
+ return SDValue();
+
+ MVT ElementTy = NarrowTy.getVectorElementType();
+ unsigned NumElems = NarrowTy.getVectorNumElements();
+ MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
+
+ SDValue NewDUP;
+ if (IsDUPLANE)
+ NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
+ N.getOperand(1));
+ else
+ NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
+
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
+ NewDUP, DAG.getConstant(NumElems, MVT::i64));
+}
+
+static bool isEssentiallyExtractSubvector(SDValue N) {
+ if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ return true;
+
+ return N.getOpcode() == ISD::BITCAST &&
+ N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
+}
+
+/// \brief Helper structure to keep track of ISD::SET_CC operands.
+struct GenericSetCCInfo {
+ const SDValue *Opnd0;
+ const SDValue *Opnd1;
+ ISD::CondCode CC;
+};
+
+/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
+struct AArch64SetCCInfo {
+ const SDValue *Cmp;
+ AArch64CC::CondCode CC;
+};
+
+/// \brief Helper structure to keep track of SetCC information.
+union SetCCInfo {
+ GenericSetCCInfo Generic;
+ AArch64SetCCInfo AArch64;
+};
+
+/// \brief Helper structure to be able to read SetCC information. If set to
+/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
+/// GenericSetCCInfo.
+struct SetCCInfoAndKind {
+ SetCCInfo Info;
+ bool IsAArch64;
+};
+
+/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
+/// an
+/// AArch64 lowered one.
+/// \p SetCCInfo is filled accordingly.
+/// \post SetCCInfo is meanginfull only when this function returns true.
+/// \return True when Op is a kind of SET_CC operation.
+static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
+ // If this is a setcc, this is straight forward.
+ if (Op.getOpcode() == ISD::SETCC) {
+ SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
+ SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
+ SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SetCCInfo.IsAArch64 = false;
+ return true;
+ }
+ // Otherwise, check if this is a matching csel instruction.
+ // In other words:
+ // - csel 1, 0, cc
+ // - csel 0, 1, !cc
+ if (Op.getOpcode() != AArch64ISD::CSEL)
+ return false;
+ // Set the information about the operands.
+ // TODO: we want the operands of the Cmp not the csel
+ SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
+ SetCCInfo.IsAArch64 = true;
+ SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
+ cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
+
+ // Check that the operands matches the constraints:
+ // (1) Both operands must be constants.
+ // (2) One must be 1 and the other must be 0.
+ ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+ ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+
+ // Check (1).
+ if (!TValue || !FValue)
+ return false;
+
+ // Check (2).
+ if (!TValue->isOne()) {
+ // Update the comparison when we are interested in !cc.
+ std::swap(TValue, FValue);
+ SetCCInfo.Info.AArch64.CC =
+ AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
+ }
+ return TValue->isOne() && FValue->isNullValue();
+}
+
+// Returns true if Op is setcc or zext of setcc.
+static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
+ if (isSetCC(Op, Info))
+ return true;
+ return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
+ isSetCC(Op->getOperand(0), Info));
+}
+
+// The folding we want to perform is:
+// (add x, [zext] (setcc cc ...) )
+// -->
+// (csel x, (add x, 1), !cc ...)
+//
+// The latter will get matched to a CSINC instruction.
+static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
+ assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
+ SDValue LHS = Op->getOperand(0);
+ SDValue RHS = Op->getOperand(1);
+ SetCCInfoAndKind InfoAndKind;
+
+ // If neither operand is a SET_CC, give up.
+ if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
+ std::swap(LHS, RHS);
+ if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
+ return SDValue();
+ }
+
+ // FIXME: This could be generatized to work for FP comparisons.
+ EVT CmpVT = InfoAndKind.IsAArch64
+ ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
+ : InfoAndKind.Info.Generic.Opnd0->getValueType();
+ if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
+ return SDValue();
+
+ SDValue CCVal;
+ SDValue Cmp;
+ SDLoc dl(Op);
+ if (InfoAndKind.IsAArch64) {
+ CCVal = DAG.getConstant(
+ AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
+ Cmp = *InfoAndKind.Info.AArch64.Cmp;
+ } else
+ Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
+ *InfoAndKind.Info.Generic.Opnd1,
+ ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
+ CCVal, DAG, dl);
+
+ EVT VT = Op->getValueType(0);
+ LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
+ return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
+}
+
+// The basic add/sub long vector instructions have variants with "2" on the end
+// which act on the high-half of their inputs. They are normally matched by
+// patterns like:
+//
+// (add (zeroext (extract_high LHS)),
+// (zeroext (extract_high RHS)))
+// -> uaddl2 vD, vN, vM
+//
+// However, if one of the extracts is something like a duplicate, this
+// instruction can still be used profitably. This function puts the DAG into a
+// more appropriate form for those patterns to trigger.
+static SDValue performAddSubLongCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ if (!VT.is128BitVector()) {
+ if (N->getOpcode() == ISD::ADD)
+ return performSetccAddFolding(N, DAG);
+ return SDValue();
+ }
+
+ // Make sure both branches are extended in the same way.
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
+ LHS.getOpcode() != ISD::SIGN_EXTEND) ||
+ LHS.getOpcode() != RHS.getOpcode())
+ return SDValue();
+
+ unsigned ExtType = LHS.getOpcode();
+
+ // It's not worth doing if at least one of the inputs isn't already an
+ // extract, but we don't know which it'll be so we have to try both.
+ if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
+ RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
+ if (!RHS.getNode())
+ return SDValue();
+
+ RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
+ } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
+ LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
+ if (!LHS.getNode())
+ return SDValue();
+
+ LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
+ }
+
+ return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
+}
+
+// Massage DAGs which we can use the high-half "long" operations on into
+// something isel will recognize better. E.g.
+//
+// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
+// (aarch64_neon_umull (extract_high (v2i64 vec)))
+// (extract_high (v2i64 (dup128 scalar)))))
+//
+static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ assert(LHS.getValueType().is64BitVector() &&
+ RHS.getValueType().is64BitVector() &&
+ "unexpected shape for long operation");
+
+ // Either node could be a DUP, but it's not worth doing both of them (you'd
+ // just as well use the non-high version) so look for a corresponding extract
+ // operation on the other "wing".
+ if (isEssentiallyExtractSubvector(LHS)) {
+ RHS = tryExtendDUPToExtractHigh(RHS, DAG);
+ if (!RHS.getNode())
+ return SDValue();
+ } else if (isEssentiallyExtractSubvector(RHS)) {
+ LHS = tryExtendDUPToExtractHigh(LHS, DAG);
+ if (!LHS.getNode())
+ return SDValue();
+ }
+
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), LHS, RHS);
+}
+
+static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
+ MVT ElemTy = N->getSimpleValueType(0).getScalarType();
+ unsigned ElemBits = ElemTy.getSizeInBits();
+
+ int64_t ShiftAmount;
+ if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElemBits) ||
+ SplatBitSize != ElemBits)
+ return SDValue();
+
+ ShiftAmount = SplatValue.getSExtValue();
+ } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
+ ShiftAmount = CVN->getSExtValue();
+ } else
+ return SDValue();
+
+ unsigned Opcode;
+ bool IsRightShift;
+ switch (IID) {
+ default:
+ llvm_unreachable("Unknown shift intrinsic");
+ case Intrinsic::aarch64_neon_sqshl:
+ Opcode = AArch64ISD::SQSHL_I;
+ IsRightShift = false;
+ break;
+ case Intrinsic::aarch64_neon_uqshl:
+ Opcode = AArch64ISD::UQSHL_I;
+ IsRightShift = false;
+ break;
+ case Intrinsic::aarch64_neon_srshl:
+ Opcode = AArch64ISD::SRSHR_I;
+ IsRightShift = true;
+ break;
+ case Intrinsic::aarch64_neon_urshl:
+ Opcode = AArch64ISD::URSHR_I;
+ IsRightShift = true;
+ break;
+ case Intrinsic::aarch64_neon_sqshlu:
+ Opcode = AArch64ISD::SQSHLU_I;
+ IsRightShift = false;
+ break;
+ }
+
+ if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
+ return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
+ DAG.getConstant(-ShiftAmount, MVT::i32));
+ else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount <= ElemBits)
+ return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
+ DAG.getConstant(ShiftAmount, MVT::i32));
+
+ return SDValue();
+}
+
+// The CRC32[BH] instructions ignore the high bits of their data operand. Since
+// the intrinsics must be legal and take an i32, this means there's almost
+// certainly going to be a zext in the DAG which we can eliminate.
+static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
+ SDValue AndN = N->getOperand(2);
+ if (AndN.getOpcode() != ISD::AND)
+ return SDValue();
+
+ ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
+ if (!CMask || CMask->getZExtValue() != Mask)
+ return SDValue();
+
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
+ N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
+}
+
+static SDValue performIntrinsicCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned IID = getIntrinsicID(N);
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_vcvtfxs2fp:
+ case Intrinsic::aarch64_neon_vcvtfxu2fp:
+ return tryCombineFixedPointConvert(N, DCI, DAG);
+ break;
+ case Intrinsic::aarch64_neon_fmax:
+ return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2));
+ case Intrinsic::aarch64_neon_fmin:
+ return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2));
+ case Intrinsic::aarch64_neon_smull:
+ case Intrinsic::aarch64_neon_umull:
+ case Intrinsic::aarch64_neon_pmull:
+ case Intrinsic::aarch64_neon_sqdmull:
+ return tryCombineLongOpWithDup(IID, N, DCI, DAG);
+ case Intrinsic::aarch64_neon_sqshl:
+ case Intrinsic::aarch64_neon_uqshl:
+ case Intrinsic::aarch64_neon_sqshlu:
+ case Intrinsic::aarch64_neon_srshl:
+ case Intrinsic::aarch64_neon_urshl:
+ return tryCombineShiftImm(IID, N, DAG);
+ case Intrinsic::aarch64_crc32b:
+ case Intrinsic::aarch64_crc32cb:
+ return tryCombineCRC32(0xff, N, DAG);
+ case Intrinsic::aarch64_crc32h:
+ case Intrinsic::aarch64_crc32ch:
+ return tryCombineCRC32(0xffff, N, DAG);
+ }
+ return SDValue();
+}
+
+static SDValue performExtendCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
+ // we can convert that DUP into another extract_high (of a bigger DUP), which
+ // helps the backend to decide that an sabdl2 would be useful, saving a real
+ // extract_high operation.
+ if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
+ N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
+ SDNode *ABDNode = N->getOperand(0).getNode();
+ unsigned IID = getIntrinsicID(ABDNode);
+ if (IID == Intrinsic::aarch64_neon_sabd ||
+ IID == Intrinsic::aarch64_neon_uabd) {
+ SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
+ if (!NewABD.getNode())
+ return SDValue();
+
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
+ NewABD);
+ }
+ }
+
+ // This is effectively a custom type legalization for AArch64.
+ //
+ // Type legalization will split an extend of a small, legal, type to a larger
+ // illegal type by first splitting the destination type, often creating
+ // illegal source types, which then get legalized in isel-confusing ways,
+ // leading to really terrible codegen. E.g.,
+ // %result = v8i32 sext v8i8 %value
+ // becomes
+ // %losrc = extract_subreg %value, ...
+ // %hisrc = extract_subreg %value, ...
+ // %lo = v4i32 sext v4i8 %losrc
+ // %hi = v4i32 sext v4i8 %hisrc
+ // Things go rapidly downhill from there.
+ //
+ // For AArch64, the [sz]ext vector instructions can only go up one element
+ // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
+ // take two instructions.
+ //
+ // This implies that the most efficient way to do the extend from v8i8
+ // to two v4i32 values is to first extend the v8i8 to v8i16, then do
+ // the normal splitting to happen for the v8i16->v8i32.
+
+ // This is pre-legalization to catch some cases where the default
+ // type legalization will create ill-tempered code.
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ // We're only interested in cleaning things up for non-legal vector types
+ // here. If both the source and destination are legal, things will just
+ // work naturally without any fiddling.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT ResVT = N->getValueType(0);
+ if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
+ return SDValue();
+ // If the vector type isn't a simple VT, it's beyond the scope of what
+ // we're worried about here. Let legalization do its thing and hope for
+ // the best.
+ if (!ResVT.isSimple())
+ return SDValue();
+
+ SDValue Src = N->getOperand(0);
+ MVT SrcVT = Src->getValueType(0).getSimpleVT();
+ // If the source VT is a 64-bit vector, we can play games and get the
+ // better results we want.
+ if (SrcVT.getSizeInBits() != 64)
+ return SDValue();
+
+ unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
+ unsigned ElementCount = SrcVT.getVectorNumElements();
+ SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
+ SDLoc DL(N);
+ Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
+
+ // Now split the rest of the operation into two halves, each with a 64
+ // bit source.
+ EVT LoVT, HiVT;
+ SDValue Lo, Hi;
+ unsigned NumElements = ResVT.getVectorNumElements();
+ assert(!(NumElements & 1) && "Splitting vector, but not in half!");
+ LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
+ ResVT.getVectorElementType(), NumElements / 2);
+
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
+ LoVT.getVectorNumElements());
+ Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
+ DAG.getIntPtrConstant(0));
+ Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
+ DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
+
+ // Now combine the parts back together so we still have a single result
+ // like the combiner expects.
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
+}
+
+/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
+/// value. The load store optimizer pass will merge them to store pair stores.
+/// This has better performance than a splat of the scalar followed by a split
+/// vector store. Even if the stores are not merged it is four stores vs a dup,
+/// followed by an ext.b and two stores.
+static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+
+ // Don't replace floating point stores, they possibly won't be transformed to
+ // stp because of the store pair suppress pass.
+ if (VT.isFloatingPoint())
+ return SDValue();
+
+ // Check for insert vector elements.
+ if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
+ return SDValue();
+
+ // We can express a splat as store pair(s) for 2 or 4 elements.
+ unsigned NumVecElts = VT.getVectorNumElements();
+ if (NumVecElts != 4 && NumVecElts != 2)
+ return SDValue();
+ SDValue SplatVal = StVal.getOperand(1);
+ unsigned RemainInsertElts = NumVecElts - 1;
+
+ // Check that this is a splat.
+ while (--RemainInsertElts) {
+ SDValue NextInsertElt = StVal.getOperand(0);
+ if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
+ return SDValue();
+ if (NextInsertElt.getOperand(1) != SplatVal)
+ return SDValue();
+ StVal = NextInsertElt;
+ }
+ unsigned OrigAlignment = St->getAlignment();
+ unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
+ unsigned Alignment = std::min(OrigAlignment, EltOffset);
+
+ // Create scalar stores. This is at least as good as the code sequence for a
+ // split unaligned store wich is a dup.s, ext.b, and two stores.
+ // Most of the time the three stores should be replaced by store pair
+ // instructions (stp).
+ SDLoc DL(St);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 =
+ DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(), St->getAlignment());
+
+ unsigned Offset = EltOffset;
+ while (--NumVecElts) {
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ DAG.getConstant(Offset, MVT::i64));
+ NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), Alignment);
+ Offset += EltOffset;
+ }
+ return NewST1;
+}
+
+static SDValue performSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG,
+ const AArch64Subtarget *Subtarget) {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ StoreSDNode *S = cast<StoreSDNode>(N);
+ if (S->isVolatile())
+ return SDValue();
+
+ // Cyclone has bad performance on unaligned 16B stores when crossing line and
+ // page boundries. We want to split such stores.
+ if (!Subtarget->isCyclone())
+ return SDValue();
+
+ // Don't split at Oz.
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::MinSize);
+ if (IsMinSize)
+ return SDValue();
+
+ SDValue StVal = S->getValue();
+ EVT VT = StVal.getValueType();
+
+ // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
+ // those up regresses performance on micro-benchmarks and olden/bh.
+ if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
+ return SDValue();
+
+ // Split unaligned 16B stores. They are terrible for performance.
+ // Don't split stores with alignment of 1 or 2. Code that uses clang vector
+ // extensions can use this to mark that it does not want splitting to happen
+ // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
+ // eliminating alignment hazards is only 1 in 8 for alignment of 2.
+ if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
+ S->getAlignment() <= 2)
+ return SDValue();
+
+ // If we get a splat of a scalar convert this vector store to a store of
+ // scalars. They will be merged into store pairs thereby removing two
+ // instructions.
+ SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
+ if (ReplacedSplat != SDValue())
+ return ReplacedSplat;
+
+ SDLoc DL(S);
+ unsigned NumElts = VT.getVectorNumElements() / 2;
+ // Split VT into two.
+ EVT HalfVT =
+ EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
+ SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
+ DAG.getIntPtrConstant(0));
+ SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
+ DAG.getIntPtrConstant(NumElts));
+ SDValue BasePtr = S->getBasePtr();
+ SDValue NewST1 =
+ DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
+ S->isVolatile(), S->isNonTemporal(), S->getAlignment());
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
+ DAG.getConstant(8, MVT::i64));
+ return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
+ S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
+ S->getAlignment());
+}
+
+/// Target-specific DAG combine function for post-increment LD1 (lane) and
+/// post-increment LD1R.
+static SDValue performPostLD1Combine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ bool IsLaneOp) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ unsigned LoadIdx = IsLaneOp ? 1 : 0;
+ SDNode *LD = N->getOperand(LoadIdx).getNode();
+ // If it is not LOAD, can not do such combine.
+ if (LD->getOpcode() != ISD::LOAD)
+ return SDValue();
+
+ LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
+ EVT MemVT = LoadSDN->getMemoryVT();
+ // Check if memory operand is the same type as the vector element.
+ if (MemVT != VT.getVectorElementType())
+ return SDValue();
+
+ // Check if there are other uses. If so, do not combine as it will introduce
+ // an extra load.
+ for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
+ ++UI) {
+ if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
+ continue;
+ if (*UI != N)
+ return SDValue();
+ }
+
+ SDValue Addr = LD->getOperand(1);
+ SDValue Vector = N->getOperand(0);
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
+ Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD
+ || UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load. Otherwise, folding it
+ // would create a cycle.
+ if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
+ continue;
+ // Also check that add is not used in the vector operand. This would also
+ // create a cycle.
+ if (User->isPredecessorOf(Vector.getNode()))
+ continue;
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint32_t IncVal = CInc->getZExtValue();
+ unsigned NumBytes = VT.getScalarSizeInBits() / 8;
+ if (IncVal != NumBytes)
+ continue;
+ Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
+ }
+
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(LD->getOperand(0)); // Chain
+ if (IsLaneOp) {
+ Ops.push_back(Vector); // The vector to be inserted
+ Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
+ }
+ Ops.push_back(Addr);
+ Ops.push_back(Inc);
+
+ EVT Tys[3] = { VT, MVT::i64, MVT::Other };
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, 3));
+ unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
+ MemVT,
+ LoadSDN->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ NewResults.push_back(SDValue(LD, 0)); // The result of load
+ NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
+ DCI.CombineTo(LD, NewResults);
+ DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
+
+ break;
+ }
+ return SDValue();
+}
+
+/// Target-specific DAG combine function for NEON load/store intrinsics
+/// to merge base address updates.
+static SDValue performNEONPostLDSTCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ unsigned AddrOpIdx = N->getNumOperands() - 1;
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool IsStore = false;
+ bool IsLaneOp = false;
+ bool IsDupOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
+ NumVecs = 2; break;
+ case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
+ NumVecs = 3; break;
+ case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
+ NumVecs = 4; break;
+ case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
+ NumVecs = 2; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
+ NumVecs = 3; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
+ NumVecs = 4; IsStore = true; break;
+ case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
+ NumVecs = 2; break;
+ case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
+ NumVecs = 3; break;
+ case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
+ NumVecs = 4; break;
+ case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
+ NumVecs = 2; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
+ NumVecs = 3; IsStore = true; break;
+ case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
+ NumVecs = 4; IsStore = true; break;
+ case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
+ NumVecs = 2; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
+ NumVecs = 3; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
+ NumVecs = 4; IsDupOp = true; break;
+ case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
+ NumVecs = 2; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
+ NumVecs = 3; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
+ NumVecs = 4; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
+ NumVecs = 2; IsStore = true; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
+ NumVecs = 3; IsStore = true; IsLaneOp = true; break;
+ case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
+ NumVecs = 4; IsStore = true; IsLaneOp = true; break;
+ }
+
+ EVT VecTy;
+ if (IsStore)
+ VecTy = N->getOperand(2).getValueType();
+ else
+ VecTy = N->getValueType(0);
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint32_t IncVal = CInc->getZExtValue();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (IsLaneOp || IsDupOp)
+ NumBytes /= VecTy.getVectorNumElements();
+ if (IncVal != NumBytes)
+ continue;
+ Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
+ }
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // Incoming chain
+ // Load lane and store have vector list as input.
+ if (IsLaneOp || IsStore)
+ for (unsigned i = 2; i < AddrOpIdx; ++i)
+ Ops.push_back(N->getOperand(i));
+ Ops.push_back(Addr); // Base register
+ Ops.push_back(Inc);
+
+ // Return Types.
+ EVT Tys[6];
+ unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i64; // Type of write back register
+ Tys[n] = MVT::Other; // Type of the chain
+ SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
+
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
+ MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+// Optimize compare with zero and branch.
+static SDValue performBRCONDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ SelectionDAG &DAG) {
+ SDValue Chain = N->getOperand(0);
+ SDValue Dest = N->getOperand(1);
+ SDValue CCVal = N->getOperand(2);
+ SDValue Cmp = N->getOperand(3);
+
+ assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
+ unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
+ if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
+ return SDValue();
+
+ unsigned CmpOpc = Cmp.getOpcode();
+ if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
+ return SDValue();
+
+ // Only attempt folding if there is only one use of the flag and no use of the
+ // value.
+ if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
+ return SDValue();
+
+ SDValue LHS = Cmp.getOperand(0);
+ SDValue RHS = Cmp.getOperand(1);
+
+ assert(LHS.getValueType() == RHS.getValueType() &&
+ "Expected the value type to be the same for both operands!");
+ if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
+ return SDValue();
+
+ if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
+ std::swap(LHS, RHS);
+
+ if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
+ return SDValue();
+
+ if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
+ LHS.getOpcode() == ISD::SRL)
+ return SDValue();
+
+ // Fold the compare into the branch instruction.
+ SDValue BR;
+ if (CC == AArch64CC::EQ)
+ BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
+ else
+ BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, BR, false);
+
+ return SDValue();
+}
+
+// vselect (v1i1 setcc) ->
+// vselect (v1iXX setcc) (XX is the size of the compared operand type)
+// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
+// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
+// such VSELECT.
+static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ EVT CCVT = N0.getValueType();
+
+ if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
+ CCVT.getVectorElementType() != MVT::i1)
+ return SDValue();
+
+ EVT ResVT = N->getValueType(0);
+ EVT CmpVT = N0.getOperand(0).getValueType();
+ // Only combine when the result type is of the same size as the compared
+ // operands.
+ if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
+ return SDValue();
+
+ SDValue IfTrue = N->getOperand(1);
+ SDValue IfFalse = N->getOperand(2);
+ SDValue SetCC =
+ DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
+ N0.getOperand(0), N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
+ IfTrue, IfFalse);
+}
+
+/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
+/// the compare-mask instructions rather than going via NZCV, even if LHS and
+/// RHS are really scalar. This replaces any scalar setcc in the above pattern
+/// with a vector one followed by a DUP shuffle on the result.
+static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ EVT ResVT = N->getValueType(0);
+
+ if (!N->getOperand(1).getValueType().isVector())
+ return SDValue();
+
+ if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
+ return SDValue();
+
+ SDLoc DL(N0);
+
+ EVT SrcVT = N0.getOperand(0).getValueType();
+ SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT,
+ ResVT.getSizeInBits() / SrcVT.getSizeInBits());
+ EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
+
+ // First perform a vector comparison, where lane 0 is the one we're interested
+ // in.
+ SDValue LHS =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
+ SDValue RHS =
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
+ SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
+
+ // Now duplicate the comparison mask we want across all other lanes.
+ SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
+ SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
+ Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(),
+ Mask);
+
+ return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
+}
+
+SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case ISD::ADD:
+ case ISD::SUB:
+ return performAddSubLongCombine(N, DCI, DAG);
+ case ISD::XOR:
+ return performXorCombine(N, DAG, DCI, Subtarget);
+ case ISD::MUL:
+ return performMulCombine(N, DAG, DCI, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ return performIntToFpCombine(N, DAG);
+ case ISD::OR:
+ return performORCombine(N, DCI, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN:
+ return performIntrinsicCombine(N, DCI, Subtarget);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ return performExtendCombine(N, DCI, DAG);
+ case ISD::BITCAST:
+ return performBitcastCombine(N, DCI, DAG);
+ case ISD::CONCAT_VECTORS:
+ return performConcatVectorsCombine(N, DCI, DAG);
+ case ISD::SELECT:
+ return performSelectCombine(N, DAG);
+ case ISD::VSELECT:
+ return performVSelectCombine(N, DCI.DAG);
+ case ISD::STORE:
+ return performSTORECombine(N, DCI, DAG, Subtarget);
+ case AArch64ISD::BRCOND:
+ return performBRCONDCombine(N, DCI, DAG);
+ case AArch64ISD::DUP:
+ return performPostLD1Combine(N, DCI, false);
+ case ISD::INSERT_VECTOR_ELT:
+ return performPostLD1Combine(N, DCI, true);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_ld1x2:
+ case Intrinsic::aarch64_neon_ld1x3:
+ case Intrinsic::aarch64_neon_ld1x4:
+ case Intrinsic::aarch64_neon_ld2lane:
+ case Intrinsic::aarch64_neon_ld3lane:
+ case Intrinsic::aarch64_neon_ld4lane:
+ case Intrinsic::aarch64_neon_ld2r:
+ case Intrinsic::aarch64_neon_ld3r:
+ case Intrinsic::aarch64_neon_ld4r:
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ case Intrinsic::aarch64_neon_st1x2:
+ case Intrinsic::aarch64_neon_st1x3:
+ case Intrinsic::aarch64_neon_st1x4:
+ case Intrinsic::aarch64_neon_st2lane:
+ case Intrinsic::aarch64_neon_st3lane:
+ case Intrinsic::aarch64_neon_st4lane:
+ return performNEONPostLDSTCombine(N, DCI, DAG);
+ default:
+ break;
+ }
+ }
+ return SDValue();
+}
+
+// Check if the return value is used as only a return value, as otherwise
+// we can't perform a tail-call. In particular, we need to check for
+// target ISD nodes that are returns and any other "odd" constructs
+// that the generic analysis code won't necessarily catch.
+bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
+ SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
+ MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() != ISD::FP_EXTEND)
+ return false;
+
+ bool HasRet = false;
+ for (SDNode *Node : Copy->uses()) {
+ if (Node->getOpcode() != AArch64ISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+// Return whether the an instruction can potentially be optimized to a tail
+// call. This will cause the optimizers to attempt to move, or duplicate,
+// return instructions to help enable tail call optimizations for this
+// instruction.
+bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!CI->isTailCall())
+ return false;
+
+ return true;
+}
+
+bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ bool &IsInc,
+ SelectionDAG &DAG) const {
+ if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Op->getOperand(0);
+ // All of the indexed addressing mode instructions take a signed
+ // 9 bit immediate offset.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
+ int64_t RHSC = (int64_t)RHS->getZExtValue();
+ if (RHSC >= 256 || RHSC <= -256)
+ return false;
+ IsInc = (Op->getOpcode() == ISD::ADD);
+ Offset = Op->getOperand(1);
+ return true;
+ }
+ return false;
+}
+
+bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ EVT VT;
+ SDValue Ptr;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool IsInc;
+ if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
+ return false;
+ AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+bool AArch64TargetLowering::getPostIndexedAddressParts(
+ SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
+ ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
+ EVT VT;
+ SDValue Ptr;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool IsInc;
+ if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
+ return false;
+ // Post-indexing updates the base, so it's not a valid transform
+ // if that's not the same as the load's pointer.
+ if (Ptr != Base)
+ return false;
+ AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+void AArch64TargetLowering::ReplaceNodeResults(
+ SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this");
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT:
+ assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
+ // Let normal code take care of it by not adding anything to Results.
+ return;
+ }
+}
+
+bool AArch64TargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
+ // Loads and stores less than 128-bits are already atomic; ones above that
+ // are doomed anyway, so defer to the default libcall and blame the OS when
+ // things go wrong:
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128;
+ else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return LI->getType()->getPrimitiveSizeInBits() == 128;
+
+ // For the real atomic operations, we have ldxr/stxr up to 128 bits.
+ return Inst->getType()->getPrimitiveSizeInBits() <= 128;
+}
+
+Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
+ bool IsAcquire =
+ Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
+ // intrinsic must return {i64, i64} and we have to recombine them into a
+ // single i128 here.
+ if (ValTy->getPrimitiveSizeInBits() == 128) {
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
+ Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
+
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
+
+ Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
+ Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
+ Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
+ Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
+ return Builder.CreateOr(
+ Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
+ }
+
+ Type *Tys[] = { Addr->getType() };
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
+ Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateTruncOrBitCast(
+ Builder.CreateCall(Ldxr, Addr),
+ cast<PointerType>(Addr->getType())->getElementType());
+}
+
+Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
+ Value *Val, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ bool IsRelease =
+ Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
+
+ // Since the intrinsics must have legal type, the i128 intrinsics take two
+ // parameters: "i64, i64". We must marshal Val into the appropriate form
+ // before the call.
+ if (Val->getType()->getPrimitiveSizeInBits() == 128) {
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
+ Function *Stxr = Intrinsic::getDeclaration(M, Int);
+ Type *Int64Ty = Type::getInt64Ty(M->getContext());
+
+ Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
+ Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
+ }
+
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
+ Type *Tys[] = { Addr->getType() };
+ Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateCall2(
+ Stxr, Builder.CreateZExtOrBitCast(
+ Val, Stxr->getFunctionType()->getParamType(0)),
+ Addr);
+}