From 5289142cc84c0e2df25d455c1d741bdd0e8b9b1e Mon Sep 17 00:00:00 2001 From: Eli Friedman Date: Wed, 26 Oct 2011 00:36:41 +0000 Subject: Remove dead atomic intrinsics from LangRef. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142994 91177308-0d34-0410-b5e6-96231b3b80d8 --- docs/LangRef.html | 514 ------------------------------------------------------ 1 file changed, 514 deletions(-) (limited to 'docs/LangRef.html') diff --git a/docs/LangRef.html b/docs/LangRef.html index 3aad800d2a..f937ae6ef9 100644 --- a/docs/LangRef.html +++ b/docs/LangRef.html @@ -281,23 +281,6 @@
  • 'llvm.adjust.trampoline' Intrinsic
  • -
  • Atomic intrinsics -
      -
    1. llvm.memory_barrier
    2. -
    3. llvm.atomic.cmp.swap
    4. -
    5. llvm.atomic.swap
    6. -
    7. llvm.atomic.load.add
    8. -
    9. llvm.atomic.load.sub
    10. -
    11. llvm.atomic.load.and
    12. -
    13. llvm.atomic.load.nand
    14. -
    15. llvm.atomic.load.or
    16. -
    17. llvm.atomic.load.xor
    18. -
    19. llvm.atomic.load.max
    20. -
    21. llvm.atomic.load.min
    22. -
    23. llvm.atomic.load.umax
    24. -
    25. llvm.atomic.load.umin
    26. -
    -
  • Memory Use Markers
    1. llvm.lifetime.start
    2. @@ -7810,503 +7793,6 @@ LLVM.

      - -

      - Atomic Operations and Synchronization Intrinsics -

      - -
      - -

      These intrinsic functions expand the "universal IR" of LLVM to represent - hardware constructs for atomic operations and memory synchronization. This - provides an interface to the hardware, not an interface to the programmer. It - is aimed at a low enough level to allow any programming models or APIs - (Application Programming Interfaces) which need atomic behaviors to map - cleanly onto it. It is also modeled primarily on hardware behavior. Just as - hardware provides a "universal IR" for source languages, it also provides a - starting point for developing a "universal" atomic operation and - synchronization IR.

      - -

      These do not form an API such as high-level threading libraries, - software transaction memory systems, atomic primitives, and intrinsic - functions as found in BSD, GNU libc, atomic_ops, APR, and other system and - application libraries. The hardware interface provided by LLVM should allow - a clean implementation of all of these APIs and parallel programming models. - No one model or paradigm should be selected above others unless the hardware - itself ubiquitously does so.

      - - -

      - 'llvm.memory.barrier' Intrinsic -

      - -
      -
      Syntax:
      -
      -  declare void @llvm.memory.barrier(i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>, i1 <device>)
      -
      - -
      Overview:
      -

      The llvm.memory.barrier intrinsic guarantees ordering between - specific pairs of memory access types.

      - -
      Arguments:
      -

      The llvm.memory.barrier intrinsic requires five boolean arguments. - The first four arguments enables a specific barrier as listed below. The - fifth argument specifies that the barrier applies to io or device or uncached - memory.

      - -
        -
      • ll: load-load barrier
      • -
      • ls: load-store barrier
      • -
      • sl: store-load barrier
      • -
      • ss: store-store barrier
      • -
      • device: barrier applies to device and uncached memory also.
      • -
      - -
      Semantics:
      -

      This intrinsic causes the system to enforce some ordering constraints upon - the loads and stores of the program. This barrier does not - indicate when any events will occur, it only enforces - an order in which they occur. For any of the specified pairs of load - and store operations (f.ex. load-load, or store-load), all of the first - operations preceding the barrier will complete before any of the second - operations succeeding the barrier begin. Specifically the semantics for each - pairing is as follows:

      - -
        -
      • ll: All loads before the barrier must complete before any load - after the barrier begins.
      • -
      • ls: All loads before the barrier must complete before any - store after the barrier begins.
      • -
      • ss: All stores before the barrier must complete before any - store after the barrier begins.
      • -
      • sl: All stores before the barrier must complete before any - load after the barrier begins.
      • -
      - -

      These semantics are applied with a logical "and" behavior when more than one - is enabled in a single memory barrier intrinsic.

      - -

      Backends may implement stronger barriers than those requested when they do - not support as fine grained a barrier as requested. Some architectures do - not need all types of barriers and on such architectures, these become - noops.

      - -
      Example:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 4, %ptr
      -
      -%result1  = load i32* %ptr      ; yields {i32}:result1 = 4
      -            call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
      -                                ; guarantee the above finishes
      -            store i32 8, %ptr   ; before this begins
      -
      - -
      - - -

      - 'llvm.atomic.cmp.swap.*' Intrinsic -

      - -
      - -
      Syntax:
      -

      This is an overloaded intrinsic. You can use llvm.atomic.cmp.swap on - any integer bit width and for different address spaces. Not all targets - support all bit widths however.

      - -
      -  declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* <ptr>, i8 <cmp>, i8 <val>)
      -  declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* <ptr>, i16 <cmp>, i16 <val>)
      -  declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* <ptr>, i32 <cmp>, i32 <val>)
      -  declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* <ptr>, i64 <cmp>, i64 <val>)
      -
      - -
      Overview:
      -

      This loads a value in memory and compares it to a given value. If they are - equal, it stores a new value into the memory.

      - -
      Arguments:
      -

      The llvm.atomic.cmp.swap intrinsic takes three arguments. The result - as well as both cmp and val must be integer values with the - same bit width. The ptr argument must be a pointer to a value of - this integer type. While any bit width integer may be used, targets may only - lower representations they support in hardware.

      - -
      Semantics:
      -

      This entire intrinsic must be executed atomically. It first loads the value - in memory pointed to by ptr and compares it with the - value cmp. If they are equal, val is stored into the - memory. The loaded value is yielded in all cases. This provides the - equivalent of an atomic compare-and-swap operation within the SSA - framework.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 4, %ptr
      -
      -%val1     = add i32 4, 4
      -%result1  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
      -                                          ; yields {i32}:result1 = 4
      -%stored1  = icmp eq i32 %result1, 4       ; yields {i1}:stored1 = true
      -%memval1  = load i32* %ptr                ; yields {i32}:memval1 = 8
      -
      -%val2     = add i32 1, 1
      -%result2  = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
      -                                          ; yields {i32}:result2 = 8
      -%stored2  = icmp eq i32 %result2, 5       ; yields {i1}:stored2 = false
      -
      -%memval2  = load i32* %ptr                ; yields {i32}:memval2 = 8
      -
      - -
      - - -

      - 'llvm.atomic.swap.*' Intrinsic -

      - -
      -
      Syntax:
      - -

      This is an overloaded intrinsic. You can use llvm.atomic.swap on any - integer bit width. Not all targets support all bit widths however.

      - -
      -  declare i8 @llvm.atomic.swap.i8.p0i8(i8* <ptr>, i8 <val>)
      -  declare i16 @llvm.atomic.swap.i16.p0i16(i16* <ptr>, i16 <val>)
      -  declare i32 @llvm.atomic.swap.i32.p0i32(i32* <ptr>, i32 <val>)
      -  declare i64 @llvm.atomic.swap.i64.p0i64(i64* <ptr>, i64 <val>)
      -
      - -
      Overview:
      -

      This intrinsic loads the value stored in memory at ptr and yields - the value from memory. It then stores the value in val in the memory - at ptr.

      - -
      Arguments:
      -

      The llvm.atomic.swap intrinsic takes two arguments. Both - the val argument and the result must be integers of the same bit - width. The first argument, ptr, must be a pointer to a value of this - integer type. The targets may only lower integer representations they - support.

      - -
      Semantics:
      -

      This intrinsic loads the value pointed to by ptr, yields it, and - stores val back into ptr atomically. This provides the - equivalent of an atomic swap operation within the SSA framework.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 4, %ptr
      -
      -%val1     = add i32 4, 4
      -%result1  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
      -                                        ; yields {i32}:result1 = 4
      -%stored1  = icmp eq i32 %result1, 4     ; yields {i1}:stored1 = true
      -%memval1  = load i32* %ptr              ; yields {i32}:memval1 = 8
      -
      -%val2     = add i32 1, 1
      -%result2  = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
      -                                        ; yields {i32}:result2 = 8
      -
      -%stored2  = icmp eq i32 %result2, 8     ; yields {i1}:stored2 = true
      -%memval2  = load i32* %ptr              ; yields {i32}:memval2 = 2
      -
      - -
      - - -

      - 'llvm.atomic.load.add.*' Intrinsic -

      - -
      - -
      Syntax:
      -

      This is an overloaded intrinsic. You can use llvm.atomic.load.add on - any integer bit width. Not all targets support all bit widths however.

      - -
      -  declare i8 @llvm.atomic.load.add.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.add.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.add.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.add.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      Overview:
      -

      This intrinsic adds delta to the value stored in memory - at ptr. It yields the original value at ptr.

      - -
      Arguments:
      -

      The intrinsic takes two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support.

      - -
      Semantics:
      -

      This intrinsic does a series of operations atomically. It first loads the - value stored at ptr. It then adds delta, stores the result - to ptr. It yields the original value stored at ptr.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 4, %ptr
      -%result1  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
      -                                ; yields {i32}:result1 = 4
      -%result2  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
      -                                ; yields {i32}:result2 = 8
      -%result3  = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
      -                                ; yields {i32}:result3 = 10
      -%memval1  = load i32* %ptr      ; yields {i32}:memval1 = 15
      -
      - -
      - - -

      - 'llvm.atomic.load.sub.*' Intrinsic -

      - -
      - -
      Syntax:
      -

      This is an overloaded intrinsic. You can use llvm.atomic.load.sub on - any integer bit width and for different address spaces. Not all targets - support all bit widths however.

      - -
      -  declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* <ptr>, i64 <delta>)
      -
      - -
      Overview:
      -

      This intrinsic subtracts delta to the value stored in memory at - ptr. It yields the original value at ptr.

      - -
      Arguments:
      -

      The intrinsic takes two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support.

      - -
      Semantics:
      -

      This intrinsic does a series of operations atomically. It first loads the - value stored at ptr. It then subtracts delta, stores the - result to ptr. It yields the original value stored - at ptr.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 8, %ptr
      -%result1  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
      -                                ; yields {i32}:result1 = 8
      -%result2  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
      -                                ; yields {i32}:result2 = 4
      -%result3  = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
      -                                ; yields {i32}:result3 = 2
      -%memval1  = load i32* %ptr      ; yields {i32}:memval1 = -3
      -
      - -
      - - -

      - - 'llvm.atomic.load.and.*' Intrinsic - -
      - - 'llvm.atomic.load.nand.*' Intrinsic - -
      - - 'llvm.atomic.load.or.*' Intrinsic - -
      - - 'llvm.atomic.load.xor.*' Intrinsic - -

      - -
      - -
      Syntax:
      -

      These are overloaded intrinsics. You can - use llvm.atomic.load_and, llvm.atomic.load_nand, - llvm.atomic.load_or, and llvm.atomic.load_xor on any integer - bit width and for different address spaces. Not all targets support all bit - widths however.

      - -
      -  declare i8 @llvm.atomic.load.and.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.and.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.and.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.and.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.or.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.or.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.or.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.or.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* <ptr>, i64 <delta>)
      -
      - -
      Overview:
      -

      These intrinsics bitwise the operation (and, nand, or, xor) delta to - the value stored in memory at ptr. It yields the original value - at ptr.

      - -
      Arguments:
      -

      These intrinsics take two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support.

      - -
      Semantics:
      -

      These intrinsics does a series of operations atomically. They first load the - value stored at ptr. They then do the bitwise - operation delta, store the result to ptr. They yield the - original value stored at ptr.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 0x0F0F, %ptr
      -%result0  = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
      -                                ; yields {i32}:result0 = 0x0F0F
      -%result1  = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
      -                                ; yields {i32}:result1 = 0xFFFFFFF0
      -%result2  = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
      -                                ; yields {i32}:result2 = 0xF0
      -%result3  = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
      -                                ; yields {i32}:result3 = FF
      -%memval1  = load i32* %ptr      ; yields {i32}:memval1 = F0
      -
      - -
      - - -

      - - 'llvm.atomic.load.max.*' Intrinsic - -
      - - 'llvm.atomic.load.min.*' Intrinsic - -
      - - 'llvm.atomic.load.umax.*' Intrinsic - -
      - - 'llvm.atomic.load.umin.*' Intrinsic - -

      - -
      - -
      Syntax:
      -

      These are overloaded intrinsics. You can use llvm.atomic.load_max, - llvm.atomic.load_min, llvm.atomic.load_umax, and - llvm.atomic.load_umin on any integer bit width and for different - address spaces. Not all targets support all bit widths however.

      - -
      -  declare i8 @llvm.atomic.load.max.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.max.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.max.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.max.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.min.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.min.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.min.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.min.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      -  declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* <ptr>, i8 <delta>)
      -  declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* <ptr>, i16 <delta>)
      -  declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* <ptr>, i32 <delta>)
      -  declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* <ptr>, i64 <delta>)
      -
      - -
      Overview:
      -

      These intrinsics takes the signed or unsigned minimum or maximum of - delta and the value stored in memory at ptr. It yields the - original value at ptr.

      - -
      Arguments:
      -

      These intrinsics take two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support.

      - -
      Semantics:
      -

      These intrinsics does a series of operations atomically. They first load the - value stored at ptr. They then do the signed or unsigned min or - max delta and the value, store the result to ptr. They - yield the original value stored at ptr.

      - -
      Examples:
      -
      -%mallocP  = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
      -%ptr      = bitcast i8* %mallocP to i32*
      -            store i32 7, %ptr
      -%result0  = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
      -                                ; yields {i32}:result0 = 7
      -%result1  = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
      -                                ; yields {i32}:result1 = -2
      -%result2  = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
      -                                ; yields {i32}:result2 = 8
      -%result3  = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
      -                                ; yields {i32}:result3 = 8
      -%memval1  = load i32* %ptr      ; yields {i32}:memval1 = 30
      -
      - -
      - -
      -

      Memory Use Markers -- cgit v1.2.3