summaryrefslogtreecommitdiff
path: root/test/Analysis
Commit message (Collapse)AuthorAge
* Reduce verbiage of lit.local.cfg filesAlp Toker2014-06-09
| | | | | | We can just split targets_to_build in one place and make it immutable. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210496 91177308-0d34-0410-b5e6-96231b3b80d8
* ScalarEvolution: Derive element size from the type of the loaded elementTobias Grosser2014-06-08
| | | | | | | | | | Before, we where looking at the size of the pointer type that specifies the location from which to load the element. This did not make any sense at all. This change fixes a bug in the delinearization where we failed to delinerize certain load instructions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210435 91177308-0d34-0410-b5e6-96231b3b80d8
* remove constant termsSebastian Pop2014-05-27
| | | | | | | | | | | | | | | | | | | | | | The delinearization is needed only to remove the non linearity induced by expressions involving multiplications of parameters and induction variables. There is no problem in dealing with constant times parameters, or constant times an induction variable. For this reason, the current patch discards all constant terms and multipliers before running the delinearization algorithm on the terms. The only thing remaining in the term expressions are parameters and multiply expressions of parameters: these simplified term expressions are passed to the array shape recognizer that will not recognize constant dimensions anymore: these will be recognized as different strides in parametric subscripts. The only important special case of a constant dimension is the size of elements. Instead of relying on the delinearization to infer the size of an element, compute the element size from the base address type. This is a much more precise way of computing the element size than before, as we would have mixed together the size of an element with the strides of the innermost dimension. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209691 91177308-0d34-0410-b5e6-96231b3b80d8
* Adding testcase for PR18886.Dinesh Dwivedi2014-05-27
| | | | | | | | Differential Revision: http://reviews.llvm.org/D3837 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209645 91177308-0d34-0410-b5e6-96231b3b80d8
* AArch64/ARM64: move ARM64 into AArch64's placeTim Northover2014-05-24
| | | | | | | | | | | | | | | This commit starts with a "git mv ARM64 AArch64" and continues out from there, renaming the C++ classes, intrinsics, and other target-local objects for consistency. "ARM64" test directories are also moved, and tests that began their life in ARM64 use an arm64 triple, those from AArch64 use an aarch64 triple. Both should be equivalent though. This finishes the AArch64 merge, and everyone should feel free to continue committing as normal now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
* Test case comments. Fix sloppiness.Andrew Trick2014-05-23
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209551 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix and improve SCEV ComputeBackedgeTankCount.Andrew Trick2014-05-23
| | | | | | | | | | | | | This is a follow-up to r209358: PR19799: Indvars miscompile due to an incorrect max backedge taken count from SCEV. That fix was incomplete as pointed out by Arnold and Michael Z. The code was also too confusing. It needed a careful rewrite with more unit tests. This version will also happen to optimize more cases. <rdar://17005101> PR19799: Indvars miscompile... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209545 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix a bug in SCEV's backedge taken count computation from my prior fix in Jan.Andrew Trick2014-05-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This has to do with the trip count computation for loops with multiple exits, which is quite subtle. Most passes just ask for a single trip count number, so we must be conservative assuming any exit could be taken. Normally, we rely on the "exact" trip count, which was correctly given as "unknown". However, SCEV also gives a "max" back-edge taken count. The loops max BE taken count is conservatively a maximum over the max of each exit's non-exiting iterations count. Note that some exit tests can be skipped so the max loop back-edge taken count can actually exceed the max non-exiting iterations for some exits. However, when we know the loop *latch* cannot be skipped, we can directly use its max taken count disregarding other exits. I previously took the minimum here without checking whether the other exit could be skipped. The correct, and simpler thing to do here is just to directly use the loop latch's max non-exiting iterations as the loops max back-edge count. In the problematic test case, the first loop exit had a max of zero non-exiting iterations, but could be skipped. The loop latch was known not to be skipped but had max of one non-exiting iteration. We incorrectly claimed the loop back-edge could be taken zero times, when it is actually taken one time. Fixes Loop %for.body.i: <multiple exits> Unpredictable backedge-taken count. Loop %for.body.i: max backedge-taken count is 1. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209358 91177308-0d34-0410-b5e6-96231b3b80d8
* Added tests for the cost of lowering VSELECT instructions.Filipe Cabecinhas2014-05-16
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209045 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix typosAlp Toker2014-05-15
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208839 91177308-0d34-0410-b5e6-96231b3b80d8
* [Test] Trim unnecessary .c and .cpp from config.suffix in lit.local.cfgAdam Nemet2014-05-12
| | | | | | | | | | | | | | Tested by comparing make check VERBOSE=1 before and after to make sure no tests are missed. (VERBOSE=1 prints the list of tests.) Only one test :( remains where .cpp is required: tools/llvm-cov/range_based_for.cpp:// RUN: llvm-cov range_based_for.cpp | FileCheck %s --check-prefix=STDOUT The topic was discussed in this thread: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140428/214905.html git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208621 91177308-0d34-0410-b5e6-96231b3b80d8
* do not assert when delinearization failsSebastian Pop2014-05-12
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208615 91177308-0d34-0410-b5e6-96231b3b80d8
* add testcase for r208237: do not collect undef termsSebastian Pop2014-05-08
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208347 91177308-0d34-0410-b5e6-96231b3b80d8
* split delinearization pass in 3 stepsSebastian Pop2014-05-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To compute the dimensions of the array in a unique way, we split the delinearization analysis in three steps: - find parametric terms in all memory access functions - compute the array dimensions from the set of terms - compute the delinearized access functions for each dimension The first step is executed on all the memory access functions such that we gather all the patterns in which an array is accessed. The second step reduces all this information in a unique description of the sizes of the array. The third step is delinearizing each memory access function following the common description of the shape of the array computed in step 2. This rewrite of the delinearization pass also solves a problem we had with the previous implementation: because the previous algorithm was by induction on the structure of the SCEV, it would not correctly recognize the shape of the array when the memory access was not following the nesting of the loops: for example, see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll ; void foo(long n, long m, long o, double A[n][m][o]) { ; ; for (long i = 0; i < n; i++) ; for (long j = 0; j < m; j++) ; for (long k = 0; k < o; k++) ; A[i][k][j] = 1.0; Starting with this patch we no longer delinearize access functions that do not contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll ;; for (long int i = 0; i < 100; i++) ;; for (long int j = 0; j < 100; j++) { ;; A[2*i - 4*j] = i; ;; *B++ = A[6*i + 8*j]; these accesses will not be delinearized as the upper bound of the loops are constants, and their access functions do not contain SCEVUnknown parameters. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
* TTI: Estimate @llvm.fmuladd cost as fmul + fadd when FMA's aren't legal on ↵Benjamin Kramer2014-05-06
| | | | | | the target. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208115 91177308-0d34-0410-b5e6-96231b3b80d8
* Reapply "blockfreq: Approximate irreducible control flow"Duncan P. N. Exon Smith2014-04-28
| | | | | | | | | | This reverts commit r207287, reapplying r207286. I'm hoping that declaring an explicit struct and instantiating `addBlockEdges()` directly works around the GCC crash from r207286. This is a lot more boilerplate, though. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207438 91177308-0d34-0410-b5e6-96231b3b80d8
* X86TTI: Adjust sdiv cost now that we can lower it on plain SSE2.Benjamin Kramer2014-04-27
| | | | | | | Includes a fix for a horrible typo that caused all SDIV costs to be slightly off :) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207371 91177308-0d34-0410-b5e6-96231b3b80d8
* X86TTI: i16/i32 vector div with a constant (splat) divisor are reasonably ↵Benjamin Kramer2014-04-26
| | | | | | | | cheap now. Turn vectorization back on. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207320 91177308-0d34-0410-b5e6-96231b3b80d8
* Revert "blockfreq: Approximate irreducible control flow"Duncan P. N. Exon Smith2014-04-25
| | | | | | | | | | | | This reverts commit r207286. It causes an ICE on the cmake-llvm-x86_64-linux buildbot [1]: llvm/lib/Analysis/BlockFrequencyInfo.cpp: In lambda function: llvm/lib/Analysis/BlockFrequencyInfo.cpp:182:1: internal compiler error: in get_expr_operands, at tree-ssa-operands.c:1035 [1]: http://bb.pgr.jp/builders/cmake-llvm-x86_64-linux/builds/12093/steps/build_llvm/logs/stdio git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207287 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Approximate irreducible control flowDuncan P. N. Exon Smith2014-04-25
| | | | | | | | | | | | | | | | | | | | | | Previously, irreducible backedges were ignored. With this commit, irreducible SCCs are discovered on the fly, and modelled as loops with multiple headers. This approximation specifies the headers of irreducible sub-SCCs as its entry blocks and all nodes that are targets of a backedge within it (excluding backedges within true sub-loops). Block frequency calculations act as if we insert a new block that intercepts all the edges to the headers. All backedges and entries to the irreducible SCC point to this imaginary block. This imaginary block has an edge (with even probability) to each header block. The result is now reasonable enough that I've added a number of testcases for irreducible control flow. I've outlined in `BlockFrequencyInfoImpl.h` ways to improve the approximation. <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207286 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Only one mass distribution per nodeDuncan P. N. Exon Smith2014-04-25
| | | | | | | | | | Remove the concepts of "forward" and "general" mass distributions, which was wrong. The split might have made sense in an early version of the algorithm, but it's definitely wrong now. <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207195 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Use better branch weights in multiexit testDuncan P. N. Exon Smith2014-04-25
| | | | | | | | The branch weights were even before. Make them different. <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207193 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Clean up irreducible testcasesDuncan P. N. Exon Smith2014-04-25
| | | | | | | | | | | Strip irreducible testcases to pure control flow. The function calls made the branch weights more believable but cluttered it up a lot. There isn't going to be any constant analysis here, so just use dumb branch logic to clarify the important parts. <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207192 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Skip irreducible backedges inside functionsDuncan P. N. Exon Smith2014-04-22
| | | | | | | | | | | | The branch that skips irreducible backedges was only active when propagating mass at the top-level. In particular, when propagating mass through a loop recognized by `LoopInfo` with irreducible control flow inside, irreducible backedges would not be skipped. Not sure where that idea came from, but the result was that mass was lost until after loop exit. Added a testcase that covers this case. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206860 91177308-0d34-0410-b5e6-96231b3b80d8
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-21
| | | | | | | | | This reverts commit r206707, reapplying r206704. The preceding commit to CalcSpillWeights should have sorted out the failing buildbots. <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206766 91177308-0d34-0410-b5e6-96231b3b80d8
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-19
| | | | | | This reverts commit r206704, as expected. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206707 91177308-0d34-0410-b5e6-96231b3b80d8
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-19
| | | | | | | | | | | | | | | | | | | | | This reverts commit r206677, reapplying my BlockFrequencyInfo rewrite. I've done a careful audit, added some asserts, and fixed a couple of bugs (unfortunately, they were in unlikely code paths). There's a small chance that this will appease the failing bots [1][2]. (If so, great!) If not, I have a follow-up commit ready that will temporarily add -debug-only=block-freq to the two failing tests, allowing me to compare the code path between what the failing bots and what my machines (and the rest of the bots) are doing. Once I've triggered those builds, I'll revert both commits so the bots go green again. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 [2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445 <rdar://problem/14292693> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206704 91177308-0d34-0410-b5e6-96231b3b80d8
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-19
| | | | | | | | | | | This reverts commit r206666, as planned. Still stumped on why the bots are failing. Sanitizer bots haven't turned anything up. If anyone can help me debug either of the failures (referenced in r206666) I'll owe them a beer. (In the meantime, I'll be auditing my patch for undefined behaviour.) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206677 91177308-0d34-0410-b5e6-96231b3b80d8
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-18
| | | | | | | | | | | | | | | | | | | This reverts commit r206628, reapplying r206622 (and r206626). Two tests are failing only on buildbots [1][2]: i.e., I can't reproduce on Darwin, and Chandler can't reproduce on Linux. Asan and valgrind don't tell us anything, but we're hoping the msan bot will catch it. So, I'm applying this again to get more feedback from the bots. I'll leave it in long enough to trigger builds in at least the sanitizer buildbots (it was failing for reasons unrelated to my commit last time it was in), and hopefully a few others.... and then I expect to revert a third time. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 [2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206666 91177308-0d34-0410-b5e6-96231b3b80d8
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl" (#2)Duncan P. N. Exon Smith2014-04-18
| | | | | | | | | This reverts commit r206622 and the MSVC fixup in r206626. Apparently the remotely failing tests are still failing, despite my attempt to fix the nondeterminism in r206621. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206628 91177308-0d34-0410-b5e6-96231b3b80d8
* Reapply "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-18
| | | | | | | | | | | | | | This reverts commit r206556, effectively reapplying commit r206548 and its fixups in r206549 and r206550. In an intervening commit I've added target triples to the tests that were failing remotely [1] (but passing locally). I'm hoping the mystery is solved? I'll revert this again if the tests are still failing remotely. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206622 91177308-0d34-0410-b5e6-96231b3b80d8
* [LCG] Add support for building persistent and connected SCCs to theChandler Carruth2014-04-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | LazyCallGraph. This is the start of the whole point of this different abstraction, but it is just the initial bits. Here is a run-down of what's going on here. I'm planning to incorporate some (or all) of this into comments going forward, hopefully with better editing and wording. =] The crux of the problem with the traditional way of building SCCs is that they are ephemeral. The new pass manager however really needs the ability to associate analysis passes and results of analysis passes with SCCs in order to expose these analysis passes to the SCC passes. Making this work is kind-of the whole point of the new pass manager. =] So, when we're building SCCs for the call graph, we actually want to build persistent nodes that stick around and can be reasoned about later. We'd also like the ability to walk the SCC graph in more complex ways than just the traditional postorder traversal of the current CGSCC walk. That means that in addition to being persistent, the SCCs need to be connected into a useful graph structure. However, we still want the SCCs to be formed lazily where possible. These constraints are quite hard to satisfy with the SCC iterator. Also, using that would bypass our ability to actually add data to the nodes of the call graph to facilite implementing the Tarjan walk. So I've re-implemented things in a more direct and embedded way. This immediately makes it easy to get the persistence and connectivity correct, and it also allows leveraging the existing nodes to simplify the algorithm. I've worked somewhat to make this implementation more closely follow the traditional paper's nomenclature and strategy, although it is still a bit obtuse because it isn't recursive, using an explicit stack and a tail call instead, and it is interruptable, resuming each time we need another SCC. The other tricky bit here, and what actually took almost all the time and trials and errors I spent building this, is exactly *what* graph structure to build for the SCCs. The naive thing to build is the call graph in its newly acyclic form. I wrote about 4 versions of this which did precisely this. Inevitably, when I experimented with them across various use cases, they became incredibly awkward. It was all implementable, but it felt like a complete wrong fit. Square peg, round hole. There were two overriding aspects that pushed me in a different direction: 1) We want to discover the SCC graph in a postorder fashion. That means the root node will be the *last* node we find. Using the call-SCC DAG as the graph structure of the SCCs results in an orphaned graph until we discover a root. 2) We will eventually want to walk the SCC graph in parallel, exploring distinct sub-graphs independently, and synchronizing at merge points. This again is not helped by the call-SCC DAG structure. The structure which, quite surprisingly, ended up being completely natural to use is the *inverse* of the call-SCC DAG. We add the leaf SCCs to the graph as "roots", and have edges to the caller SCCs. Once I switched to building this structure, everything just fell into place elegantly. Aside from general cleanups (there are FIXMEs and too few comments overall) that are still needed, the other missing piece of this is support for iterating across levels of the SCC graph. These will become useful for implementing #2, but they aren't an immediate priority. Once SCCs are in good shape, I'll be working on adding mutation support for incremental updates and adding the pass manager that this analysis enables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206581 91177308-0d34-0410-b5e6-96231b3b80d8
* Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"Duncan P. N. Exon Smith2014-04-18
| | | | | | | | | | | This reverts commits r206548, r206549 and r206549. There are some unit tests failing that aren't failing locally [1], so reverting until I have time to investigate. [1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206556 91177308-0d34-0410-b5e6-96231b3b80d8
* blockfreq: Rewrite BlockFrequencyInfoImplDuncan P. N. Exon Smith2014-04-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rewrite the shared implementation of BlockFrequencyInfo and MachineBlockFrequencyInfo entirely. The old implementation had a fundamental flaw: precision losses from nested loops (or very wide branches) compounded past loop exits (and convergence points). The @nested_loops testcase at the end of test/Analysis/BlockFrequencyAnalysis/basic.ll is motivating. This function has three nested loops, with branch weights in the loop headers of 1:4000 (exit:continue). The old analysis gives non-sensical results: Printing analysis 'Block Frequency Analysis' for function 'nested_loops': ---- Block Freqs ---- entry = 1.0 for.cond1.preheader = 1.00103 for.cond4.preheader = 5.5222 for.body6 = 18095.19995 for.inc8 = 4.52264 for.inc11 = 0.00109 for.end13 = 0.0 The new analysis gives correct results: Printing analysis 'Block Frequency Analysis' for function 'nested_loops': block-frequency-info: nested_loops - entry: float = 1.0, int = 8 - for.cond1.preheader: float = 4001.0, int = 32007 - for.cond4.preheader: float = 16008001.0, int = 128064007 - for.body6: float = 64048012001.0, int = 512384096007 - for.inc8: float = 16008001.0, int = 128064007 - for.inc11: float = 4001.0, int = 32007 - for.end13: float = 1.0, int = 8 Most importantly, the frequency leaving each loop matches the frequency entering it. The new algorithm leverages BlockMass and PositiveFloat to maintain precision, separates "probability mass distribution" from "loop scaling", and uses dithering to eliminate probability mass loss. I have unit tests for these types out of tree, but it was decided in the review to make the classes private to BlockFrequencyInfoImpl, and try to shrink them (or remove them entirely) in follow-up commits. The new algorithm should generally have a complexity advantage over the old. The previous algorithm was quadratic in the worst case. The new algorithm is still worst-case quadratic in the presence of irreducible control flow, but it's linear without it. The key difference between the old algorithm and the new is that control flow within a loop is evaluated separately from control flow outside, limiting propagation of precision problems and allowing loop scale to be calculated independently of mass distribution. Loops are visited bottom-up, their loop scales are calculated, and they are replaced by pseudo-nodes. Mass is then distributed through the function, which is now a DAG. Finally, loops are revisited top-down to multiply through the loop scales and the masses distributed to pseudo nodes. There are some remaining flaws. - Irreducible control flow isn't modelled correctly. LoopInfo and MachineLoopInfo ignore irreducible edges, so this algorithm will fail to scale accordingly. There's a note in the class documentation about how to get closer. See also the comments in test/Analysis/BlockFrequencyInfo/irreducible.ll. - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting the 64-bit integer precision used downstream. - The "bias" calculation proposed on llvmdev is *not* incorporated here. This will be added in a follow-up commit, once comments from this review have been handled. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206548 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix a bug in which BranchProbabilityInfo wasn't setting branch weights of ↵Akira Hatanaka2014-04-14
| | | | | | | | | | | | | | basic blocks inside loops correctly. Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights. This fixes PR18705 and <rdar://problem/15991090>. Differential Revision: http://reviews.llvm.org/D3363 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206194 91177308-0d34-0410-b5e6-96231b3b80d8
* Don't assert in BasicTTI::getMemoryOpCost for non-simple typesHal Finkel2014-04-14
| | | | | | | | BasicTTI::getMemoryOpCost must explicitly check for non-simple types; setting AllowUnknown=true with TLI->getSimpleValueType is not sufficient because, for example, non-power-of-two vector types return non-simple EVTs (not MVT::Other). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206150 91177308-0d34-0410-b5e6-96231b3b80d8
* in findGCD of multiply expr return the gcdSebastian Pop2014-04-08
| | | | | | we used to return 1 instead of the gcd git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205800 91177308-0d34-0410-b5e6-96231b3b80d8
* [PowerPC] Adjust load/store costs in PPCTTIHal Finkel2014-04-04
| | | | | | | | | | | | | | | | | | | | | | | | | This provides more realistic costs for the insert/extractelement instructions (which are load/store pairs), accounts for the cheap unaligned Altivec load sequence, and for unaligned VSX load/stores. Bad news: MultiSource/Applications/sgefa/sgefa - 35% slowdown (this will require more investigation) SingleSource/Benchmarks/McGill/queens - 20% slowdown (we no longer vectorize this, but it was a constant store that was scalarized) MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2 - 2% slowdown Good news: SingleSource/Benchmarks/Shootout/ary3 - 54% speedup SingleSource/Benchmarks/Shootout-C++/ary - 40% speedup MultiSource/Benchmarks/Ptrdist/ks/ks - 35% speedup MultiSource/Benchmarks/FreeBench/neural/neural - 30% speedup MultiSource/Benchmarks/TSVC/Symbolics-flt/Symbolics-flt - 20% speedup Unfortunately, estimating the costs of the stack-based scalarization sequences is hard, and adjusting these costs is like a game of whac-a-mole :( I'll revisit this again after we have better codegen for vector extloads and truncstores and unaligned load/stores. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205658 91177308-0d34-0410-b5e6-96231b3b80d8
* Account for scalarization costs in BasicTTI::getMemoryOpCost for extending ↵Hal Finkel2014-04-03
| | | | | | | | | | | | | | | | | | | | vector loads When a vector type legalizes to a larger vector type, and the target does not support the associated extending load (or truncating store), then legalization will scalarize the load (or store) resulting in an associated scalarization cost. BasicTTI::getMemoryOpCost needs to account for this. Between this, and r205487, PowerPC on the P7 with VSX enabled shows: MultiSource/Benchmarks/PAQ8p/paq8p: 43% speedup SingleSource/Benchmarks/BenchmarkGame/puzzle: 51% speedup SingleSource/UnitTests/Vectorizer/gcc-loops 28% speedup (some of these are new; some of these, such as PAQ8p, just reverse regressions that VSX support would trigger) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205495 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix multi-register costs in BasicTTI::getCastInstrCostHal Finkel2014-04-02
| | | | | | | | | | | | | For an cast (extension, etc.), the currently logic predicts a low cost if the associated operation (keyed on the destination type) is legal (or promoted). This is not true when the number of values required to legalize the type is changing. For example, <8 x i16> being sign extended by <8 x i32> is not generically cheap on PPC with VSX, even though sign extension to v4i32 is legal, because two output v4i32 values are required compared to the single v8i16 input value, and without custom logic in the target, this conversion will scalarize. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205487 91177308-0d34-0410-b5e6-96231b3b80d8
* ARM64: initial backend importTim Northover2014-03-29
| | | | | | | | | | | | This adds a second implementation of the AArch64 architecture to LLVM, accessible in parallel via the "arm64" triple. The plan over the coming weeks & months is to merge the two into a single backend, during which time thorough code review should naturally occur. Everything will be easier with the target in-tree though, hence this commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
* PR15967 Fix in basicaa for faulty returning no alias.Arnold Schwaighofer2014-03-26
| | | | | | | | | | | | | | This commit consist of two parts. The first part fix the PR15967. The wrong conclusion was made when the MaxLookup limit was reached. The fix introduce a out parameter (MaxLookupReached) to DecomposeGEPExpression that the function aliasGEP can act upon. The second part is introducing the constant MaxLookupSearchDepth to make sure that DecomposeGEPExpression and GetUnderlyingObject use the same search depth. This is a small cleanup to clarify the original algorithm. Patch by Karl-Johan Karlsson! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204859 91177308-0d34-0410-b5e6-96231b3b80d8
* ScalarEvolution: Compute exit counts for loops with a power-of-2 step.Benjamin Kramer2014-03-25
| | | | | | | | | | | | | If we have a loop of the form for (unsigned n = 0; n != (k & -32); n += 32) {} then we know that n is always divisible by 32 and the loop must terminate. Even if we have a condition where the loop counter will overflow it'll always hold this invariant. PR19183. Our loop vectorizer creates this pattern and it's also occasionally formed by loop counters derived from pointers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204728 91177308-0d34-0410-b5e6-96231b3b80d8
* Reject alias to undefined symbols in the verifier.Rafael Espindola2014-03-12
| | | | | | | | | | | | | | | On ELF and COFF an alias is just another name for a position in the file. There is no way to refer to a position in another file, so an alias to undefined is meaningless. MachO currently doesn't support aliases. The spec has a N_INDR, which when implemented will have a different set of restrictions. Adding support for it shouldn't be harder than any other IR extension. For now, having the IR represent what is actually possible with current tools makes it easier to fix the design of GlobalAlias. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203705 91177308-0d34-0410-b5e6-96231b3b80d8
* When analyzing vectors of element type that require legalization,Raul E. Silvera2014-03-10
| | | | | | | | | | | | | | | | | | the legalization cost must be included to get an accurate estimation of the total cost of the scalarized vector. The inaccurate cost triggered unprofitable SLP vectorization on 32-bit X86. Summary: Include legalization overhead when computing scalarization cost Reviewers: hfinkel, nadav CC: chandlerc, rnk, llvm-commits Differential Revision: http://llvm-reviews.chandlerc.com/D2992 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203509 91177308-0d34-0410-b5e6-96231b3b80d8
* Teach lint about address spacesMatt Arsenault2014-03-06
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203132 91177308-0d34-0410-b5e6-96231b3b80d8
* add -da-delinearize runs and checks to MIV testcasesSebastian Pop2014-02-21
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201869 91177308-0d34-0410-b5e6-96231b3b80d8
* Add extra CHECK prefix to tests with explicit prefixNico Rieck2014-02-16
| | | | | | | These tests mistakenly assume that CHECK is still available even if an explicit prefix is specified. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201492 91177308-0d34-0410-b5e6-96231b3b80d8
* Actually call FileCheck in testsNico Rieck2014-02-16
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201491 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix broken CHECK linesNico Rieck2014-02-16
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201479 91177308-0d34-0410-b5e6-96231b3b80d8