summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r--lib/Target/AArch64/AArch64ISelLowering.cpp2957
1 files changed, 2957 insertions, 0 deletions
diff --git a/lib/Target/AArch64/AArch64ISelLowering.cpp b/lib/Target/AArch64/AArch64ISelLowering.cpp
new file mode 100644
index 0000000000..42e8f090ce
--- /dev/null
+++ b/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -0,0 +1,2957 @@
+//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that AArch64 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "aarch64-isel"
+#include "AArch64.h"
+#include "AArch64ISelLowering.h"
+#include "AArch64MachineFunctionInfo.h"
+#include "AArch64TargetMachine.h"
+#include "AArch64TargetObjectFile.h"
+#include "MCTargetDesc/AArch64BaseInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/CallingConv.h"
+
+using namespace llvm;
+
+static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
+ const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
+
+ if (Subtarget->isTargetLinux())
+ return new AArch64LinuxTargetObjectFile();
+ if (Subtarget->isTargetELF())
+ return new TargetLoweringObjectFileELF();
+ llvm_unreachable("unknown subtarget type");
+}
+
+
+AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(TM)),
+ Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
+ RegInfo(TM.getRegisterInfo()),
+ Itins(TM.getInstrItineraryData()) {
+
+ // SIMD compares set the entire lane's bits to 1
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // Scalar register <-> type mapping
+ addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
+ addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
+ addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
+ addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
+
+ // And the vectors
+ addRegisterClass(MVT::v8i8, &AArch64::VPR64RegClass);
+ addRegisterClass(MVT::v4i16, &AArch64::VPR64RegClass);
+ addRegisterClass(MVT::v2i32, &AArch64::VPR64RegClass);
+ addRegisterClass(MVT::v2f32, &AArch64::VPR64RegClass);
+ addRegisterClass(MVT::v16i8, &AArch64::VPR128RegClass);
+ addRegisterClass(MVT::v8i16, &AArch64::VPR128RegClass);
+ addRegisterClass(MVT::v4i32, &AArch64::VPR128RegClass);
+ addRegisterClass(MVT::v4f32, &AArch64::VPR128RegClass);
+ addRegisterClass(MVT::v2f64, &AArch64::VPR128RegClass);
+
+ computeRegisterProperties();
+
+ // Some atomic operations can be folded into load-acquire or store-release
+ // instructions on AArch64. It's marginally simpler to let LLVM expand
+ // everything out to a barrier and then recombine the (few) barriers we can.
+ setInsertFencesForAtomic(true);
+ setTargetDAGCombine(ISD::ATOMIC_FENCE);
+ setTargetDAGCombine(ISD::ATOMIC_STORE);
+
+ // We combine OR nodes for bitfield and NEON BSL operations.
+ setTargetDAGCombine(ISD::OR);
+
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::SRA);
+
+ // AArch64 does not have i1 loads, or much of anything for i1 really.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+
+ setStackPointerRegisterToSaveRestore(AArch64::XSP);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+
+ // We'll lower globals to wrappers for selection.
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+
+ // A64 instructions have the comparison predicate attached to the user of the
+ // result, but having a separate comparison is valuable for matching.
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ // Legal floating-point operations.
+ setOperationAction(ISD::FABS, MVT::f32, Legal);
+ setOperationAction(ISD::FABS, MVT::f64, Legal);
+
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
+
+ setOperationAction(ISD::FNEG, MVT::f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::f64, Legal);
+
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+
+ setOperationAction(ISD::FSQRT, MVT::f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::f64, Legal);
+
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
+
+ // Illegal floating-point operations.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+
+ setOperationAction(ISD::FEXP, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::f64, Expand);
+
+ setOperationAction(ISD::FEXP2, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+
+ setOperationAction(ISD::FLOG, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::f64, Expand);
+
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f64, Expand);
+
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+
+ setOperationAction(ISD::FPOWI, MVT::f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f64, Expand);
+
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+
+
+ // Virtually no operation on f128 is legal, but LLVM can't expand them when
+ // there's a valid register class, so we need custom operations in most cases.
+ setOperationAction(ISD::FABS, MVT::f128, Expand);
+ setOperationAction(ISD::FADD, MVT::f128, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
+ setOperationAction(ISD::FCOS, MVT::f128, Expand);
+ setOperationAction(ISD::FDIV, MVT::f128, Custom);
+ setOperationAction(ISD::FMA, MVT::f128, Expand);
+ setOperationAction(ISD::FMUL, MVT::f128, Custom);
+ setOperationAction(ISD::FNEG, MVT::f128, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
+ setOperationAction(ISD::FPOW, MVT::f128, Expand);
+ setOperationAction(ISD::FREM, MVT::f128, Expand);
+ setOperationAction(ISD::FRINT, MVT::f128, Expand);
+ setOperationAction(ISD::FSIN, MVT::f128, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f128, Expand);
+ setOperationAction(ISD::FSUB, MVT::f128, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
+ setOperationAction(ISD::SETCC, MVT::f128, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f128, Custom);
+ setOperationAction(ISD::SELECT, MVT::f128, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
+ setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
+
+ // Lowering for many of the conversions is actually specified by the non-f128
+ // type. The LowerXXX function will be trivial when f128 isn't involved.
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
+
+ // This prevents LLVM trying to compress double constants into a floating
+ // constant-pool entry and trying to load from there. It's of doubtful benefit
+ // for A64: we'd need LDR followed by FCVT, I believe.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
+
+ setTruncStoreAction(MVT::f128, MVT::f64, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f128, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
+
+ setExceptionPointerRegister(AArch64::X0);
+ setExceptionSelectorRegister(AArch64::X1);
+}
+
+EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
+ // It's reasonably important that this value matches the "natural" legal
+ // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
+ // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
+ if (!VT.isVector()) return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+static void getExclusiveOperation(unsigned Size, unsigned &ldrOpc,
+ unsigned &strOpc) {
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for atomic binary op!");
+ case 1:
+ ldrOpc = AArch64::LDXR_byte;
+ strOpc = AArch64::STXR_byte;
+ break;
+ case 2:
+ ldrOpc = AArch64::LDXR_hword;
+ strOpc = AArch64::STXR_hword;
+ break;
+ case 4:
+ ldrOpc = AArch64::LDXR_word;
+ strOpc = AArch64::STXR_word;
+ break;
+ case 8:
+ ldrOpc = AArch64::LDXR_dword;
+ strOpc = AArch64::STXR_dword;
+ break;
+ }
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Size,
+ unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned incr = MI->getOperand(2).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+
+ unsigned ldrOpc, strOpc;
+ getExclusiveOperation(Size, ldrOpc, strOpc);
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ const TargetRegisterClass *TRC
+ = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
+ unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldxr dest, ptr
+ // <binop> scratch, dest, incr
+ // stxr stxr_status, scratch, ptr
+ // cmp stxr_status, #0
+ // b.ne loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+ if (BinOpcode) {
+ // All arithmetic operations we'll be creating are designed to take an extra
+ // shift or extend operand, which we can conveniently set to zero.
+
+ // Operand order needs to go the other way for NAND.
+ if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
+ BuildMI(BB, dl, TII->get(BinOpcode), scratch)
+ .addReg(incr).addReg(dest).addImm(0);
+ else
+ BuildMI(BB, dl, TII->get(BinOpcode), scratch)
+ .addReg(dest).addReg(incr).addImm(0);
+ }
+
+ // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
+ unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
+ MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
+
+ BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
+ BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
+ .addReg(stxr_status).addImm(0);
+ BuildMI(BB, dl, TII->get(AArch64::Bcc))
+ .addImm(A64CC::NE).addMBB(loopMBB);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size,
+ unsigned CmpOp,
+ A64CC::CondCodes Cond) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned incr = MI->getOperand(2).getReg();
+ unsigned oldval = dest;
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const TargetRegisterClass *TRC, *TRCsp;
+ if (Size == 8) {
+ TRC = &AArch64::GPR64RegClass;
+ TRCsp = &AArch64::GPR64xspRegClass;
+ } else {
+ TRC = &AArch64::GPR32RegClass;
+ TRCsp = &AArch64::GPR32wspRegClass;
+ }
+
+ unsigned ldrOpc, strOpc;
+ getExclusiveOperation(Size, ldrOpc, strOpc);
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ MRI.constrainRegClass(scratch, TRCsp);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldxr dest, ptr
+ // cmp incr, dest (, sign extend if necessary)
+ // csel scratch, dest, incr, cond
+ // stxr stxr_status, scratch, ptr
+ // cmp stxr_status, #0
+ // b.ne loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+
+ // Build compare and cmov instructions.
+ MRI.constrainRegClass(incr, TRCsp);
+ BuildMI(BB, dl, TII->get(CmpOp))
+ .addReg(incr).addReg(oldval).addImm(0);
+
+ BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
+ scratch)
+ .addReg(oldval).addReg(incr).addImm(Cond);
+
+ unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
+ MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
+
+ BuildMI(BB, dl, TII->get(strOpc), stxr_status)
+ .addReg(scratch).addReg(ptr);
+ BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
+ .addReg(stxr_status).addImm(0);
+ BuildMI(BB, dl, TII->get(AArch64::Bcc))
+ .addImm(A64CC::NE).addMBB(loopMBB);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size) const {
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned oldval = MI->getOperand(2).getReg();
+ unsigned newval = MI->getOperand(3).getReg();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ const TargetRegisterClass *TRCsp;
+ TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
+
+ unsigned ldrOpc, strOpc;
+ getExclusiveOperation(Size, ldrOpc, strOpc);
+
+ MachineFunction *MF = BB->getParent();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It; // insert the new blocks after the current block
+
+ MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loop1MBB);
+ MF->insert(It, loop2MBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loop1MBB
+ BB->addSuccessor(loop1MBB);
+
+ // loop1MBB:
+ // ldxr dest, [ptr]
+ // cmp dest, oldval
+ // b.ne exitMBB
+ BB = loop1MBB;
+ BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
+
+ unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
+ MRI.constrainRegClass(dest, TRCsp);
+ BuildMI(BB, dl, TII->get(CmpOp))
+ .addReg(dest).addReg(oldval).addImm(0);
+ BuildMI(BB, dl, TII->get(AArch64::Bcc))
+ .addImm(A64CC::NE).addMBB(exitMBB);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(exitMBB);
+
+ // loop2MBB:
+ // strex stxr_status, newval, [ptr]
+ // cmp stxr_status, #0
+ // b.ne loop1MBB
+ BB = loop2MBB;
+ unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
+ MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
+
+ BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
+ BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
+ .addReg(stxr_status).addImm(0);
+ BuildMI(BB, dl, TII->get(AArch64::Bcc))
+ .addImm(A64CC::NE).addMBB(loop1MBB);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MI->eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // We materialise the F128CSEL pseudo-instruction using conditional branches
+ // and loads, giving an instruciton sequence like:
+ // str q0, [sp]
+ // b.ne IfTrue
+ // b Finish
+ // IfTrue:
+ // str q1, [sp]
+ // Finish:
+ // ldr q0, [sp]
+ //
+ // Using virtual registers would probably not be beneficial since COPY
+ // instructions are expensive for f128 (there's no actual instruction to
+ // implement them).
+ //
+ // An alternative would be to do an integer-CSEL on some address. E.g.:
+ // mov x0, sp
+ // add x1, sp, #16
+ // str q0, [x0]
+ // str q1, [x1]
+ // csel x0, x0, x1, ne
+ // ldr q0, [x0]
+ //
+ // It's unclear which approach is actually optimal.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ MachineFunction *MF = MBB->getParent();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction::iterator It = MBB;
+ ++It;
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned IfTrueReg = MI->getOperand(1).getReg();
+ unsigned IfFalseReg = MI->getOperand(2).getReg();
+ unsigned CondCode = MI->getOperand(3).getImm();
+ bool NZCVKilled = MI->getOperand(4).isKill();
+
+ MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, TrueBB);
+ MF->insert(It, EndBB);
+
+ // Transfer rest of current basic-block to EndBB
+ EndBB->splice(EndBB->begin(), MBB,
+ llvm::next(MachineBasicBlock::iterator(MI)),
+ MBB->end());
+ EndBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // We need somewhere to store the f128 value needed.
+ int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
+
+ // [... start of incoming MBB ...]
+ // str qIFFALSE, [sp]
+ // b.cc IfTrue
+ // b Done
+ BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
+ .addReg(IfFalseReg)
+ .addFrameIndex(ScratchFI)
+ .addImm(0);
+ BuildMI(MBB, DL, TII->get(AArch64::Bcc))
+ .addImm(CondCode)
+ .addMBB(TrueBB);
+ BuildMI(MBB, DL, TII->get(AArch64::Bimm))
+ .addMBB(EndBB);
+ MBB->addSuccessor(TrueBB);
+ MBB->addSuccessor(EndBB);
+
+ // IfTrue:
+ // str qIFTRUE, [sp]
+ BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
+ .addReg(IfTrueReg)
+ .addFrameIndex(ScratchFI)
+ .addImm(0);
+
+ // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
+ // blocks.
+ TrueBB->addSuccessor(EndBB);
+
+ // Done:
+ // ldr qDEST, [sp]
+ // [... rest of incoming MBB ...]
+ if (!NZCVKilled)
+ EndBB->addLiveIn(AArch64::NZCV);
+ MachineInstr *StartOfEnd = EndBB->begin();
+ BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
+ .addFrameIndex(ScratchFI)
+ .addImm(0);
+
+ MI->eraseFromParent();
+ return EndBB;
+}
+
+MachineBasicBlock *
+AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unhandled instruction with custom inserter");
+ case AArch64::F128CSEL:
+ return EmitF128CSEL(MI, MBB);
+ case AArch64::ATOMIC_LOAD_ADD_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
+ case AArch64::ATOMIC_LOAD_ADD_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
+ case AArch64::ATOMIC_LOAD_ADD_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
+ case AArch64::ATOMIC_LOAD_ADD_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_SUB_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
+ case AArch64::ATOMIC_LOAD_SUB_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
+ case AArch64::ATOMIC_LOAD_SUB_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
+ case AArch64::ATOMIC_LOAD_SUB_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_AND_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
+ case AArch64::ATOMIC_LOAD_AND_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
+ case AArch64::ATOMIC_LOAD_AND_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
+ case AArch64::ATOMIC_LOAD_AND_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_OR_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
+ case AArch64::ATOMIC_LOAD_OR_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
+ case AArch64::ATOMIC_LOAD_OR_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
+ case AArch64::ATOMIC_LOAD_OR_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_XOR_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
+ case AArch64::ATOMIC_LOAD_XOR_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
+ case AArch64::ATOMIC_LOAD_XOR_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
+ case AArch64::ATOMIC_LOAD_XOR_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_NAND_I8:
+ return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
+ case AArch64::ATOMIC_LOAD_NAND_I16:
+ return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
+ case AArch64::ATOMIC_LOAD_NAND_I32:
+ return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
+ case AArch64::ATOMIC_LOAD_NAND_I64:
+ return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
+
+ case AArch64::ATOMIC_LOAD_MIN_I8:
+ return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
+ case AArch64::ATOMIC_LOAD_MIN_I16:
+ return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
+ case AArch64::ATOMIC_LOAD_MIN_I32:
+ return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
+ case AArch64::ATOMIC_LOAD_MIN_I64:
+ return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
+
+ case AArch64::ATOMIC_LOAD_MAX_I8:
+ return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
+ case AArch64::ATOMIC_LOAD_MAX_I16:
+ return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
+ case AArch64::ATOMIC_LOAD_MAX_I32:
+ return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
+ case AArch64::ATOMIC_LOAD_MAX_I64:
+ return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
+
+ case AArch64::ATOMIC_LOAD_UMIN_I8:
+ return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
+ case AArch64::ATOMIC_LOAD_UMIN_I16:
+ return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
+ case AArch64::ATOMIC_LOAD_UMIN_I32:
+ return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
+ case AArch64::ATOMIC_LOAD_UMIN_I64:
+ return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
+
+ case AArch64::ATOMIC_LOAD_UMAX_I8:
+ return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
+ case AArch64::ATOMIC_LOAD_UMAX_I16:
+ return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
+ case AArch64::ATOMIC_LOAD_UMAX_I32:
+ return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
+ case AArch64::ATOMIC_LOAD_UMAX_I64:
+ return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
+
+ case AArch64::ATOMIC_SWAP_I8:
+ return emitAtomicBinary(MI, MBB, 1, 0);
+ case AArch64::ATOMIC_SWAP_I16:
+ return emitAtomicBinary(MI, MBB, 2, 0);
+ case AArch64::ATOMIC_SWAP_I32:
+ return emitAtomicBinary(MI, MBB, 4, 0);
+ case AArch64::ATOMIC_SWAP_I64:
+ return emitAtomicBinary(MI, MBB, 8, 0);
+
+ case AArch64::ATOMIC_CMP_SWAP_I8:
+ return emitAtomicCmpSwap(MI, MBB, 1);
+ case AArch64::ATOMIC_CMP_SWAP_I16:
+ return emitAtomicCmpSwap(MI, MBB, 2);
+ case AArch64::ATOMIC_CMP_SWAP_I32:
+ return emitAtomicCmpSwap(MI, MBB, 4);
+ case AArch64::ATOMIC_CMP_SWAP_I64:
+ return emitAtomicCmpSwap(MI, MBB, 8);
+ }
+}
+
+
+const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
+ case AArch64ISD::Call: return "AArch64ISD::Call";
+ case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
+ case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
+ case AArch64ISD::BFI: return "AArch64ISD::BFI";
+ case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
+ case AArch64ISD::Ret: return "AArch64ISD::Ret";
+ case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
+ case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
+ case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
+ case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
+ case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
+ case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
+ case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
+
+ default: return NULL;
+ }
+}
+
+static const uint16_t AArch64FPRArgRegs[] = {
+ AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
+ AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
+};
+static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
+
+static const uint16_t AArch64ArgRegs[] = {
+ AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
+ AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
+};
+static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
+
+static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ // Mark all remaining general purpose registers as allocated. We don't
+ // backtrack: if (for example) an i128 gets put on the stack, no subsequent
+ // i64 will go in registers (C.11).
+ for (unsigned i = 0; i < NumArgRegs; ++i)
+ State.AllocateReg(AArch64ArgRegs[i]);
+
+ return false;
+}
+
+#include "AArch64GenCallingConv.inc"
+
+CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
+
+ switch(CC) {
+ default: llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ case CallingConv::C:
+ return CC_A64_APCS;
+ }
+}
+
+void
+AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
+ DebugLoc DL, SDValue &Chain) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ AArch64MachineFunctionInfo *FuncInfo = MF.getInfo<AArch64MachineFunctionInfo>();
+
+ SmallVector<SDValue, 8> MemOps;
+
+ unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
+ NumArgRegs);
+ unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
+ NumFPRArgRegs);
+
+ unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
+ int GPRIdx = 0;
+ if (GPRSaveSize != 0) {
+ GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
+
+ SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
+ SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 8),
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(8, getPointerTy()));
+ }
+ }
+
+ unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
+ int FPRIdx = 0;
+ if (FPRSaveSize != 0) {
+ FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
+
+ SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
+ &AArch64::FPR128RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
+ SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 16),
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(16, getPointerTy()));
+ }
+ }
+
+ int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
+
+ FuncInfo->setVariadicStackIdx(StackIdx);
+ FuncInfo->setVariadicGPRIdx(GPRIdx);
+ FuncInfo->setVariadicGPRSize(GPRSaveSize);
+ FuncInfo->setVariadicFPRIdx(FPRIdx);
+ FuncInfo->setVariadicFPRSize(FPRSaveSize);
+
+ if (!MemOps.empty()) {
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
+ MemOps.size());
+ }
+}
+
+
+SDValue
+AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ AArch64MachineFunctionInfo *FuncInfo
+ = MF.getInfo<AArch64MachineFunctionInfo>();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
+
+ SmallVector<SDValue, 16> ArgValues;
+
+ SDValue ArgValue;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+
+ if (Flags.isByVal()) {
+ // Byval is used for small structs and HFAs in the PCS, but the system
+ // should work in a non-compliant manner for larger structs.
+ EVT PtrTy = getPointerTy();
+ int Size = Flags.getByValSize();
+ unsigned NumRegs = (Size + 7) / 8;
+
+ unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
+ VA.getLocMemOffset(),
+ false);
+ SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
+ InVals.push_back(FrameIdxN);
+
+ continue;
+ } else if (VA.isRegLoc()) {
+ MVT RegVT = VA.getLocVT();
+ const TargetRegisterClass *RC = getRegClassFor(RegVT);
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ } else { // VA.isRegLoc()
+ assert(VA.isMemLoc());
+
+ int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
+ VA.getLocMemOffset(), true);
+
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(FI),
+ false, false, false, 0);
+
+
+ }
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ case CCValAssign::ZExt:
+ case CCValAssign::AExt: {
+ unsigned DestSize = VA.getValVT().getSizeInBits();
+ unsigned DestSubReg;
+
+ switch (DestSize) {
+ case 8: DestSubReg = AArch64::sub_8; break;
+ case 16: DestSubReg = AArch64::sub_16; break;
+ case 32: DestSubReg = AArch64::sub_32; break;
+ case 64: DestSubReg = AArch64::sub_64; break;
+ default: llvm_unreachable("Unexpected argument promotion");
+ }
+
+ ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
+ VA.getValVT(), ArgValue,
+ DAG.getTargetConstant(DestSubReg, MVT::i32)),
+ 0);
+ break;
+ }
+ }
+
+ InVals.push_back(ArgValue);
+ }
+
+ if (isVarArg)
+ SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
+
+ unsigned StackArgSize = CCInfo.getNextStackOffset();
+ if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
+ // This is a non-standard ABI so by fiat I say we're allowed to make full
+ // use of the stack area to be popped, which must be aligned to 16 bytes in
+ // any case:
+ StackArgSize = RoundUpToAlignment(StackArgSize, 16);
+
+ // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
+ // a multiple of 16.
+ FuncInfo->setArgumentStackToRestore(StackArgSize);
+
+ // This realignment carries over to the available bytes below. Our own
+ // callers will guarantee the space is free by giving an aligned value to
+ // CALLSEQ_START.
+ }
+ // Even if we're not expected to free up the space, it's useful to know how
+ // much is there while considering tail calls (because we can reuse it).
+ FuncInfo->setBytesInStackArgArea(StackArgSize);
+
+ return Chain;
+}
+
+SDValue
+AArch64TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ DebugLoc dl, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
+
+ // If this is the first return lowered for this function, add
+ // the regs to the liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDValue Flag;
+
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ // PCS: "If the type, T, of the result of a function is such that void func(T
+ // arg) would require that arg be passed as a value in a register (or set of
+ // registers) according to the rules in 5.4, then the result is returned in
+ // the same registers as would be used for such an argument.
+ //
+ // Otherwise, the caller shall reserve a block of memory of sufficient
+ // size and alignment to hold the result. The address of the memory block
+ // shall be passed as an additional argument to the function in x8."
+ //
+ // This is implemented in two places. The register-return values are dealt
+ // with here, more complex returns are passed as an sret parameter, which
+ // means we don't have to worry about it during actual return.
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
+
+
+ SDValue Arg = OutVals[i];
+
+ // There's no convenient note in the ABI about this as there is for normal
+ // arguments, but it says return values are passed in the same registers as
+ // an argument would be. I believe that includes the comments about
+ // unspecified higher bits, putting the burden of widening on the *caller*
+ // for return values.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ case CCValAssign::ZExt:
+ case CCValAssign::AExt:
+ // Floating-point values should only be extended when they're going into
+ // memory, which can't happen here so an integer extend is acceptable.
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ }
+
+ if (Flag.getNode()) {
+ return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, Chain, Flag);
+ } else {
+ return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, Chain);
+ }
+}
+
+SDValue
+AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ DebugLoc &dl = CLI.DL;
+ SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
+ SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
+ SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ AArch64MachineFunctionInfo *FuncInfo
+ = MF.getInfo<AArch64MachineFunctionInfo>();
+ bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
+ bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
+ bool IsSibCall = false;
+
+ if (IsTailCall) {
+ IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
+ Outs, OutVals, Ins, DAG);
+
+ // A sibling call is one where we're under the usual C ABI and not planning
+ // to change that but can still do a tail call:
+ if (!TailCallOpt && IsTailCall)
+ IsSibCall = true;
+ }
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
+
+ // On AArch64 (and all other architectures I'm aware of) the most this has to
+ // do is adjust the stack pointer.
+ unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
+ if (IsSibCall) {
+ // Since we're not changing the ABI to make this a tail call, the memory
+ // operands are already available in the caller's incoming argument space.
+ NumBytes = 0;
+ }
+
+ // FPDiff is the byte offset of the call's argument area from the callee's.
+ // Stores to callee stack arguments will be placed in FixedStackSlots offset
+ // by this amount for a tail call. In a sibling call it must be 0 because the
+ // caller will deallocate the entire stack and the callee still expects its
+ // arguments to begin at SP+0. Completely unused for non-tail calls.
+ int FPDiff = 0;
+
+ if (IsTailCall && !IsSibCall) {
+ unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
+
+ // FPDiff will be negative if this tail call requires more space than we
+ // would automatically have in our incoming argument space. Positive if we
+ // can actually shrink the stack.
+ FPDiff = NumReusableBytes - NumBytes;
+
+ // The stack pointer must be 16-byte aligned at all times it's used for a
+ // memory operation, which in practice means at *all* times and in
+ // particular across call boundaries. Therefore our own arguments started at
+ // a 16-byte aligned SP and the delta applied for the tail call should
+ // satisfy the same constraint.
+ assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
+ }
+
+ if (!IsSibCall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, getPointerTy());
+
+ SmallVector<SDValue, 8> MemOpChains;
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ SDValue Arg = OutVals[i];
+
+ // Callee does the actual widening, so all extensions just use an implicit
+ // definition of the rest of the Loc. Aesthetically, this would be nicer as
+ // an ANY_EXTEND, but that isn't valid for floating-point types and this
+ // alternative works on integer types too.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ case CCValAssign::ZExt:
+ case CCValAssign::AExt: {
+ unsigned SrcSize = VA.getValVT().getSizeInBits();
+ unsigned SrcSubReg;
+
+ switch (SrcSize) {
+ case 8: SrcSubReg = AArch64::sub_8; break;
+ case 16: SrcSubReg = AArch64::sub_16; break;
+ case 32: SrcSubReg = AArch64::sub_32; break;
+ case 64: SrcSubReg = AArch64::sub_64; break;
+ default: llvm_unreachable("Unexpected argument promotion");
+ }
+
+ Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ VA.getLocVT(),
+ DAG.getUNDEF(VA.getLocVT()),
+ Arg,
+ DAG.getTargetConstant(SrcSubReg, MVT::i32)),
+ 0);
+
+ break;
+ }
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isRegLoc()) {
+ // A normal register (sub-) argument. For now we just note it down because
+ // we want to copy things into registers as late as possible to avoid
+ // register-pressure (and possibly worse).
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ assert(VA.isMemLoc() && "unexpected argument location");
+
+ SDValue DstAddr;
+ MachinePointerInfo DstInfo;
+ if (IsTailCall) {
+ uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
+ VA.getLocVT().getSizeInBits();
+ OpSize = (OpSize + 7) / 8;
+ int32_t Offset = VA.getLocMemOffset() + FPDiff;
+ int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+
+ DstAddr = DAG.getFrameIndex(FI, getPointerTy());
+ DstInfo = MachinePointerInfo::getFixedStack(FI);
+
+ // Make sure any stack arguments overlapping with where we're storing are
+ // loaded before this eventual operation. Otherwise they'll be clobbered.
+ Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
+ } else {
+ SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
+
+ DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
+ }
+
+ if (Flags.isByVal()) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
+ SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
+ Flags.getByValAlign(),
+ /*isVolatile = */ false,
+ /*alwaysInline = */ false,
+ DstInfo, MachinePointerInfo(0));
+ MemOpChains.push_back(Cpy);
+ } else {
+ // Normal stack argument, put it where it's needed.
+ SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
+ false, false, 0);
+ MemOpChains.push_back(Store);
+ }
+ }
+
+ // The loads and stores generated above shouldn't clash with each
+ // other. Combining them with this TokenFactor notes that fact for the rest of
+ // the backend.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Most of the rest of the instructions need to be glued together; we don't
+ // want assignments to actual registers used by a call to be rearranged by a
+ // well-meaning scheduler.
+ SDValue InFlag;
+
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // The linker is responsible for inserting veneers when necessary to put a
+ // function call destination in range, so we don't need to bother with a
+ // wrapper here.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+ }
+
+ // We don't usually want to end the call-sequence here because we would tidy
+ // the frame up *after* the call, however in the ABI-changing tail-call case
+ // we've carefully laid out the parameters so that when sp is reset they'll be
+ // in the correct location.
+ if (IsTailCall && !IsSibCall) {
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // We produce the following DAG scheme for the actual call instruction:
+ // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
+ //
+ // Most arguments aren't going to be used and just keep the values live as
+ // far as LLVM is concerned. It's expected to be selected as simply "bl
+ // callee" (for a direct, non-tail call).
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (IsTailCall) {
+ // Each tail call may have to adjust the stack by a different amount, so
+ // this information must travel along with the operation for eventual
+ // consumption by emitEpilogue.
+ Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
+ }
+
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+
+ // Add a register mask operand representing the call-preserved registers. This
+ // is used later in codegen to constrain register-allocation.
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ // If we needed glue, put it in as the last argument.
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ if (IsTailCall) {
+ return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
+ }
+
+ Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ // Now we can reclaim the stack, just as well do it before working out where
+ // our return value is.
+ if (!IsSibCall) {
+ uint64_t CalleePopBytes
+ = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(CalleePopBytes, true),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ return LowerCallResult(Chain, InFlag, CallConv,
+ IsVarArg, Ins, dl, DAG, InVals);
+}
+
+SDValue
+AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
+
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ // Return values that are too big to fit into registers should use an sret
+ // pointer, so this can be a lot simpler than the main argument code.
+ assert(VA.isRegLoc() && "Memory locations not expected for call return");
+
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
+ InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
+ break;
+ case CCValAssign::ZExt:
+ case CCValAssign::SExt:
+ case CCValAssign::AExt:
+ // Floating-point arguments only get extended/truncated if they're going
+ // in memory, so using the integer operation is acceptable here.
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+bool
+AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool IsVarArg,
+ bool IsCalleeStructRet,
+ bool IsCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+
+ // For CallingConv::C this function knows whether the ABI needs
+ // changing. That's not true for other conventions so they will have to opt in
+ // manually.
+ if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
+ return false;
+
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = MF.getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // Byval parameters hand the function a pointer directly into the stack area
+ // we want to reuse during a tail call. Working around this *is* possible (see
+ // X86) but less efficient and uglier in LowerCall.
+ for (Function::const_arg_iterator i = CallerF->arg_begin(),
+ e = CallerF->arg_end(); i != e; ++i)
+ if (i->hasByValAttr())
+ return false;
+
+ if (getTargetMachine().Options.GuaranteedTailCallOpt) {
+ if (IsTailCallConvention(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Now we search for cases where we can use a tail call without changing the
+ // ABI. Sibcall is used in some places (particularly gcc) to refer to this
+ // concept.
+
+ // I want anyone implementing a new calling convention to think long and hard
+ // about this assert.
+ assert((!IsVarArg || CalleeCC == CallingConv::C)
+ && "Unexpected variadic calling convention");
+
+ if (IsVarArg && !Outs.empty()) {
+ // At least two cases here: if caller is fastcc then we can't have any
+ // memory arguments (we'd be expected to clean up the stack afterwards). If
+ // caller is C then we could potentially use its argument area.
+
+ // FIXME: for now we take the most conservative of these in both cases:
+ // disallow all variadic memory operands.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs1, *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
+ getTargetMachine(), RVLocs2, *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // Nothing more to check if the callee is taking no arguments
+ if (Outs.empty())
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
+ getTargetMachine(), ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
+
+ const AArch64MachineFunctionInfo *FuncInfo
+ = MF.getInfo<AArch64MachineFunctionInfo>();
+
+ // If the stack arguments for this call would fit into our own save area then
+ // the call can be made tail.
+ return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
+}
+
+bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
+ bool TailCallOpt) const {
+ return CallCC == CallingConv::Fast && TailCallOpt;
+}
+
+bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
+ return CallCC == CallingConv::Fast;
+}
+
+SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
+ SelectionDAG &DAG,
+ MachineFrameInfo *MFI,
+ int ClobberedFI) const {
+ SmallVector<SDValue, 8> ArgChains;
+ int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
+ int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument corresponding
+ for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
+ UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0) {
+ int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
+ int64_t InLastByte = InFirstByte;
+ InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
+
+ if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
+ (FirstByte <= InFirstByte && InFirstByte <= LastByte))
+ ArgChains.push_back(SDValue(L, 1));
+ }
+
+ // Build a tokenfactor for all the chains.
+ return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
+ &ArgChains[0], ArgChains.size());
+}
+
+static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
+ switch (CC) {
+ case ISD::SETEQ: return A64CC::EQ;
+ case ISD::SETGT: return A64CC::GT;
+ case ISD::SETGE: return A64CC::GE;
+ case ISD::SETLT: return A64CC::LT;
+ case ISD::SETLE: return A64CC::LE;
+ case ISD::SETNE: return A64CC::NE;
+ case ISD::SETUGT: return A64CC::HI;
+ case ISD::SETUGE: return A64CC::HS;
+ case ISD::SETULT: return A64CC::LO;
+ case ISD::SETULE: return A64CC::LS;
+ default: llvm_unreachable("Unexpected condition code");
+ }
+}
+
+bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
+ // icmp is implemented using adds/subs immediate, which take an unsigned
+ // 12-bit immediate, optionally shifted left by 12 bits.
+
+ // Symmetric by using adds/subs
+ if (Val < 0)
+ Val = -Val;
+
+ return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
+}
+
+SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, SDValue &A64cc,
+ SelectionDAG &DAG, DebugLoc &dl) const {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ int64_t C = 0;
+ EVT VT = RHSC->getValueType(0);
+ bool knownInvalid = false;
+
+ // I'm not convinced the rest of LLVM handles these edge cases properly, but
+ // we can at least get it right.
+ if (isSignedIntSetCC(CC)) {
+ C = RHSC->getSExtValue();
+ } else if (RHSC->getZExtValue() > INT64_MAX) {
+ // A 64-bit constant not representable by a signed 64-bit integer is far
+ // too big to fit into a SUBS immediate anyway.
+ knownInvalid = true;
+ } else {
+ C = RHSC->getZExtValue();
+ }
+
+ if (!knownInvalid && !isLegalICmpImmediate(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C-1, VT);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C-1, VT);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C+1, VT);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C+1, VT);
+ }
+ break;
+ }
+ }
+ }
+
+ A64CC::CondCodes CondCode = IntCCToA64CC(CC);
+ A64cc = DAG.getConstant(CondCode, MVT::i32);
+ return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
+ DAG.getCondCode(CC));
+}
+
+static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
+ A64CC::CondCodes &Alternative) {
+ A64CC::CondCodes CondCode = A64CC::Invalid;
+ Alternative = A64CC::Invalid;
+
+ switch (CC) {
+ default: llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = A64CC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = A64CC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = A64CC::GE; break;
+ case ISD::SETOLT: CondCode = A64CC::MI; break;
+ case ISD::SETOLE: CondCode = A64CC::LS; break;
+ case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
+ case ISD::SETO: CondCode = A64CC::VC; break;
+ case ISD::SETUO: CondCode = A64CC::VS; break;
+ case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
+ case ISD::SETUGT: CondCode = A64CC::HI; break;
+ case ISD::SETUGE: CondCode = A64CC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = A64CC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = A64CC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = A64CC::NE; break;
+ }
+ return CondCode;
+}
+
+SDValue
+AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc DL = Op.getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+
+ assert(getTargetMachine().getCodeModel() == CodeModel::Small
+ && "Only small code model supported at the moment");
+
+ // The most efficient code is PC-relative anyway for the small memory model,
+ // so we don't need to worry about relocation model.
+ return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
+ DAG.getTargetBlockAddress(BA, PtrVT, 0,
+ AArch64II::MO_NO_FLAG),
+ DAG.getTargetBlockAddress(BA, PtrVT, 0,
+ AArch64II::MO_LO12),
+ DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
+}
+
+
+// (BRCOND chain, val, dest)
+SDValue
+AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Chain = Op.getOperand(0);
+ SDValue TheBit = Op.getOperand(1);
+ SDValue DestBB = Op.getOperand(2);
+
+ // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
+ // that as the consumer we are responsible for ignoring rubbish in higher
+ // bits.
+ TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
+ DAG.getConstant(1, MVT::i32));
+
+ SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
+ DAG.getConstant(0, TheBit.getValueType()),
+ DAG.getCondCode(ISD::SETNE));
+
+ return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
+ A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
+ DestBB);
+}
+
+// (BR_CC chain, condcode, lhs, rhs, dest)
+SDValue
+AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue DestBB = Op.getOperand(4);
+
+ if (LHS.getValueType() == MVT::f128) {
+ // f128 comparisons are lowered to runtime calls by a routine which sets
+ // LHS, RHS and CC appropriately for the rest of this function to continue.
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (RHS.getNode() == 0) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ SDValue A64cc;
+
+ // Integers are handled in a separate function because the combinations of
+ // immediates and tests can get hairy and we may want to fiddle things.
+ SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
+
+ return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
+ Chain, CmpOp, A64cc, DestBB);
+ }
+
+ // Note that some LLVM floating-point CondCodes can't be lowered to a single
+ // conditional branch, hence FPCCToA64CC can set a second test, where either
+ // passing is sufficient.
+ A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
+ CondCode = FPCCToA64CC(CC, Alternative);
+ SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
+ DAG.getCondCode(CC));
+ SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
+ Chain, SetCC, A64cc, DestBB);
+
+ if (Alternative != A64CC::Invalid) {
+ A64cc = DAG.getConstant(Alternative, MVT::i32);
+ A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
+ A64BR_CC, SetCC, A64cc, DestBB);
+
+ }
+
+ return A64BR_CC;
+}
+
+SDValue
+AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
+ RTLIB::Libcall Call) const {
+ ArgListTy Args;
+ ArgListEntry Entry;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = Op.getOperand(i).getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+ }
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
+
+ Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
+
+ // By default, the input chain to this libcall is the entry node of the
+ // function. If the libcall is going to be emitted as a tail call then
+ // isUsedByReturnOnly will change it to the right chain if the return
+ // node which is being folded has a non-entry input chain.
+ SDValue InChain = DAG.getEntryNode();
+
+ // isTailCall may be true since the callee does not reference caller stack
+ // frame. Check if it's in the right position.
+ SDValue TCChain = InChain;
+ bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
+ if (isTailCall)
+ InChain = TCChain;
+
+ TargetLowering::
+ CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
+ 0, getLibcallCallingConv(Call), isTailCall,
+ /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
+ Callee, Args, DAG, Op->getDebugLoc());
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+
+ if (!CallInfo.second.getNode())
+ // It's a tailcall, return the chain (which is the DAG root).
+ return DAG.getRoot();
+
+ return CallInfo.first;
+}
+
+SDValue
+AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
+ /*isSigned*/ false, Op.getDebugLoc());
+}
+
+SDValue
+AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128ToCall(Op, DAG, LC);
+}
+
+SDValue
+AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
+ bool IsSigned) const {
+ if (Op.getOperand(0).getValueType() != MVT::f128) {
+ // It's legal except when f128 is involved
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ if (IsSigned)
+ LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128ToCall(Op, DAG, LC);
+}
+
+SDValue
+AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
+ SelectionDAG &DAG) const {
+ // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
+ // we make that distinction here.
+
+ // We support the static, small memory model for now.
+ assert(getTargetMachine().getCodeModel() == CodeModel::Small);
+
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GN->getGlobal();
+ unsigned Alignment = GV->getAlignment();
+
+ if (Alignment == 0) {
+ const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
+ if (GVPtrTy->getElementType()->isSized())
+ Alignment = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
+ else {
+ // Be conservative if we can't guess, not that it really matters:
+ // functions and labels aren't valid for loads, and the methods used to
+ // actually calculate an address work with any alignment.
+ Alignment = 1;
+ }
+ }
+
+ unsigned char HiFixup, LoFixup;
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
+
+ if (UseGOT) {
+ HiFixup = AArch64II::MO_GOT;
+ LoFixup = AArch64II::MO_GOT_LO12;
+ Alignment = 8;
+ } else {
+ HiFixup = AArch64II::MO_NO_FLAG;
+ LoFixup = AArch64II::MO_LO12;
+ }
+
+ // AArch64's small model demands the following sequence:
+ // ADRP x0, somewhere
+ // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
+ SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ HiFixup),
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
+ LoFixup),
+ DAG.getConstant(Alignment, MVT::i32));
+
+ if (UseGOT) {
+ GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
+ GlobalRef);
+ }
+
+ if (GN->getOffset() != 0)
+ return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
+ DAG.getConstant(GN->getOffset(), PtrVT));
+
+ return GlobalRef;
+}
+
+SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
+ SDValue DescAddr,
+ DebugLoc DL,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+
+ // The function we need to call is simply the first entry in the GOT for this
+ // descriptor, load it in preparation.
+ SDValue Func, Chain;
+ Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
+ DescAddr);
+
+ // The function takes only one argument: the address of the descriptor itself
+ // in X0.
+ SDValue Glue;
+ Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
+ Glue = Chain.getValue(1);
+
+ // Finally, there's a special calling-convention which means that the lookup
+ // must preserve all registers (except X0, obviously).
+ const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
+ const AArch64RegisterInfo *A64RI
+ = static_cast<const AArch64RegisterInfo *>(TRI);
+ const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
+
+ // We're now ready to populate the argument list, as with a normal call:
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Func);
+ Ops.push_back(SymAddr);
+ Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ Ops.push_back(Glue);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0], Ops.size());
+ Glue = Chain.getValue(1);
+
+ // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
+ // back to the generic handling code.
+ return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
+}
+
+SDValue
+AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ SDValue TPOff;
+ EVT PtrVT = getPointerTy();
+ DebugLoc DL = Op.getDebugLoc();
+ const GlobalValue *GV = GA->getGlobal();
+
+ SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
+
+ if (Model == TLSModel::InitialExec) {
+ TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ AArch64II::MO_GOTTPREL),
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ AArch64II::MO_GOTTPREL_LO12),
+ DAG.getConstant(8, MVT::i32));
+ TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
+ TPOff);
+ } else if (Model == TLSModel::LocalExec) {
+ SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
+ AArch64II::MO_TPREL_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
+ AArch64II::MO_TPREL_G0_NC);
+
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(0, MVT::i32)), 0);
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, TPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)), 0);
+ } else if (Model == TLSModel::GeneralDynamic) {
+ // Accesses used in this sequence go via the TLS descriptor which lives in
+ // the GOT. Prepare an address we can use to handle this.
+ SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ AArch64II::MO_TLSDESC);
+ SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ AArch64II::MO_TLSDESC_LO12);
+ SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
+ HiDesc, LoDesc, DAG.getConstant(8, MVT::i32));
+ SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
+
+ TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
+ } else if (Model == TLSModel::LocalDynamic) {
+ // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
+ // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
+ // the beginning of the module's TLS region, followed by a DTPREL offset
+ // calculation.
+
+ // These accesses will need deduplicating if there's more than one.
+ AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
+ .getInfo<AArch64MachineFunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+
+ // Get the location of _TLS_MODULE_BASE_:
+ SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLSDESC);
+ SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
+ AArch64II::MO_TLSDESC_LO12);
+ SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
+ HiDesc, LoDesc, DAG.getConstant(8, MVT::i32));
+ SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
+
+ ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
+
+ // Get the variable's offset from _TLS_MODULE_BASE_
+ SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
+ AArch64II::MO_DTPREL_G1);
+ SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
+ AArch64II::MO_DTPREL_G0_NC);
+
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
+ DAG.getTargetConstant(0, MVT::i32)), 0);
+ TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, TPOff, LoVar,
+ DAG.getTargetConstant(0, MVT::i32)), 0);
+ } else
+ llvm_unreachable("Unsupported TLS access model");
+
+
+ return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
+}
+
+SDValue
+AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
+ bool IsSigned) const {
+ if (Op.getValueType() != MVT::f128) {
+ // Legal for everything except f128.
+ return Op;
+ }
+
+ RTLIB::Libcall LC;
+ if (IsSigned)
+ LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+ else
+ LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ return LowerF128ToCall(Op, DAG, LC);
+}
+
+
+SDValue
+AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ DebugLoc dl = JT->getDebugLoc();
+
+ // When compiling PIC, jump tables get put in the code section so a static
+ // relocation-style is acceptable for both cases.
+ return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(),
+ DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()),
+ DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
+ AArch64II::MO_LO12),
+ DAG.getConstant(1, MVT::i32));
+}
+
+// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
+SDValue
+AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue IfTrue = Op.getOperand(2);
+ SDValue IfFalse = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+
+ if (LHS.getValueType() == MVT::f128) {
+ // f128 comparisons are lowered to libcalls, but slot in nicely here
+ // afterwards.
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, we need to compare the result
+ // against zero to select between true and false values.
+ if (RHS.getNode() == 0) {
+ RHS = DAG.getConstant(0, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ SDValue A64cc;
+
+ // Integers are handled in a separate function because the combinations of
+ // immediates and tests can get hairy and we may want to fiddle things.
+ SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
+
+ return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
+ CmpOp, IfTrue, IfFalse, A64cc);
+ }
+
+ // Note that some LLVM floating-point CondCodes can't be lowered to a single
+ // conditional branch, hence FPCCToA64CC can set a second test, where either
+ // passing is sufficient.
+ A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
+ CondCode = FPCCToA64CC(CC, Alternative);
+ SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
+ DAG.getCondCode(CC));
+ SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
+ SetCC, IfTrue, IfFalse, A64cc);
+
+ if (Alternative != A64CC::Invalid) {
+ A64cc = DAG.getConstant(Alternative, MVT::i32);
+ A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
+ SetCC, IfTrue, A64SELECT_CC, A64cc);
+
+ }
+
+ return A64SELECT_CC;
+}
+
+// (SELECT testbit, iftrue, iffalse)
+SDValue
+AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue TheBit = Op.getOperand(0);
+ SDValue IfTrue = Op.getOperand(1);
+ SDValue IfFalse = Op.getOperand(2);
+
+ // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
+ // that as the consumer we are responsible for ignoring rubbish in higher
+ // bits.
+ TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
+ DAG.getConstant(1, MVT::i32));
+ SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
+ DAG.getConstant(0, TheBit.getValueType()),
+ DAG.getCondCode(ISD::SETNE));
+
+ return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
+ A64CMP, IfTrue, IfFalse,
+ DAG.getConstant(A64CC::NE, MVT::i32));
+}
+
+// (SETCC lhs, rhs, condcode)
+SDValue
+AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ EVT VT = Op.getValueType();
+
+ if (LHS.getValueType() == MVT::f128) {
+ // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
+ // for the rest of the function (some i32 or i64 values).
+ softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
+
+ // If softenSetCCOperands returned a scalar, use it.
+ if (RHS.getNode() == 0) {
+ assert(LHS.getValueType() == Op.getValueType() &&
+ "Unexpected setcc expansion!");
+ return LHS;
+ }
+ }
+
+ if (LHS.getValueType().isInteger()) {
+ SDValue A64cc;
+
+ // Integers are handled in a separate function because the combinations of
+ // immediates and tests can get hairy and we may want to fiddle things.
+ SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
+
+ return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
+ CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
+ A64cc);
+ }
+
+ // Note that some LLVM floating-point CondCodes can't be lowered to a single
+ // conditional branch, hence FPCCToA64CC can set a second test, where either
+ // passing is sufficient.
+ A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
+ CondCode = FPCCToA64CC(CC, Alternative);
+ SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
+ SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
+ DAG.getCondCode(CC));
+ SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
+ CmpOp, DAG.getConstant(1, VT),
+ DAG.getConstant(0, VT), A64cc);
+
+ if (Alternative != A64CC::Invalid) {
+ A64cc = DAG.getConstant(Alternative, MVT::i32);
+ A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
+ DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
+ }
+
+ return A64SELECT_CC;
+}
+
+SDValue
+AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
+ const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+
+ // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
+ // rather than just 8.
+ return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
+ Op.getOperand(1), Op.getOperand(2),
+ DAG.getConstant(32, MVT::i32), 8, false, false,
+ MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
+}
+
+SDValue
+AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ // The layout of the va_list struct is specified in the AArch64 Procedure Call
+ // Standard, section B.3.
+ MachineFunction &MF = DAG.getMachineFunction();
+ AArch64MachineFunctionInfo *FuncInfo = MF.getInfo<AArch64MachineFunctionInfo>();
+ DebugLoc DL = Op.getDebugLoc();
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue VAList = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SmallVector<SDValue, 4> MemOps;
+
+ // void *__stack at offset 0
+ SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
+ getPointerTy());
+ MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
+ MachinePointerInfo(SV), false, false, 0));
+
+ // void *__gr_top at offset 8
+ int GPRSize = FuncInfo->getVariadicGPRSize();
+ if (GPRSize > 0) {
+ SDValue GRTop, GRTopAddr;
+
+ GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(8, getPointerTy()));
+
+ GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
+ GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
+ DAG.getConstant(GPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
+ MachinePointerInfo(SV, 8),
+ false, false, 0));
+ }
+
+ // void *__vr_top at offset 16
+ int FPRSize = FuncInfo->getVariadicFPRSize();
+ if (FPRSize > 0) {
+ SDValue VRTop, VRTopAddr;
+ VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(16, getPointerTy()));
+
+ VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
+ VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
+ DAG.getConstant(FPRSize, getPointerTy()));
+
+ MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
+ MachinePointerInfo(SV, 16),
+ false, false, 0));
+ }
+
+ // int __gr_offs at offset 24
+ SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(24, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
+ GROffsAddr, MachinePointerInfo(SV, 24),
+ false, false, 0));
+
+ // int __vr_offs at offset 28
+ SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
+ DAG.getConstant(28, getPointerTy()));
+ MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
+ VROffsAddr, MachinePointerInfo(SV, 28),
+ false, false, 0));
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
+ MemOps.size());
+}
+
+SDValue
+AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
+ case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
+ case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
+ case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
+ case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
+ case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
+ case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::VACOPY: return LowerVACOPY(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+
+ // We're looking for an SRA/SHL pair which form an SBFX.
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ if (!isa<ConstantSDNode>(N->getOperand(1)))
+ return SDValue();
+
+ uint64_t TruncMask = N->getConstantOperandVal(1);
+ if (!isMask_64(TruncMask))
+ return SDValue();
+
+ uint64_t Width = CountPopulation_64(TruncMask);
+ SDValue Shift = N->getOperand(0);
+
+ if (Shift.getOpcode() != ISD::SRL)
+ return SDValue();
+
+ if (!isa<ConstantSDNode>(Shift->getOperand(1)))
+ return SDValue();
+ uint64_t LSB = Shift->getConstantOperandVal(1);
+
+ if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
+ return SDValue();
+
+ return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
+ DAG.getConstant(LSB, MVT::i64),
+ DAG.getConstant(LSB + Width - 1, MVT::i64));
+}
+
+static SDValue PerformATOMIC_FENCECombine(SDNode *FenceNode,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // An atomic operation followed by an acquiring atomic fence can be reduced to
+ // an acquiring load. The atomic operation provides a convenient pointer to
+ // load from. If the original operation was a load anyway we can actually
+ // combine the two operations into an acquiring load.
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue AtomicOp = FenceNode->getOperand(0);
+ AtomicSDNode *AtomicNode = dyn_cast<AtomicSDNode>(AtomicOp);
+
+ // A fence on its own can't be optimised
+ if (!AtomicNode)
+ return SDValue();
+
+ uint64_t FenceOrder = FenceNode->getConstantOperandVal(1);
+ uint64_t FenceScope = FenceNode->getConstantOperandVal(2);
+
+ if (FenceOrder != Acquire || FenceScope != AtomicNode->getSynchScope())
+ return SDValue();
+
+ // If the original operation was an ATOMIC_LOAD then we'll be replacing it, so
+ // the chain we use should be its input, otherwise we'll put our store after
+ // it so we use its output chain.
+ SDValue Chain = AtomicNode->getOpcode() == ISD::ATOMIC_LOAD ?
+ AtomicNode->getChain() : AtomicOp;
+
+ // We have an acquire fence with a handy atomic operation nearby, we can
+ // convert the fence into a load-acquire, discarding the result.
+ DebugLoc DL = FenceNode->getDebugLoc();
+ SDValue Op = DAG.getAtomic(ISD::ATOMIC_LOAD, DL, AtomicNode->getMemoryVT(),
+ AtomicNode->getValueType(0),
+ Chain, // Chain
+ AtomicOp.getOperand(1), // Pointer
+ AtomicNode->getMemOperand(), Acquire,
+ static_cast<SynchronizationScope>(FenceScope));
+
+ if (AtomicNode->getOpcode() == ISD::ATOMIC_LOAD)
+ DAG.ReplaceAllUsesWith(AtomicNode, Op.getNode());
+
+ return Op.getValue(1);
+}
+
+static SDValue PerformATOMIC_STORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // A releasing atomic fence followed by an atomic store can be combined into a
+ // single store operation.
+ SelectionDAG &DAG = DCI.DAG;
+ AtomicSDNode *AtomicNode = cast<AtomicSDNode>(N);
+ SDValue FenceOp = AtomicNode->getOperand(0);
+
+ if (FenceOp.getOpcode() != ISD::ATOMIC_FENCE)
+ return SDValue();
+
+ uint64_t FenceOrder
+ = cast<ConstantSDNode>(FenceOp.getOperand(1))->getZExtValue();
+ uint64_t FenceScope
+ = cast<ConstantSDNode>(FenceOp.getOperand(2))->getZExtValue();
+
+ if (FenceOrder != Release || FenceScope != AtomicNode->getSynchScope())
+ return SDValue();
+
+ DebugLoc DL = AtomicNode->getDebugLoc();
+ return DAG.getAtomic(ISD::ATOMIC_STORE, DL, AtomicNode->getMemoryVT(),
+ FenceOp.getOperand(0), // Chain
+ AtomicNode->getOperand(1), // Pointer
+ AtomicNode->getOperand(2), // Value
+ AtomicNode->getMemOperand(), Release,
+ static_cast<SynchronizationScope>(FenceScope));
+}
+
+/// For a true bitfield insert, the bits getting into that contiguous mask
+/// should come from the low part of an existing value: they must be formed from
+/// a compatible SHL operation (unless they're already low). This function
+/// checks that condition and returns the least-significant bit that's
+/// intended. If the operation not a field preparation, -1 is returned.
+static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
+ SDValue &MaskedVal, uint64_t Mask) {
+ if (!isShiftedMask_64(Mask))
+ return -1;
+
+ // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
+ // instruction. BFI will do a left-shift by LSB before applying the mask we've
+ // spotted, so in general we should pre-emptively "undo" that by making sure
+ // the incoming bits have had a right-shift applied to them.
+ //
+ // This right shift, however, will combine with existing left/right shifts. In
+ // the simplest case of a completely straight bitfield operation, it will be
+ // expected to completely cancel out with an existing SHL. More complicated
+ // cases (e.g. bitfield to bitfield copy) may still need a real shift before
+ // the BFI.
+
+ uint64_t LSB = CountTrailingZeros_64(Mask);
+ int64_t ShiftRightRequired = LSB;
+ if (MaskedVal.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
+ ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
+ MaskedVal = MaskedVal.getOperand(0);
+ } else if (MaskedVal.getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
+ ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
+ MaskedVal = MaskedVal.getOperand(0);
+ }
+
+ if (ShiftRightRequired > 0)
+ MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
+ DAG.getConstant(ShiftRightRequired, MVT::i64));
+ else if (ShiftRightRequired < 0) {
+ // We could actually end up with a residual left shift, for example with
+ // "struc.bitfield = val << 1".
+ MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
+ DAG.getConstant(-ShiftRightRequired, MVT::i64));
+ }
+
+ return LSB;
+}
+
+/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
+/// a mask and an extension. Returns true if a BFI was found and provides
+/// information on its surroundings.
+static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
+ bool &Extended) {
+ Extended = false;
+ if (N.getOpcode() == ISD::ZERO_EXTEND) {
+ Extended = true;
+ N = N.getOperand(0);
+ }
+
+ if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
+ Mask = N->getConstantOperandVal(1);
+ N = N.getOperand(0);
+ } else {
+ // Mask is the whole width.
+ Mask = (1ULL << N.getValueType().getSizeInBits()) - 1;
+ }
+
+ if (N.getOpcode() == AArch64ISD::BFI) {
+ BFI = N;
+ return true;
+ }
+
+ return false;
+}
+
+/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
+/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
+/// can often be further combined with a larger mask. Ultimately, we want mask
+/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
+static SDValue tryCombineToBFI(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+
+ assert(N->getOpcode() == ISD::OR && "Unexpected root");
+
+ // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
+ // abandon the effort.
+ SDValue LHS = N->getOperand(0);
+ if (LHS.getOpcode() != ISD::AND)
+ return SDValue();
+
+ uint64_t LHSMask;
+ if (isa<ConstantSDNode>(LHS.getOperand(1)))
+ LHSMask = LHS->getConstantOperandVal(1);
+ else
+ return SDValue();
+
+ // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
+ // is or abandon the effort.
+ SDValue RHS = N->getOperand(1);
+ if (RHS.getOpcode() != ISD::AND)
+ return SDValue();
+
+ uint64_t RHSMask;
+ if (isa<ConstantSDNode>(RHS.getOperand(1)))
+ RHSMask = RHS->getConstantOperandVal(1);
+ else
+ return SDValue();
+
+ // Can't do anything if the masks are incompatible.
+ if (LHSMask & RHSMask)
+ return SDValue();
+
+ // Now we need one of the masks to be a contiguous field. Without loss of
+ // generality that should be the RHS one.
+ SDValue Bitfield = LHS.getOperand(0);
+ if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
+ // We know that LHS is a candidate new value, and RHS isn't already a better
+ // one.
+ std::swap(LHS, RHS);
+ std::swap(LHSMask, RHSMask);
+ }
+
+ // We've done our best to put the right operands in the right places, all we
+ // can do now is check whether a BFI exists.
+ Bitfield = RHS.getOperand(0);
+ int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
+ if (LSB == -1)
+ return SDValue();
+
+ uint32_t Width = CountPopulation_64(RHSMask);
+ assert(Width && "Expected non-zero bitfield width");
+
+ SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
+ LHS.getOperand(0), Bitfield,
+ DAG.getConstant(LSB, MVT::i64),
+ DAG.getConstant(Width, MVT::i64));
+
+ // Mask is trivial
+ if ((LHSMask | RHSMask) == (1ULL << VT.getSizeInBits()) - 1)
+ return BFI;
+
+ return DAG.getNode(ISD::AND, DL, VT, BFI,
+ DAG.getConstant(LHSMask | RHSMask, VT));
+}
+
+/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
+/// original input. This is surprisingly common because SROA splits things up
+/// into i8 chunks, so the originally detected MaskedBFI may actually only act
+/// on the low (say) byte of a word. This is then orred into the rest of the
+/// word afterwards.
+///
+/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
+///
+/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
+/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
+/// involved.
+static SDValue tryCombineToLargerBFI(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+
+ // First job is to hunt for a MaskedBFI on either the left or right. Swap
+ // operands if it's actually on the right.
+ SDValue BFI;
+ SDValue PossExtraMask;
+ uint64_t ExistingMask = 0;
+ bool Extended = false;
+ if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
+ PossExtraMask = N->getOperand(1);
+ else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
+ PossExtraMask = N->getOperand(0);
+ else
+ return SDValue();
+
+ // We can only combine a BFI with another compatible mask.
+ if (PossExtraMask.getOpcode() != ISD::AND ||
+ !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
+ return SDValue();
+
+ uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
+
+ // Masks must be compatible.
+ if (ExtraMask & ExistingMask)
+ return SDValue();
+
+ SDValue OldBFIVal = BFI.getOperand(0);
+ SDValue NewBFIVal = BFI.getOperand(1);
+ if (Extended) {
+ // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
+ // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
+ // need to be made compatible.
+ assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
+ && "Invalid types for BFI");
+ OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
+ NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
+ }
+
+ // We need the MaskedBFI to be combined with a mask of the *same* value.
+ if (PossExtraMask.getOperand(0) != OldBFIVal)
+ return SDValue();
+
+ BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
+ OldBFIVal, NewBFIVal,
+ BFI.getOperand(2), BFI.getOperand(3));
+
+ // If the masking is trivial, we don't need to create it.
+ if ((ExtraMask | ExistingMask) == (1ULL << VT.getSizeInBits()) - 1)
+ return BFI;
+
+ return DAG.getNode(ISD::AND, DL, VT, BFI,
+ DAG.getConstant(ExtraMask | ExistingMask, VT));
+}
+
+/// An EXTR instruction is made up of two shifts, ORed together. This helper
+/// searches for and classifies those shifts.
+static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
+ bool &FromHi) {
+ if (N.getOpcode() == ISD::SHL)
+ FromHi = false;
+ else if (N.getOpcode() == ISD::SRL)
+ FromHi = true;
+ else
+ return false;
+
+ if (!isa<ConstantSDNode>(N.getOperand(1)))
+ return false;
+
+ ShiftAmount = N->getConstantOperandVal(1);
+ Src = N->getOperand(0);
+ return true;
+}
+
+/// EXTR instruciton extracts a contiguous chunk of bits from two existing
+/// registers viewed as a high/low pair. This function looks for the pattern:
+/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
+/// EXTR. Can't quite be done in TableGen because the two immediates aren't
+/// independent.
+static SDValue tryCombineToEXTR(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+
+ assert(N->getOpcode() == ISD::OR && "Unexpected root");
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ SDValue LHS;
+ uint32_t ShiftLHS = 0;
+ bool LHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
+ return SDValue();
+
+ SDValue RHS;
+ uint32_t ShiftRHS = 0;
+ bool RHSFromHi = 0;
+ if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
+ return SDValue();
+
+ // If they're both trying to come from the high part of the register, they're
+ // not really an EXTR.
+ if (LHSFromHi == RHSFromHi)
+ return SDValue();
+
+ if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
+ return SDValue();
+
+ if (LHSFromHi) {
+ std::swap(LHS, RHS);
+ std::swap(ShiftLHS, ShiftRHS);
+ }
+
+ return DAG.getNode(AArch64ISD::EXTR, DL, VT,
+ LHS, RHS,
+ DAG.getConstant(ShiftRHS, MVT::i64));
+}
+
+/// Target-specific dag combine xforms for ISD::OR
+static SDValue PerformORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *Subtarget) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ // Attempt to recognise bitfield-insert operations.
+ SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
+ if (Res.getNode())
+ return Res;
+
+ // Attempt to combine an existing MaskedBFI operation into one with a larger
+ // mask.
+ Res = tryCombineToLargerBFI(N, DCI, Subtarget);
+ if (Res.getNode())
+ return Res;
+
+ Res = tryCombineToEXTR(N, DCI);
+ if (Res.getNode())
+ return Res;
+
+ return SDValue();
+}
+
+/// Target-specific dag combine xforms for ISD::SRA
+static SDValue PerformSRACombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc DL = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+
+ // We're looking for an SRA/SHL pair which form an SBFX.
+
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ if (!isa<ConstantSDNode>(N->getOperand(1)))
+ return SDValue();
+
+ uint64_t ExtraSignBits = N->getConstantOperandVal(1);
+ SDValue Shift = N->getOperand(0);
+
+ if (Shift.getOpcode() != ISD::SHL)
+ return SDValue();
+
+ if (!isa<ConstantSDNode>(Shift->getOperand(1)))
+ return SDValue();
+
+ uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
+ uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
+ uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
+
+ if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
+ return SDValue();
+
+ return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
+ DAG.getConstant(LSB, MVT::i64),
+ DAG.getConstant(LSB + Width - 1, MVT::i64));
+}
+
+
+SDValue
+AArch64TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::AND: return PerformANDCombine(N, DCI);
+ case ISD::ATOMIC_FENCE: return PerformATOMIC_FENCECombine(N, DCI);
+ case ISD::ATOMIC_STORE: return PerformATOMIC_STORECombine(N, DCI);
+ case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
+ case ISD::SRA: return PerformSRACombine(N, DCI);
+ }
+ return SDValue();
+}
+
+AArch64TargetLowering::ConstraintType
+AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'w': // An FP/SIMD vector register
+ return C_RegisterClass;
+ case 'I': // Constant that can be used with an ADD instruction
+ case 'J': // Constant that can be used with a SUB instruction
+ case 'K': // Constant that can be used with a 32-bit logical instruction
+ case 'L': // Constant that can be used with a 64-bit logical instruction
+ case 'M': // Constant that can be used as a 32-bit MOV immediate
+ case 'N': // Constant that can be used as a 64-bit MOV immediate
+ case 'Y': // Floating point constant zero
+ case 'Z': // Integer constant zero
+ return C_Other;
+ case 'Q': // A memory reference with base register and no offset
+ return C_Memory;
+ case 'S': // A symbolic address
+ return C_Other;
+ }
+ }
+
+ // FIXME: Ump, Utf, Usa, Ush
+ // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, whatever they may be
+ // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
+ // Usa: An absolute symbolic address
+ // Ush: The high part (bits 32:12) of a pc-relative symbolic address
+ assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
+ && Constraint != "Ush" && "Unimplemented constraints");
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+TargetLowering::ConstraintWeight
+AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
+ const char *Constraint) const {
+
+ llvm_unreachable("Constraint weight unimplemented");
+}
+
+void
+AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0, 0);
+
+ // Only length 1 constraints are C_Other.
+ if (Constraint.size() != 1) return;
+
+ // Only C_Other constraints get lowered like this. That means constants for us
+ // so return early if there's no hope the constraint can be lowered.
+
+ switch(Constraint[0]) {
+ default: break;
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'Z': {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ uint64_t CVal = C->getZExtValue();
+ uint32_t Bits;
+
+ switch (Constraint[0]) {
+ default:
+ // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
+ // is a peculiarly useless SUB constraint.
+ llvm_unreachable("Unimplemented C_Other constraint");
+ case 'I':
+ if (CVal <= 0xfff)
+ break;
+ return;
+ case 'K':
+ if (A64Imms::isLogicalImm(32, CVal, Bits))
+ break;
+ return;
+ case 'L':
+ if (A64Imms::isLogicalImm(64, CVal, Bits))
+ break;
+ return;
+ case 'Z':
+ if (CVal == 0)
+ break;
+ return;
+ }
+
+ Result = DAG.getTargetConstant(CVal, Op.getValueType());
+ break;
+ }
+ case 'S': {
+ // An absolute symbolic address or label reference.
+ if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
+ Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
+ GA->getValueType(0));
+ } else if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
+ Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
+ BA->getValueType(0));
+ } else if (const ExternalSymbolSDNode *ES
+ = dyn_cast<ExternalSymbolSDNode>(Op)) {
+ Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
+ ES->getValueType(0));
+ } else
+ return;
+ break;
+ }
+ case 'Y':
+ if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ if (CFP->isExactlyValue(0.0)) {
+ Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
+ break;
+ }
+ }
+ return;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ // It's an unknown constraint for us. Let generic code have a go.
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+AArch64TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ if (VT.getSizeInBits() <= 32)
+ return std::make_pair(0U, &AArch64::GPR32RegClass);
+ else if (VT == MVT::i64)
+ return std::make_pair(0U, &AArch64::GPR64RegClass);
+ break;
+ case 'w':
+ if (VT == MVT::f16)
+ return std::make_pair(0U, &AArch64::FPR16RegClass);
+ else if (VT == MVT::f32)
+ return std::make_pair(0U, &AArch64::FPR32RegClass);
+ else if (VT == MVT::f64)
+ return std::make_pair(0U, &AArch64::FPR64RegClass);
+ else if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, &AArch64::VPR64RegClass);
+ else if (VT == MVT::f128)
+ return std::make_pair(0U, &AArch64::FPR128RegClass);
+ else if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, &AArch64::VPR128RegClass);
+ break;
+ }
+ }
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}