summaryrefslogtreecommitdiff
path: root/test/CodeGen/X86/block-placement.ll
Commit message (Collapse)AuthorAge
* Convert CodeGen/*/*.ll tests to use the new CHECK-LABEL for easier ↵Stephen Lin2013-07-13
| | | | | | | | | | | debugging. No functionality change and all tests pass after conversion. This was done with the following sed invocation to catch label lines demarking function boundaries: sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix tail merging to assign the (more) correct BasicBlock when splitting.Andrew Trick2013-06-24
| | | | | | | | | | | This makes it possible to write unit tests that are less susceptible to minor code motion, particularly copy placement. block-placement.ll covers this case with -pre-RA-sched=source which will soon be default. One incorrectly named block is already fixed, but without this fix, enabling new coalescing and scheduling would cause more failures. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184680 91177308-0d34-0410-b5e6-96231b3b80d8
* Add a new function attribute 'cold' to functions.Diego Novillo2013-05-24
| | | | | | | | | | | Other than recognizing the attribute, the patch does little else. It changes the branch probability analyzer so that edges into blocks postdominated by a cold function are given low weight. Added analysis and code generation tests. Added documentation for the new attribute. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182638 91177308-0d34-0410-b5e6-96231b3b80d8
* TBAA: remove !tbaa from testing cases if not used.Manman Ren2013-04-30
| | | | | | | | This will make it easier to turn on struct-path aware TBAA since the metadata format will change. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180796 91177308-0d34-0410-b5e6-96231b3b80d8
* Add a much more conservative strategy for aligning branch targets.Chandler Carruth2012-08-07
| | | | | | | | | | | | | Previously, MBP essentially aligned every branch target it could. This bloats code quite a bit, especially non-looping code which has no real reason to prefer aligned branch targets so heavily. As Andy said in review, it's still a bit odd to do this without a real cost model, but this at least has much more plausible heuristics. Fixes PR13265. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161409 91177308-0d34-0410-b5e6-96231b3b80d8
* MachineCSE: Update the heuristics for isProfitableToCSE.Manman Ren2012-08-07
| | | | | | | | | | If the result of a common subexpression is used at all uses of the candidate expression, CSE should not increase the live range of the common subexpression. rdar://11393714 and rdar://11819721 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161396 91177308-0d34-0410-b5e6-96231b3b80d8
* Flip the new block-placement pass to be on by default.Chandler Carruth2012-04-16
| | | | | | | | | | | | | | | | | | | | | | | | | | This is mostly to test the waters. I'd like to get results from FNT build bots and other bots running on non-x86 platforms. This feature has been pretty heavily tested over the last few months by me, and it fixes several of the execution time regressions caused by the inlining work by preventing inlining decisions from radically impacting block layout. I've seen very large improvements in yacr2 and ackermann benchmarks, along with the expected noise across all of the benchmark suite whenever code layout changes. I've analyzed all of the regressions and fixed them, or found them to be impossible to fix. See my email to llvmdev for more details. I'd like for this to be in 3.1 as it complements the inliner changes, but if any failures are showing up or anyone has concerns, it is just a flag flip and so can be easily turned off. I'm switching it on tonight to try and get at least one run through various folks' performance suites in case SPEC or something else has serious issues with it. I'll watch bots and revert if anything shows up. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154816 91177308-0d34-0410-b5e6-96231b3b80d8
* Add a somewhat hacky heuristic to do something different from whole-loopChandler Carruth2012-04-16
| | | | | | | | | | | | | rotation. When there is a loop backedge which is an unconditional branch, we will end up with a branch somewhere no matter what. Try placing this backedge in a fallthrough position above the loop header as that will definitely remove at least one branch from the loop iteration, where whole loop rotation may not. I haven't seen any benchmarks where this is important but loop-blocks.ll tests for it, and so this will be covered when I flip the default. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154812 91177308-0d34-0410-b5e6-96231b3b80d8
* Tweak the loop rotation logic to check whether the loop is naturallyChandler Carruth2012-04-16
| | | | | | | | | | | laid out in a form with a fallthrough into the header and a fallthrough out of the bottom. In that case, leave the loop alone because any rotation will introduce unnecessary branches. If either side looks like it will require an explicit branch, then the rotation won't add any, do it to ensure the branch occurs outside of the loop (if possible) and maximize the benefit of the fallthrough in the bottom. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154806 91177308-0d34-0410-b5e6-96231b3b80d8
* Rewrite how machine block placement handles loop rotation.Chandler Carruth2012-04-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is a complex change that resulted from a great deal of experimentation with several different benchmarks. The one which proved the most useful is included as a test case, but I don't know that it captures all of the relevant changes, as I didn't have specific regression tests for each, they were more the result of reasoning about what the old algorithm would possibly do wrong. I'm also failing at the moment to craft more targeted regression tests for these changes, if anyone has ideas, it would be welcome. The first big thing broken with the old algorithm is the idea that we can take a basic block which has a loop-exiting successor and a looping successor and use the looping successor as the layout top in order to get that particular block to be the bottom of the loop after layout. This happens to work in many cases, but not in all. The second big thing broken was that we didn't try to select the exit which fell into the nearest enclosing loop (to which we exit at all). As a consequence, even if the rotation worked perfectly, it would result in one of two bad layouts. Either the bottom of the loop would get fallthrough, skipping across a nearer enclosing loop and thereby making it discontiguous, or it would be forced to take an explicit jump over the nearest enclosing loop to earch its successor. The point of the rotation is to get fallthrough, so we need it to fallthrough to the nearest loop it can. The fix to the first issue is to actually layout the loop from the loop header, and then rotate the loop such that the correct exiting edge can be a fallthrough edge. This is actually much easier than I anticipated because we can handle all the hard parts of finding a viable rotation before we do the layout. We just store that, and then rotate after layout is finished. No inner loops get split across the post-rotation backedge because we check for them when selecting the rotation. That fix exposed a latent problem with our exitting block selection -- we should allow the backedge to point into the middle of some inner-loop chain as there is no real penalty to it, the whole point is that it *won't* be a fallthrough edge. This may have blocked the rotation at all in some cases, I have no idea and no test case as I've never seen it in practice, it was just noticed by inspection. Finally, all of these fixes, and studying the loops they produce, highlighted another problem: in rotating loops like this, we sometimes fail to align the destination of these backwards jumping edges. Fix this by actually walking the backwards edges rather than relying on loopinfo. This fixes regressions on heapsort if block placement is enabled as well as lots of other cases where the previous logic would introduce an abundance of unnecessary branches into the execution. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154783 91177308-0d34-0410-b5e6-96231b3b80d8
* Take two on rotating the block ordering of loops. My previous attemptChandler Carruth2011-11-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | was centered around the premise of laying out a loop in a chain, and then rotating that chain. This is good for preserving contiguous layout, but bad for actually making sane rotations. In order to keep it safe, I had to essentially make it impossible to rotate deeply nested loops. The information needed to correctly reason about a deeply nested loop is actually available -- *before* we layout the loop. We know the inner loops are already fused into chains, etc. We lose information the moment we actually lay out the loop. The solution was the other alternative for this algorithm I discussed with Benjamin and some others: rather than rotating the loop after-the-fact, try to pick a profitable starting block for the loop's layout, and then use our existing layout logic. I was worried about the complexity of this "pick" step, but it turns out such complexity is needed to handle all the important cases I keep teasing out of benchmarks. This is, I'm afraid, a bit of a work-in-progress. It is still misbehaving on some likely important cases I'm investigating in Olden. It also isn't really tested. I'm going to try to craft some interesting nested-loop test cases, but it's likely to be extremely time consuming and I don't want to go there until I'm sure I'm testing the correct behavior. Sadly I can't come up with a way of getting simple, fine grained test cases for this logic. We need complex loop structures to even trigger much of it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145183 91177308-0d34-0410-b5e6-96231b3b80d8
* Rework a bit of the implementation of loop block rotation to not rely soChandler Carruth2011-11-27
| | | | | | | | | | | | | | | heavily on AnalyzeBranch. That routine doesn't behave as we want given that rotation occurs mid-way through re-ordering the function. Instead merely check that there are not unanalyzable branching constructs present, and then reason about the CFG via successor lists. This actually simplifies my mental model for all of this as well. The concrete result is that we now will rotate more loop chains. I've added a test case from Olden highlighting the effect. There is still a bit more to do here though in order to regain all of the performance in Olden. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145179 91177308-0d34-0410-b5e6-96231b3b80d8
* Upgrade syntax of tests using volatile instructions to use 'load volatile' ↵Chris Lattner2011-11-27
| | | | | | instead of 'volatile load', which is archaic. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145171 91177308-0d34-0410-b5e6-96231b3b80d8
* Introduce a loop block rotation optimization to the new block placementChandler Carruth2011-11-27
| | | | | | | | | | | | | | | pass. This is designed to achieve one of the important optimizations that the old code placement pass did, but more simply. This is a somewhat rough and *very* conservative version of the transform. We could get a lot fancier here if there are profitable cases to do so. In particular, this only looks for a single pattern, it insists that the loop backedge being rotated away is the last backedge in the chain, and it doesn't provide any means of doing better in-loop placement due to the rotation. However, it appears that it will handle the important loops I am finding in the LLVM test suite. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145158 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix a silly use-after-free issue. A much earlier version of this codeChandler Carruth2011-11-24
| | | | | | | | | | | | need lots of fanciness around retaining a reference to a Chain's slot in the BlockToChain map, but that's all gone now. We can just go directly to allocating the new chain (which will update the mapping for us) and using it. Somewhat gross mechanically generated test case replicates the issue Duncan spotted when actually testing this out. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145120 91177308-0d34-0410-b5e6-96231b3b80d8
* When adding blocks to the list of those which no longer have any CFGChandler Carruth2011-11-24
| | | | | | | | | | | | | | conflicts, we should only be adding the first block of the chain to the list, lest we try to merge into the middle of that chain. Most of the places we were doing this we already happened to be looking at the first block, but there is no reason to assume that, and in some cases it was clearly wrong. I've added a couple of tests here. One already worked, but I like having an explicit test for it. The other is reduced from a test case Duncan reduced for me and used to crash. Now it is handled correctly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145119 91177308-0d34-0410-b5e6-96231b3b80d8
* test/CodeGen/X86/block-placement.ll: Add explicit -mtriple=i686-linux. X86 ↵NAKAMURA Takumi2011-11-23
| | | | | | Win32 CodeGen does not support EH yet. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145101 91177308-0d34-0410-b5e6-96231b3b80d8
* Relax an invariant that block placement was trying to assert a bitChandler Carruth2011-11-23
| | | | | | | | | | | further. This invariant just wasn't going to work in the face of unanalyzable branches; we need to be resillient to the phenomenon of chains poking into a loop and poking out of a loop. In fact, we already were, we just needed to not assert on it. This was found during a bootstrap with block placement turned on. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145100 91177308-0d34-0410-b5e6-96231b3b80d8
* Handle the case of a no-return invoke correctly. It actually still hasChandler Carruth2011-11-23
| | | | | | | | | successors, they just are all landing pad successors. We handle this the same way as no successors. Comments attached for the next person to wade through here and another lovely test case courtesy of Benjamin Kramer's bugpoint reduction. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145098 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix a crash in block placement due to an inner loop that happened to beChandler Carruth2011-11-23
| | | | | | | | | | | reversed in the function's original ordering, and we happened to encounter it while handling an outer unnatural CFG structure. Thanks to the test case reduced from GCC's source by Benjamin Kramer. This may also fix a crasher in gzip that Duncan reduced for me, but I haven't yet gotten to testing that one. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145094 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix a devilish miscompile exposed by block placement. TheChandler Carruth2011-11-22
| | | | | | | | | | | | | | | | | | | | | updateTerminator code didn't correctly handle EH terminators in one very specific case. AnalyzeBranch would find no terminator instruction, and so the fallback in updateTerminator is to assume fallthrough. This is correct, but the destination of the fallthrough was assumed to be the first successor. This is *almost always* true, but in certain cases the loop transformations will cause the landing pad to be the first successor! Instead of this brittle logic, actually look through the successors for a non-landing-pad accessor, and to assert if more than one is found. This will hopefully fix some (if not all) of the self host miscompiles with block placement. Thanks to Benjamin Kramer for reporting, Nick Lewycky for an initial stab at a reduction, and Duncan for endless advice on EH (which I know nothing about) as well as reviewing the actual fix. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145062 91177308-0d34-0410-b5e6-96231b3b80d8
* test/CodeGen/X86/block-placement.ll: Relax expressions for Win32.NAKAMURA Takumi2011-11-20
| | | | git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145011 91177308-0d34-0410-b5e6-96231b3b80d8
* The logic for breaking the CFG in the presence of hot successors didn'tChandler Carruth2011-11-20
| | | | | | | | | | | | | | | | properly account for the *global* probability of the edge being taken. This manifested as a very large number of unconditional branches to blocks being merged against the CFG even though they weren't particularly hot within the CFG. The fix is to check whether the edge being merged is both locally hot relative to other successors for the source block, and globally hot compared to other (unmerged) predecessors of the destination block. This introduces a new crasher on GCC single-source, but it's currently behind a flag, and Ben has offered to work on the reduction. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145010 91177308-0d34-0410-b5e6-96231b3b80d8
* Add some comments to the latest test case I added here to document whatChandler Carruth2011-11-20
| | | | | | | | | | | | | | | | | is actually being tested. Also add some FileCheck goodness to much more carefully ensure that the result is the desired result. Before this test would only have failed through an assert failure if the underlying fix were reverted. Also, add some weight metadata and a comment explaining exactly what is going on to a trick section of the test case. Originally, we were getting very unlucky and trying to form a block chain that isn't actually profitable. I'm working on a fix to avoid forming these unprofitable chains, and that would also have masked any failure from this test case. The easy solution is to add some metadata that makes it *really* profitable to form the bad chain here. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145006 91177308-0d34-0410-b5e6-96231b3b80d8
* Move the handling of unanalyzable branches out of the loop-driven chainChandler Carruth2011-11-19
| | | | | | | | | | | | | | | | | | | | | | | | formation phase and into the initial walk of the basic blocks. We essentially pre-merge all blocks where unanalyzable fallthrough exists, as we won't be able to update the terminators effectively after any reorderings. This is quite a bit more principled as there may be CFGs where the second half of the unanalyzable pair has some analyzable predecessor that gets placed first. Then it may get placed next, implicitly breaking the unanalyzable branch even though we never even looked at the part that isn't analyzable. I've included a test case that triggers this (thanks Benjamin yet again!), and I'm hoping to synthesize some more general ones as I dig into related issues. Also, to make this new scheme work we have to be able to handle branches into the middle of a chain, so add this check. We always fallback on the incoming ordering. Finally, this starts to really underscore a known limitation of the current implementation -- we don't consider broken predecessors when merging successors. This can caused major missed opportunities, and is something I'm planning on looking at next (modulo more bug reports). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144994 91177308-0d34-0410-b5e6-96231b3b80d8
* Rather than trying to use the loop block sequence *or* the functionChandler Carruth2011-11-15
| | | | | | | | | | | | | | | | | | | | | | | block sequence when recovering from unanalyzable control flow constructs, *always* use the function sequence. I'm not sure why I ever went down the path of trying to use the loop sequence, it is fundamentally not the correct sequence to use. We're trying to preserve the incoming layout in the cases of unreasonable control flow, and that is only encoded at the function level. We already have a filter to select *exactly* the sub-set of blocks within the function that we're trying to form into a chain. The resulting code layout is also significantly better because of this. In several places we were ending up with completely unreasonable control flow constructs due to the ordering chosen by the loop structure for its internal storage. This change removes a completely wasteful vector of basic blocks, saving memory allocation in the common case even though it costs us CPU in the fairly rare case of unnatural loops. Finally, it fixes the latest crasher reduced out of GCC's single source. Thanks again to Benjamin Kramer for the reduction, my bugpoint skills failed at it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144627 91177308-0d34-0410-b5e6-96231b3b80d8
* Fix an overflow bug in MachineBranchProbabilityInfo. This pass relied onChandler Carruth2011-11-14
| | | | | | | | | | | | | | | | | | | | | | | | | the sum of the edge weights not overflowing uint32, and crashed when they did. This is generally safe as BranchProbabilityInfo tries to provide this guarantee. However, the CFG can get modified during codegen in a way that grows the *sum* of the edge weights. This doesn't seem unreasonable (imagine just adding more blocks all with the default weight of 16), but it is hard to come up with a case that actually triggers 32-bit overflow. Fortuately, the single-source GCC build is good at this. The solution isn't very pretty, but its no worse than the previous code. We're already summing all of the edge weights on each query, we can sum them, check for an overflow, compute a scale, and sum them again. I've included a *greatly* reduced test case out of the GCC source that triggers it. It's a pretty lame test, as it clearly is just barely triggering the overflow. I'd like to have something that is much more definitive, but I don't understand the fundamental pattern that triggers an explosion in the edge weight sums. The buggy code is duplicated within this file. I'll colapse them into a single implementation in a subsequent commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144526 91177308-0d34-0410-b5e6-96231b3b80d8
* Teach machine block placement to cope with unnatural loops. These don'tChandler Carruth2011-11-14
| | | | | | | | | | | | | | | | | | get loop info structures associated with them, and so we need some way to make forward progress selecting and placing basic blocks. The technique used here is pretty brutal -- it just scans the list of blocks looking for the first unplaced candidate. It keeps placing blocks like this until the CFG becomes tractable. The cost is somewhat unfortunate, it requires allocating a vector of all basic block pointers eagerly. I have some ideas about how to simplify and optimize this, but I'm trying to get the logic correct first. Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly there are other bugs that GCC is tickling that I'm reducing and working on now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144516 91177308-0d34-0410-b5e6-96231b3b80d8
* Rewrite #3 of machine block placement. This is based somewhat on theChandler Carruth2011-11-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | second algorithm, but only loosely. It is more heavily based on the last discussion I had with Andy. It continues to walk from the inner-most loop outward, but there is a key difference. With this algorithm we ensure that as we visit each loop, the entire loop is merged into a single chain. At the end, the entire function is treated as a "loop", and merged into a single chain. This chain forms the desired sequence of blocks within the function. Switching to a single algorithm removes my biggest problem with the previous approaches -- they had different behavior depending on which system triggered the layout. Now there is exactly one algorithm and one basis for the decision making. The other key difference is how the chain is formed. This is based heavily on the idea Andy mentioned of keeping a worklist of blocks that are viable layout successors based on the CFG. Having this set allows us to consistently select the best layout successor for each block. It is expensive though. The code here remains very rough. There is a lot that needs to be done to clean up the code, and to make the runtime cost of this pass much lower. Very much WIP, but this was a giant chunk of code and I'd rather folks see it sooner than later. Everything remains behind a flag of course. I've added a couple of tests to exercise the issues that this iteration was motivated by: loop structure preservation. I've also fixed one test that was exhibiting the broken behavior of the previous version. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144495 91177308-0d34-0410-b5e6-96231b3b80d8
* Completely re-write the algorithm behind MachineBlockPlacement based onChandler Carruth2011-10-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | discussions with Andy. Fundamentally, the previous algorithm is both counter productive on several fronts and prioritizing things which aren't necessarily the most important: static branch prediction. The new algorithm uses the existing loop CFG structure information to walk through the CFG itself to layout blocks. It coalesces adjacent blocks within the loop where the CFG allows based on the most likely path taken. Finally, it topologically orders the block chains that have been formed. This allows it to choose a (mostly) topologically valid ordering which still priorizes fallthrough within the structural constraints. As a final twist in the algorithm, it does violate the CFG when it discovers a "hot" edge, that is an edge that is more than 4x hotter than the competing edges in the CFG. These are forcibly merged into a fallthrough chain. Future transformations that need te be added are rotation of loop exit conditions to be fallthrough, and better isolation of cold block chains. I'm also planning on adding statistics to model how well the algorithm does at laying out blocks based on the probabilities it receives. The old tests mostly still pass, and I have some new tests to add, but the nested loops are still behaving very strangely. This almost seems like working-as-intended as it rotated the exit branch to be fallthrough, but I'm not convinced this is actually the best layout. It is well supported by the probabilities for loops we currently get, but those are pretty broken for nested loops, so this may change later. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142743 91177308-0d34-0410-b5e6-96231b3b80d8
* Don't hard code the desired alignment for loops -- it isn't 16-bytes onChandler Carruth2011-10-21
| | | | | | all x86 systems. Sorry for the breakage. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142656 91177308-0d34-0410-b5e6-96231b3b80d8
* Add loop aligning to MachineBlockPlacement based on review discussion soChandler Carruth2011-10-21
| | | | | | | | | | | | | | | | | | | it's a bit more plausible to use this instead of CodePlacementOpt. The code for this was shamelessly stolen from CodePlacementOpt, and then trimmed down a bit. There doesn't seem to be much utility in returning true/false from this pass as we may or may not have rewritten all of the blocks. Also, the statistic of counting how many loops were aligned doesn't seem terribly important so I removed it. If folks would like it to be included, I'm happy to add it back. This was probably the most egregious of the missing features, and now I'm going to start gathering some performance numbers and looking at specific loop structures that have different layout between the two. Test is updated to include both basic loop alignment and nested loop alignment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142645 91177308-0d34-0410-b5e6-96231b3b80d8
* Add a very basic test for MachineBlockPlacement. This is essentially theChandler Carruth2011-10-21
canonical example I used when developing it, and is one of the primary motivating real-world use cases for __builtin_expect (when burried under a macro). I'm working on more test cases here, but I'm trying to make sure both that the pass is doing the right thing with the test cases and that they aren't too brittle to changes elsewhere in the code generation pipeline. Feedback and/or suggestions on how to test this are very welcome. Especially feedback on whether testing the block comments is a good strategy; I couldn't find any good examples to steal from but all the other ideas I had were a lot uglier or more fragile. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142644 91177308-0d34-0410-b5e6-96231b3b80d8