From ee47edfd8e2dd048522ebd47305aeefbe9d8729c Mon Sep 17 00:00:00 2001 From: Sean Silva Date: Wed, 5 Dec 2012 00:26:32 +0000 Subject: docs: Sphinxify `docs/tutorial/` Sorry for the massive commit, but I just wanted to knock this one down and it is really straightforward. There are still a couple trivial (i.e. not related to the content) things left to fix: - Use of raw HTML links where :doc:`...` and :ref:`...` could be used instead. If you are a newbie and want to help fix this it would make for some good bite-sized patches; more experienced developers should be focusing on adding new content (to this tutorial or elsewhere, but please _do not_ waste your time on formatting when there is such dire need for documentation (see docs/SphinxQuickstartTemplate.rst to get started writing)). - Highlighting of the kaleidoscope code blocks (currently left as bare `::`). I will be working on writing a custom Pygments highlighter for this, mostly as training for maintaining the `llvm` code-block's lexer in-tree. I want to do this because I am extremely unhappy with how it just "gives up" on the slightest deviation from the expected syntax and leaves the whole code-block un-highlighted. More generally I am looking at writing some Sphinx extensions and keeping them in-tree as well, to support common use cases that currently have no good solution (like "monospace text inside a link"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8 --- docs/tutorial/LangImpl4.rst | 1063 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1063 insertions(+) create mode 100644 docs/tutorial/LangImpl4.rst (limited to 'docs/tutorial/LangImpl4.rst') diff --git a/docs/tutorial/LangImpl4.rst b/docs/tutorial/LangImpl4.rst new file mode 100644 index 0000000000..8484c57f9d --- /dev/null +++ b/docs/tutorial/LangImpl4.rst @@ -0,0 +1,1063 @@ +============================================== +Kaleidoscope: Adding JIT and Optimizer Support +============================================== + +.. contents:: + :local: + +Written by `Chris Lattner `_ + +Chapter 4 Introduction +====================== + +Welcome to Chapter 4 of the "`Implementing a language with +LLVM `_" tutorial. Chapters 1-3 described the implementation +of a simple language and added support for generating LLVM IR. This +chapter describes two new techniques: adding optimizer support to your +language, and adding JIT compiler support. These additions will +demonstrate how to get nice, efficient code for the Kaleidoscope +language. + +Trivial Constant Folding +======================== + +Our demonstration for Chapter 3 is elegant and easy to extend. +Unfortunately, it does not produce wonderful code. The IRBuilder, +however, does give us obvious optimizations when compiling simple code: + +:: + + ready> def test(x) 1+2+x; + Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 3.000000e+00, %x + ret double %addtmp + } + +This code is not a literal transcription of the AST built by parsing the +input. That would be: + +:: + + ready> def test(x) 1+2+x; + Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 2.000000e+00, 1.000000e+00 + %addtmp1 = fadd double %addtmp, %x + ret double %addtmp1 + } + +Constant folding, as seen above, in particular, is a very common and +very important optimization: so much so that many language implementors +implement constant folding support in their AST representation. + +With LLVM, you don't need this support in the AST. Since all calls to +build LLVM IR go through the LLVM IR builder, the builder itself checked +to see if there was a constant folding opportunity when you call it. If +so, it just does the constant fold and return the constant instead of +creating an instruction. + +Well, that was easy :). In practice, we recommend always using +``IRBuilder`` when generating code like this. It has no "syntactic +overhead" for its use (you don't have to uglify your compiler with +constant checks everywhere) and it can dramatically reduce the amount of +LLVM IR that is generated in some cases (particular for languages with a +macro preprocessor or that use a lot of constants). + +On the other hand, the ``IRBuilder`` is limited by the fact that it does +all of its analysis inline with the code as it is built. If you take a +slightly more complex example: + +:: + + ready> def test(x) (1+2+x)*(x+(1+2)); + ready> Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double 3.000000e+00, %x + %addtmp1 = fadd double %x, 3.000000e+00 + %multmp = fmul double %addtmp, %addtmp1 + ret double %multmp + } + +In this case, the LHS and RHS of the multiplication are the same value. +We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``" +instead of computing "``x+3``" twice. + +Unfortunately, no amount of local analysis will be able to detect and +correct this. This requires two transformations: reassociation of +expressions (to make the add's lexically identical) and Common +Subexpression Elimination (CSE) to delete the redundant add instruction. +Fortunately, LLVM provides a broad range of optimizations that you can +use, in the form of "passes". + +LLVM Optimization Passes +======================== + +LLVM provides many optimization passes, which do many different sorts of +things and have different tradeoffs. Unlike other systems, LLVM doesn't +hold to the mistaken notion that one set of optimizations is right for +all languages and for all situations. LLVM allows a compiler implementor +to make complete decisions about what optimizations to use, in which +order, and in what situation. + +As a concrete example, LLVM supports both "whole module" passes, which +look across as large of body of code as they can (often a whole file, +but if run at link time, this can be a substantial portion of the whole +program). It also supports and includes "per-function" passes which just +operate on a single function at a time, without looking at other +functions. For more information on passes and how they are run, see the +`How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the +`List of LLVM Passes <../Passes.html>`_. + +For Kaleidoscope, we are currently generating functions on the fly, one +at a time, as the user types them in. We aren't shooting for the +ultimate optimization experience in this setting, but we also want to +catch the easy and quick stuff where possible. As such, we will choose +to run a few per-function optimizations as the user types the function +in. If we wanted to make a "static Kaleidoscope compiler", we would use +exactly the code we have now, except that we would defer running the +optimizer until the entire file has been parsed. + +In order to get per-function optimizations going, we need to set up a +`FunctionPassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold +and organize the LLVM optimizations that we want to run. Once we have +that, we can add a set of optimizations to run. The code looks like +this: + +.. code-block:: c++ + + FunctionPassManager OurFPM(TheModule); + + // Set up the optimizer pipeline. Start with registering info about how the + // target lays out data structures. + OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); + // Provide basic AliasAnalysis support for GVN. + OurFPM.add(createBasicAliasAnalysisPass()); + // Do simple "peephole" optimizations and bit-twiddling optzns. + OurFPM.add(createInstructionCombiningPass()); + // Reassociate expressions. + OurFPM.add(createReassociatePass()); + // Eliminate Common SubExpressions. + OurFPM.add(createGVNPass()); + // Simplify the control flow graph (deleting unreachable blocks, etc). + OurFPM.add(createCFGSimplificationPass()); + + OurFPM.doInitialization(); + + // Set the global so the code gen can use this. + TheFPM = &OurFPM; + + // Run the main "interpreter loop" now. + MainLoop(); + +This code defines a ``FunctionPassManager``, "``OurFPM``". It requires a +pointer to the ``Module`` to construct itself. Once it is set up, we use +a series of "add" calls to add a bunch of LLVM passes. The first pass is +basically boilerplate, it adds a pass so that later optimizations know +how the data structures in the program are laid out. The +"``TheExecutionEngine``" variable is related to the JIT, which we will +get to in the next section. + +In this case, we choose to add 4 optimization passes. The passes we +chose here are a pretty standard set of "cleanup" optimizations that are +useful for a wide variety of code. I won't delve into what they do but, +believe me, they are a good starting place :). + +Once the PassManager is set up, we need to make use of it. We do this by +running it after our newly created function is constructed (in +``FunctionAST::Codegen``), but before it is returned to the client: + +.. code-block:: c++ + + if (Value *RetVal = Body->Codegen()) { + // Finish off the function. + Builder.CreateRet(RetVal); + + // Validate the generated code, checking for consistency. + verifyFunction(*TheFunction); + + // Optimize the function. + TheFPM->run(*TheFunction); + + return TheFunction; + } + +As you can see, this is pretty straightforward. The +``FunctionPassManager`` optimizes and updates the LLVM Function\* in +place, improving (hopefully) its body. With this in place, we can try +our test above again: + +:: + + ready> def test(x) (1+2+x)*(x+(1+2)); + ready> Read function definition: + define double @test(double %x) { + entry: + %addtmp = fadd double %x, 3.000000e+00 + %multmp = fmul double %addtmp, %addtmp + ret double %multmp + } + +As expected, we now get our nicely optimized code, saving a floating +point add instruction from every execution of this function. + +LLVM provides a wide variety of optimizations that can be used in +certain circumstances. Some `documentation about the various +passes <../Passes.html>`_ is available, but it isn't very complete. +Another good source of ideas can come from looking at the passes that +``Clang`` runs to get started. The "``opt``" tool allows you to +experiment with passes from the command line, so you can see if they do +anything. + +Now that we have reasonable code coming out of our front-end, lets talk +about executing it! + +Adding a JIT Compiler +===================== + +Code that is available in LLVM IR can have a wide variety of tools +applied to it. For example, you can run optimizations on it (as we did +above), you can dump it out in textual or binary forms, you can compile +the code to an assembly file (.s) for some target, or you can JIT +compile it. The nice thing about the LLVM IR representation is that it +is the "common currency" between many different parts of the compiler. + +In this section, we'll add JIT compiler support to our interpreter. The +basic idea that we want for Kaleidoscope is to have the user enter +function bodies as they do now, but immediately evaluate the top-level +expressions they type in. For example, if they type in "1 + 2;", we +should evaluate and print out 3. If they define a function, they should +be able to call it from the command line. + +In order to do this, we first declare and initialize the JIT. This is +done by adding a global variable and a call in ``main``: + +.. code-block:: c++ + + static ExecutionEngine *TheExecutionEngine; + ... + int main() { + .. + // Create the JIT. This takes ownership of the module. + TheExecutionEngine = EngineBuilder(TheModule).create(); + .. + } + +This creates an abstract "Execution Engine" which can be either a JIT +compiler or the LLVM interpreter. LLVM will automatically pick a JIT +compiler for you if one is available for your platform, otherwise it +will fall back to the interpreter. + +Once the ``ExecutionEngine`` is created, the JIT is ready to be used. +There are a variety of APIs that are useful, but the simplest one is the +"``getPointerToFunction(F)``" method. This method JIT compiles the +specified LLVM Function and returns a function pointer to the generated +machine code. In our case, this means that we can change the code that +parses a top-level expression to look like this: + +.. code-block:: c++ + + static void HandleTopLevelExpression() { + // Evaluate a top-level expression into an anonymous function. + if (FunctionAST *F = ParseTopLevelExpr()) { + if (Function *LF = F->Codegen()) { + LF->dump(); // Dump the function for exposition purposes. + + // JIT the function, returning a function pointer. + void *FPtr = TheExecutionEngine->getPointerToFunction(LF); + + // Cast it to the right type (takes no arguments, returns a double) so we + // can call it as a native function. + double (*FP)() = (double (*)())(intptr_t)FPtr; + fprintf(stderr, "Evaluated to %f\n", FP()); + } + +Recall that we compile top-level expressions into a self-contained LLVM +function that takes no arguments and returns the computed double. +Because the LLVM JIT compiler matches the native platform ABI, this +means that you can just cast the result pointer to a function pointer of +that type and call it directly. This means, there is no difference +between JIT compiled code and native machine code that is statically +linked into your application. + +With just these two changes, lets see how Kaleidoscope works now! + +:: + + ready> 4+5; + Read top-level expression: + define double @0() { + entry: + ret double 9.000000e+00 + } + + Evaluated to 9.000000 + +Well this looks like it is basically working. The dump of the function +shows the "no argument function that always returns double" that we +synthesize for each top-level expression that is typed in. This +demonstrates very basic functionality, but can we do more? + +:: + + ready> def testfunc(x y) x + y*2; + Read function definition: + define double @testfunc(double %x, double %y) { + entry: + %multmp = fmul double %y, 2.000000e+00 + %addtmp = fadd double %multmp, %x + ret double %addtmp + } + + ready> testfunc(4, 10); + Read top-level expression: + define double @1() { + entry: + %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) + ret double %calltmp + } + + Evaluated to 24.000000 + +This illustrates that we can now call user code, but there is something +a bit subtle going on here. Note that we only invoke the JIT on the +anonymous functions that *call testfunc*, but we never invoked it on +*testfunc* itself. What actually happened here is that the JIT scanned +for all non-JIT'd functions transitively called from the anonymous +function and compiled all of them before returning from +``getPointerToFunction()``. + +The JIT provides a number of other more advanced interfaces for things +like freeing allocated machine code, rejit'ing functions to update them, +etc. However, even with this simple code, we get some surprisingly +powerful capabilities - check this out (I removed the dump of the +anonymous functions, you should get the idea by now :) : + +:: + + ready> extern sin(x); + Read extern: + declare double @sin(double) + + ready> extern cos(x); + Read extern: + declare double @cos(double) + + ready> sin(1.0); + Read top-level expression: + define double @2() { + entry: + ret double 0x3FEAED548F090CEE + } + + Evaluated to 0.841471 + + ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x); + Read function definition: + define double @foo(double %x) { + entry: + %calltmp = call double @sin(double %x) + %multmp = fmul double %calltmp, %calltmp + %calltmp2 = call double @cos(double %x) + %multmp4 = fmul double %calltmp2, %calltmp2 + %addtmp = fadd double %multmp, %multmp4 + ret double %addtmp + } + + ready> foo(4.0); + Read top-level expression: + define double @3() { + entry: + %calltmp = call double @foo(double 4.000000e+00) + ret double %calltmp + } + + Evaluated to 1.000000 + +Whoa, how does the JIT know about sin and cos? The answer is +surprisingly simple: in this example, the JIT started execution of a +function and got to a function call. It realized that the function was +not yet JIT compiled and invoked the standard set of routines to resolve +the function. In this case, there is no body defined for the function, +so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope +process itself. Since "``sin``" is defined within the JIT's address +space, it simply patches up calls in the module to call the libm version +of ``sin`` directly. + +The LLVM JIT provides a number of interfaces (look in the +``ExecutionEngine.h`` file) for controlling how unknown functions get +resolved. It allows you to establish explicit mappings between IR +objects and addresses (useful for LLVM global variables that you want to +map to static tables, for example), allows you to dynamically decide on +the fly based on the function name, and even allows you to have the JIT +compile functions lazily the first time they're called. + +One interesting application of this is that we can now extend the +language by writing arbitrary C++ code to implement operations. For +example, if we add: + +.. code-block:: c++ + + /// putchard - putchar that takes a double and returns 0. + extern "C" + double putchard(double X) { + putchar((char)X); + return 0; + } + +Now we can produce simple output to the console by using things like: +"``extern putchard(x); putchard(120);``", which prints a lowercase 'x' +on the console (120 is the ASCII code for 'x'). Similar code could be +used to implement file I/O, console input, and many other capabilities +in Kaleidoscope. + +This completes the JIT and optimizer chapter of the Kaleidoscope +tutorial. At this point, we can compile a non-Turing-complete +programming language, optimize and JIT compile it in a user-driven way. +Next up we'll look into `extending the language with control flow +constructs `_, tackling some interesting LLVM IR issues +along the way. + +Full Code Listing +================= + +Here is the complete code listing for our running example, enhanced with +the LLVM JIT and optimizer. To build this example, use: + +.. code-block:: bash + + # Compile + clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy + # Run + ./toy + +If you are compiling this on Linux, make sure to add the "-rdynamic" +option as well. This makes sure that the external functions are resolved +properly at runtime. + +Here is the code: + +.. code-block:: c++ + + #include "llvm/DerivedTypes.h" + #include "llvm/ExecutionEngine/ExecutionEngine.h" + #include "llvm/ExecutionEngine/JIT.h" + #include "llvm/IRBuilder.h" + #include "llvm/LLVMContext.h" + #include "llvm/Module.h" + #include "llvm/PassManager.h" + #include "llvm/Analysis/Verifier.h" + #include "llvm/Analysis/Passes.h" + #include "llvm/DataLayout.h" + #include "llvm/Transforms/Scalar.h" + #include "llvm/Support/TargetSelect.h" + #include + #include + #include + #include + using namespace llvm; + + //===----------------------------------------------------------------------===// + // Lexer + //===----------------------------------------------------------------------===// + + // The lexer returns tokens [0-255] if it is an unknown character, otherwise one + // of these for known things. + enum Token { + tok_eof = -1, + + // commands + tok_def = -2, tok_extern = -3, + + // primary + tok_identifier = -4, tok_number = -5 + }; + + static std::string IdentifierStr; // Filled in if tok_identifier + static double NumVal; // Filled in if tok_number + + /// gettok - Return the next token from standard input. + static int gettok() { + static int LastChar = ' '; + + // Skip any whitespace. + while (isspace(LastChar)) + LastChar = getchar(); + + if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* + IdentifierStr = LastChar; + while (isalnum((LastChar = getchar()))) + IdentifierStr += LastChar; + + if (IdentifierStr == "def") return tok_def; + if (IdentifierStr == "extern") return tok_extern; + return tok_identifier; + } + + if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ + std::string NumStr; + do { + NumStr += LastChar; + LastChar = getchar(); + } while (isdigit(LastChar) || LastChar == '.'); + + NumVal = strtod(NumStr.c_str(), 0); + return tok_number; + } + + if (LastChar == '#') { + // Comment until end of line. + do LastChar = getchar(); + while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); + + if (LastChar != EOF) + return gettok(); + } + + // Check for end of file. Don't eat the EOF. + if (LastChar == EOF) + return tok_eof; + + // Otherwise, just return the character as its ascii value. + int ThisChar = LastChar; + LastChar = getchar(); + return ThisChar; + } + + //===----------------------------------------------------------------------===// + // Abstract Syntax Tree (aka Parse Tree) + //===----------------------------------------------------------------------===// + + /// ExprAST - Base class for all expression nodes. + class ExprAST { + public: + virtual ~ExprAST() {} + virtual Value *Codegen() = 0; + }; + + /// NumberExprAST - Expression class for numeric literals like "1.0". + class NumberExprAST : public ExprAST { + double Val; + public: + NumberExprAST(double val) : Val(val) {} + virtual Value *Codegen(); + }; + + /// VariableExprAST - Expression class for referencing a variable, like "a". + class VariableExprAST : public ExprAST { + std::string Name; + public: + VariableExprAST(const std::string &name) : Name(name) {} + virtual Value *Codegen(); + }; + + /// BinaryExprAST - Expression class for a binary operator. + class BinaryExprAST : public ExprAST { + char Op; + ExprAST *LHS, *RHS; + public: + BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) + : Op(op), LHS(lhs), RHS(rhs) {} + virtual Value *Codegen(); + }; + + /// CallExprAST - Expression class for function calls. + class CallExprAST : public ExprAST { + std::string Callee; + std::vector Args; + public: + CallExprAST(const std::string &callee, std::vector &args) + : Callee(callee), Args(args) {} + virtual Value *Codegen(); + }; + + /// PrototypeAST - This class represents the "prototype" for a function, + /// which captures its name, and its argument names (thus implicitly the number + /// of arguments the function takes). + class PrototypeAST { + std::string Name; + std::vector Args; + public: + PrototypeAST(const std::string &name, const std::vector &args) + : Name(name), Args(args) {} + + Function *Codegen(); + }; + + /// FunctionAST - This class represents a function definition itself. + class FunctionAST { + PrototypeAST *Proto; + ExprAST *Body; + public: + FunctionAST(PrototypeAST *proto, ExprAST *body) + : Proto(proto), Body(body) {} + + Function *Codegen(); + }; + + //===----------------------------------------------------------------------===// + // Parser + //===----------------------------------------------------------------------===// + + /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current + /// token the parser is looking at. getNextToken reads another token from the + /// lexer and updates CurTok with its results. + static int CurTok; + static int getNextToken() { + return CurTok = gettok(); + } + + /// BinopPrecedence - This holds the precedence for each binary operator that is + /// defined. + static std::map BinopPrecedence; + + /// GetTokPrecedence - Get the precedence of the pending binary operator token. + static int GetTokPrecedence() { + if (!isascii(CurTok)) + return -1; + + // Make sure it's a declared binop. + int TokPrec = BinopPrecedence[CurTok]; + if (TokPrec <= 0) return -1; + return TokPrec; + } + + /// Error* - These are little helper functions for error handling. + ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} + PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } + FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } + + static ExprAST *ParseExpression(); + + /// identifierexpr + /// ::= identifier + /// ::= identifier '(' expression* ')' + static ExprAST *ParseIdentifierExpr() { + std::string IdName = IdentifierStr; + + getNextToken(); // eat identifier. + + if (CurTok != '(') // Simple variable ref. + return new VariableExprAST(IdName); + + // Call. + getNextToken(); // eat ( + std::vector Args; + if (CurTok != ')') { + while (1) { + ExprAST *Arg = ParseExpression(); + if (!Arg) return 0; + Args.push_back(Arg); + + if (CurTok == ')') break; + + if (CurTok != ',') + return Error("Expected ')' or ',' in argument list"); + getNextToken(); + } + } + + // Eat the ')'. + getNextToken(); + + return new CallExprAST(IdName, Args); + } + + /// numberexpr ::= number + static ExprAST *ParseNumberExpr() { + ExprAST *Result = new NumberExprAST(NumVal); + getNextToken(); // consume the number + return Result; + } + + /// parenexpr ::= '(' expression ')' + static ExprAST *ParseParenExpr() { + getNextToken(); // eat (. + ExprAST *V = ParseExpression(); + if (!V) return 0; + + if (CurTok != ')') + return Error("expected ')'"); + getNextToken(); // eat ). + return V; + } + + /// primary + /// ::= identifierexpr + /// ::= numberexpr + /// ::= parenexpr + static ExprAST *ParsePrimary() { + switch (CurTok) { + default: return Error("unknown token when expecting an expression"); + case tok_identifier: return ParseIdentifierExpr(); + case tok_number: return ParseNumberExpr(); + case '(': return ParseParenExpr(); + } + } + + /// binoprhs + /// ::= ('+' primary)* + static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { + // If this is a binop, find its precedence. + while (1) { + int TokPrec = GetTokPrecedence(); + + // If this is a binop that binds at least as tightly as the current binop, + // consume it, otherwise we are done. + if (TokPrec < ExprPrec) + return LHS; + + // Okay, we know this is a binop. + int BinOp = CurTok; + getNextToken(); // eat binop + + // Parse the primary expression after the binary operator. + ExprAST *RHS = ParsePrimary(); + if (!RHS) return 0; + + // If BinOp binds less tightly with RHS than the operator after RHS, let + // the pending operator take RHS as its LHS. + int NextPrec = GetTokPrecedence(); + if (TokPrec < NextPrec) { + RHS = ParseBinOpRHS(TokPrec+1, RHS); + if (RHS == 0) return 0; + } + + // Merge LHS/RHS. + LHS = new BinaryExprAST(BinOp, LHS, RHS); + } + } + + /// expression + /// ::= primary binoprhs + /// + static ExprAST *ParseExpression() { + ExprAST *LHS = ParsePrimary(); + if (!LHS) return 0; + + return ParseBinOpRHS(0, LHS); + } + + /// prototype + /// ::= id '(' id* ')' + static PrototypeAST *ParsePrototype() { + if (CurTok != tok_identifier) + return ErrorP("Expected function name in prototype"); + + std::string FnName = IdentifierStr; + getNextToken(); + + if (CurTok != '(') + return ErrorP("Expected '(' in prototype"); + + std::vector ArgNames; + while (getNextToken() == tok_identifier) + ArgNames.push_back(IdentifierStr); + if (CurTok != ')') + return ErrorP("Expected ')' in prototype"); + + // success. + getNextToken(); // eat ')'. + + return new PrototypeAST(FnName, ArgNames); + } + + /// definition ::= 'def' prototype expression + static FunctionAST *ParseDefinition() { + getNextToken(); // eat def. + PrototypeAST *Proto = ParsePrototype(); + if (Proto == 0) return 0; + + if (ExprAST *E = ParseExpression()) + return new FunctionAST(Proto, E); + return 0; + } + + /// toplevelexpr ::= expression + static FunctionAST *ParseTopLevelExpr() { + if (ExprAST *E = ParseExpression()) { + // Make an anonymous proto. + PrototypeAST *Proto = new PrototypeAST("", std::vector()); + return new FunctionAST(Proto, E); + } + return 0; + } + + /// external ::= 'extern' prototype + static PrototypeAST *ParseExtern() { + getNextToken(); // eat extern. + return ParsePrototype(); + } + + //===----------------------------------------------------------------------===// + // Code Generation + //===----------------------------------------------------------------------===// + + static Module *TheModule; + static IRBuilder<> Builder(getGlobalContext()); + static std::map NamedValues; + static FunctionPassManager *TheFPM; + + Value *ErrorV(const char *Str) { Error(Str); return 0; } + + Value *NumberExprAST::Codegen() { + return ConstantFP::get(getGlobalContext(), APFloat(Val)); + } + + Value *VariableExprAST::Codegen() { + // Look this variable up in the function. + Value *V = NamedValues[Name]; + return V ? V : ErrorV("Unknown variable name"); + } + + Value *BinaryExprAST::Codegen() { + Value *L = LHS->Codegen(); + Value *R = RHS->Codegen(); + if (L == 0 || R == 0) return 0; + + switch (Op) { + case '+': return Builder.CreateFAdd(L, R, "addtmp"); + case '-': return Builder.CreateFSub(L, R, "subtmp"); + case '*': return Builder.CreateFMul(L, R, "multmp"); + case '<': + L = Builder.CreateFCmpULT(L, R, "cmptmp"); + // Convert bool 0/1 to double 0.0 or 1.0 + return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), + "booltmp"); + default: return ErrorV("invalid binary operator"); + } + } + + Value *CallExprAST::Codegen() { + // Look up the name in the global module table. + Function *CalleeF = TheModule->getFunction(Callee); + if (CalleeF == 0) + return ErrorV("Unknown function referenced"); + + // If argument mismatch error. + if (CalleeF->arg_size() != Args.size()) + return ErrorV("Incorrect # arguments passed"); + + std::vector ArgsV; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + ArgsV.push_back(Args[i]->Codegen()); + if (ArgsV.back() == 0) return 0; + } + + return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); + } + + Function *PrototypeAST::Codegen() { + // Make the function type: double(double,double) etc. + std::vector Doubles(Args.size(), + Type::getDoubleTy(getGlobalContext())); + FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), + Doubles, false); + + Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); + + // If F conflicted, there was already something named 'Name'. If it has a + // body, don't allow redefinition or reextern. + if (F->getName() != Name) { + // Delete the one we just made and get the existing one. + F->eraseFromParent(); + F = TheModule->getFunction(Name); + + // If F already has a body, reject this. + if (!F->empty()) { + ErrorF("redefinition of function"); + return 0; + } + + // If F took a different number of args, reject. + if (F->arg_size() != Args.size()) { + ErrorF("redefinition of function with different # args"); + return 0; + } + } + + // Set names for all arguments. + unsigned Idx = 0; + for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); + ++AI, ++Idx) { + AI->setName(Args[Idx]); + + // Add arguments to variable symbol table. + NamedValues[Args[Idx]] = AI; + } + + return F; + } + + Function *FunctionAST::Codegen() { + NamedValues.clear(); + + Function *TheFunction = Proto->Codegen(); + if (TheFunction == 0) + return 0; + + // Create a new basic block to start insertion into. + BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); + Builder.SetInsertPoint(BB); + + if (Value *RetVal = Body->Codegen()) { + // Finish off the function. + Builder.CreateRet(RetVal); + + // Validate the generated code, checking for consistency. + verifyFunction(*TheFunction); + + // Optimize the function. + TheFPM->run(*TheFunction); + + return TheFunction; + } + + // Error reading body, remove function. + TheFunction->eraseFromParent(); + return 0; + } + + //===----------------------------------------------------------------------===// + // Top-Level parsing and JIT Driver + //===----------------------------------------------------------------------===// + + static ExecutionEngine *TheExecutionEngine; + + static void HandleDefinition() { + if (FunctionAST *F = ParseDefinition()) { + if (Function *LF = F->Codegen()) { + fprintf(stderr, "Read function definition:"); + LF->dump(); + } + } else { + // Skip token for error recovery. + getNextToken(); + } + } + + static void HandleExtern() { + if (PrototypeAST *P = ParseExtern()) { + if (Function *F = P->Codegen()) { + fprintf(stderr, "Read extern: "); + F->dump(); + } + } else { + // Skip token for error recovery. + getNextToken(); + } + } + + static void HandleTopLevelExpression() { + // Evaluate a top-level expression into an anonymous function. + if (FunctionAST *F = ParseTopLevelExpr()) { + if (Function *LF = F->Codegen()) { + fprintf(stderr, "Read top-level expression:"); + LF->dump(); + + // JIT the function, returning a function pointer. + void *FPtr = TheExecutionEngine->getPointerToFunction(LF); + + // Cast it to the right type (takes no arguments, returns a double) so we + // can call it as a native function. + double (*FP)() = (double (*)())(intptr_t)FPtr; + fprintf(stderr, "Evaluated to %f\n", FP()); + } + } else { + // Skip token for error recovery. + getNextToken(); + } + } + + /// top ::= definition | external | expression | ';' + static void MainLoop() { + while (1) { + fprintf(stderr, "ready> "); + switch (CurTok) { + case tok_eof: return; + case ';': getNextToken(); break; // ignore top-level semicolons. + case tok_def: HandleDefinition(); break; + case tok_extern: HandleExtern(); break; + default: HandleTopLevelExpression(); break; + } + } + } + + //===----------------------------------------------------------------------===// + // "Library" functions that can be "extern'd" from user code. + //===----------------------------------------------------------------------===// + + /// putchard - putchar that takes a double and returns 0. + extern "C" + double putchard(double X) { + putchar((char)X); + return 0; + } + + //===----------------------------------------------------------------------===// + // Main driver code. + //===----------------------------------------------------------------------===// + + int main() { + InitializeNativeTarget(); + LLVMContext &Context = getGlobalContext(); + + // Install standard binary operators. + // 1 is lowest precedence. + BinopPrecedence['<'] = 10; + BinopPrecedence['+'] = 20; + BinopPrecedence['-'] = 20; + BinopPrecedence['*'] = 40; // highest. + + // Prime the first token. + fprintf(stderr, "ready> "); + getNextToken(); + + // Make the module, which holds all the code. + TheModule = new Module("my cool jit", Context); + + // Create the JIT. This takes ownership of the module. + std::string ErrStr; + TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); + if (!TheExecutionEngine) { + fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); + exit(1); + } + + FunctionPassManager OurFPM(TheModule); + + // Set up the optimizer pipeline. Start with registering info about how the + // target lays out data structures. + OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); + // Provide basic AliasAnalysis support for GVN. + OurFPM.add(createBasicAliasAnalysisPass()); + // Do simple "peephole" optimizations and bit-twiddling optzns. + OurFPM.add(createInstructionCombiningPass()); + // Reassociate expressions. + OurFPM.add(createReassociatePass()); + // Eliminate Common SubExpressions. + OurFPM.add(createGVNPass()); + // Simplify the control flow graph (deleting unreachable blocks, etc). + OurFPM.add(createCFGSimplificationPass()); + + OurFPM.doInitialization(); + + // Set the global so the code gen can use this. + TheFPM = &OurFPM; + + // Run the main "interpreter loop" now. + MainLoop(); + + TheFPM = 0; + + // Print out all of the generated code. + TheModule->dump(); + + return 0; + } + +`Next: Extending the language: control flow `_ + -- cgit v1.2.3