summaryrefslogtreecommitdiff
path: root/lib/Target/SystemZ/SystemZInstrFP.td
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/SystemZ/SystemZInstrFP.td')
-rw-r--r--lib/Target/SystemZ/SystemZInstrFP.td318
1 files changed, 318 insertions, 0 deletions
diff --git a/lib/Target/SystemZ/SystemZInstrFP.td b/lib/Target/SystemZ/SystemZInstrFP.td
new file mode 100644
index 0000000000..7c9f0e668b
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrFP.td
@@ -0,0 +1,318 @@
+//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Control-flow instructions
+//===----------------------------------------------------------------------===//
+
+// C's ?: operator for floating-point operands.
+def SelectF32 : SelectWrapper<FP32>;
+def SelectF64 : SelectWrapper<FP64>;
+def SelectF128 : SelectWrapper<FP128>;
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+// Load zero.
+let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
+ def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>;
+ def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>;
+ def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
+}
+
+// Moves between two floating-point registers.
+let neverHasSideEffects = 1 in {
+ def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>;
+ def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>;
+ def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
+}
+
+// Moves between 64-bit integer and floating-point registers.
+def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
+def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
+
+// fcopysign with an FP32 result.
+let isCodeGenOnly = 1 in {
+ def CPSDRss : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>;
+ def CPSDRsd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>;
+}
+
+// The sign of an FP128 is in the high register. Give the CPSDRsd
+// operands in R1, R2, R3 order.
+def : Pat<(fcopysign FP32:$src1, FP128:$src2),
+ (CPSDRsd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP32:$src1)>;
+
+// fcopysign with an FP64 result.
+let isCodeGenOnly = 1 in
+ def CPSDRds : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>;
+def CPSDRdd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>;
+
+// The sign of an FP128 is in the high register. Give the CPSDRdd
+// operands in R1, R2, R3 order.
+def : Pat<(fcopysign FP64:$src1, FP128:$src2),
+ (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP64:$src1)>;
+
+// fcopysign with an FP128 result. Use "upper" as the high half and leave
+// the low half as-is.
+class CopySign128<RegisterOperand cls, dag upper>
+ : Pat<(fcopysign FP128:$src1, cls:$src2),
+ (INSERT_SUBREG FP128:$src1, upper, subreg_high)>;
+
+// Give the CPSDR* operands in R1, R2, R3 order.
+def : CopySign128<FP32, (CPSDRds FP32:$src2,
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+def : CopySign128<FP64, (CPSDRdd FP64:$src2,
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high),
+ (EXTRACT_SUBREG FP128:$src1, subreg_high))>;
+
+//===----------------------------------------------------------------------===//
+// Load instructions
+//===----------------------------------------------------------------------===//
+
+let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
+ defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>;
+ defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
+ [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Store instructions
+//===----------------------------------------------------------------------===//
+
+let SimpleBDXStore = 1 in {
+ defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>;
+ defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>;
+
+ // These instructions are split after register allocation, so we don't
+ // want a custom inserter.
+ let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
+ def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
+ [(store FP128:$src, bdxaddr20only128:$dst)]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Conversion instructions
+//===----------------------------------------------------------------------===//
+
+// Convert floating-point values to narrower representations, rounding
+// according to the current mode. The destination of LEXBR and LDXBR
+// is a 128-bit value, but only the first register of the pair is used.
+def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>;
+def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
+def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
+
+def : Pat<(f32 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>;
+def : Pat<(f64 (fround FP128:$src)),
+ (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>;
+
+// Extend register floating-point values to wider representations.
+def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>;
+def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>;
+def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>;
+
+// Extend memory floating-point values to wider representations.
+def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>;
+def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>;
+def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>;
+
+// Convert a signed integer register value to a floating-point one.
+let Defs = [PSW] in {
+ def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>;
+ def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>;
+ def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
+
+ def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>;
+ def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>;
+ def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
+}
+
+// Convert a floating-point register value to a signed integer value,
+// with the second operand (modifier M3) specifying the rounding mode.
+let Defs = [PSW] in {
+ def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>;
+ def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>;
+ def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>;
+
+ def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>;
+ def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>;
+ def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>;
+}
+
+// fp_to_sint always rounds towards zero, which is modifier value 5.
+def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR FP32:$src, 5)>;
+def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR FP64:$src, 5)>;
+def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR FP128:$src, 5)>;
+
+def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR FP32:$src, 5)>;
+def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR FP64:$src, 5)>;
+def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR FP128:$src, 5)>;
+
+//===----------------------------------------------------------------------===//
+// Unary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Negation (Load Complement).
+let Defs = [PSW] in {
+ def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>;
+ def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>;
+ def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
+}
+
+// Absolute value (Load Positive).
+let Defs = [PSW] in {
+ def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>;
+ def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>;
+ def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
+}
+
+// Negative absolute value (Load Negative).
+let Defs = [PSW] in {
+ def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>;
+ def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>;
+ def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
+}
+
+// Square root.
+def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>;
+def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>;
+def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
+
+def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>;
+def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>;
+
+// Round to an integer, with the second operand (modifier M3) specifying
+// the rounding mode.
+//
+// These forms always check for inexact conditions. z196 added versions
+// that allow this to suppressed (as for fnearbyint), but we don't yet
+// support -march=z196.
+let Defs = [PSW] in {
+ def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>;
+ def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>;
+ def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>;
+}
+
+// frint rounds according to the current mode (modifier 0) and detects
+// inexact conditions.
+def : Pat<(frint FP32:$src), (FIEBR FP32:$src, 0)>;
+def : Pat<(frint FP64:$src), (FIDBR FP64:$src, 0)>;
+def : Pat<(frint FP128:$src), (FIXBR FP128:$src, 0)>;
+
+//===----------------------------------------------------------------------===//
+// Binary arithmetic
+//===----------------------------------------------------------------------===//
+
+// Addition.
+let Defs = [PSW] in {
+ let isCommutable = 1 in {
+ def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>;
+ def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>;
+ def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
+ }
+ def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>;
+ def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>;
+}
+
+// Subtraction.
+let Defs = [PSW] in {
+ def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>;
+ def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>;
+ def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
+
+ def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>;
+ def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>;
+}
+
+// Multiplication.
+let isCommutable = 1 in {
+ def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>;
+ def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>;
+ def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>;
+}
+def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>;
+def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>;
+
+// f64 multiplication of two FP32 registers.
+def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
+ (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
+ FP32:$src1, subreg_32bit), FP32:$src2)>;
+
+// f64 multiplication of an FP32 register and an f32 memory.
+def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>;
+def : Pat<(fmul (f64 (fextend FP32:$src1)),
+ (f64 (extloadf32 bdxaddr12only:$addr))),
+ (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit),
+ bdxaddr12only:$addr)>;
+
+// f128 multiplication of two FP64 registers.
+def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
+ (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
+ FP64:$src1, subreg_high), FP64:$src2)>;
+
+// f128 multiplication of an FP64 register and an f64 memory.
+def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>;
+def : Pat<(fmul (f128 (fextend FP64:$src1)),
+ (f128 (extloadf64 bdxaddr12only:$addr))),
+ (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high),
+ bdxaddr12only:$addr)>;
+
+// Fused multiply-add.
+def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>;
+def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>;
+
+def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>;
+def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>;
+
+// Fused multiply-subtract.
+def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>;
+def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>;
+
+def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>;
+def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>;
+
+// Division.
+def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>;
+def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>;
+def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
+
+def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>;
+def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>;
+
+//===----------------------------------------------------------------------===//
+// Comparisons
+//===----------------------------------------------------------------------===//
+
+let Defs = [PSW] in {
+ def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>;
+ def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>;
+ def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>;
+
+ def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>;
+ def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>;
+}
+
+//===----------------------------------------------------------------------===//
+// Peepholes
+//===----------------------------------------------------------------------===//
+
+def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>;
+def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>;
+def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;