From ec7ab535706e9a205c1cb84a86b33edc56117900 Mon Sep 17 00:00:00 2001 From: Rafael Espindola Date: Fri, 7 Mar 2014 05:32:03 +0000 Subject: clang-format a bit of code to make the next patch easier to read. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203203 91177308-0d34-0410-b5e6-96231b3b80d8 --- include/llvm/Target/TargetOpcodes.h | 168 ++++++++++++++++++------------------ 1 file changed, 84 insertions(+), 84 deletions(-) (limited to 'include/llvm/Target') diff --git a/include/llvm/Target/TargetOpcodes.h b/include/llvm/Target/TargetOpcodes.h index bd74cb9c0f..d6225a4bc0 100644 --- a/include/llvm/Target/TargetOpcodes.h +++ b/include/llvm/Target/TargetOpcodes.h @@ -22,90 +22,90 @@ namespace llvm { /// must be the same as in CodeGenTarget.cpp. /// namespace TargetOpcode { - enum { - PHI = 0, - INLINEASM = 1, - PROLOG_LABEL = 2, - EH_LABEL = 3, - GC_LABEL = 4, - - /// KILL - This instruction is a noop that is used only to adjust the - /// liveness of registers. This can be useful when dealing with - /// sub-registers. - KILL = 5, - - /// EXTRACT_SUBREG - This instruction takes two operands: a register - /// that has subregisters, and a subregister index. It returns the - /// extracted subregister value. This is commonly used to implement - /// truncation operations on target architectures which support it. - EXTRACT_SUBREG = 6, - - /// INSERT_SUBREG - This instruction takes three operands: a register that - /// has subregisters, a register providing an insert value, and a - /// subregister index. It returns the value of the first register with the - /// value of the second register inserted. The first register is often - /// defined by an IMPLICIT_DEF, because it is commonly used to implement - /// anyext operations on target architectures which support it. - INSERT_SUBREG = 7, - - /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef. - IMPLICIT_DEF = 8, - - /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that - /// the first operand is an immediate integer constant. This constant is - /// often zero, because it is commonly used to assert that the instruction - /// defining the register implicitly clears the high bits. - SUBREG_TO_REG = 9, - - /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain - /// register-to-register copy into a specific register class. This is only - /// used between instruction selection and MachineInstr creation, before - /// virtual registers have been created for all the instructions, and it's - /// only needed in cases where the register classes implied by the - /// instructions are insufficient. It is emitted as a COPY MachineInstr. - COPY_TO_REGCLASS = 10, - - /// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic - DBG_VALUE = 11, - - /// REG_SEQUENCE - This variadic instruction is used to form a register that - /// represents a consecutive sequence of sub-registers. It's used as a - /// register coalescing / allocation aid and must be eliminated before code - /// emission. - // In SDNode form, the first operand encodes the register class created by - // the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index - // pair. Once it has been lowered to a MachineInstr, the regclass operand - // is no longer present. - /// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5 - /// After register coalescing references of v1024 should be replace with - /// v1027:3, v1025 with v1027:4, etc. - REG_SEQUENCE = 12, - - /// COPY - Target-independent register copy. This instruction can also be - /// used to copy between subregisters of virtual registers. - COPY = 13, - - /// BUNDLE - This instruction represents an instruction bundle. Instructions - /// which immediately follow a BUNDLE instruction which are marked with - /// 'InsideBundle' flag are inside the bundle. - BUNDLE = 14, - - /// Lifetime markers. - LIFETIME_START = 15, - LIFETIME_END = 16, - - /// A Stackmap instruction captures the location of live variables at its - /// position in the instruction stream. It is followed by a shadow of bytes - /// that must lie within the function and not contain another stackmap. - STACKMAP = 17, - - /// Patchable call instruction - this instruction represents a call to a - /// constant address, followed by a series of NOPs. It is intended to - /// support optimizations for dynamic languages (such as javascript) that - /// rewrite calls to runtimes with more efficient code sequences. - /// This also implies a stack map. - PATCHPOINT = 18 - }; +enum { + PHI = 0, + INLINEASM = 1, + PROLOG_LABEL = 2, + EH_LABEL = 3, + GC_LABEL = 4, + + /// KILL - This instruction is a noop that is used only to adjust the + /// liveness of registers. This can be useful when dealing with + /// sub-registers. + KILL = 5, + + /// EXTRACT_SUBREG - This instruction takes two operands: a register + /// that has subregisters, and a subregister index. It returns the + /// extracted subregister value. This is commonly used to implement + /// truncation operations on target architectures which support it. + EXTRACT_SUBREG = 6, + + /// INSERT_SUBREG - This instruction takes three operands: a register that + /// has subregisters, a register providing an insert value, and a + /// subregister index. It returns the value of the first register with the + /// value of the second register inserted. The first register is often + /// defined by an IMPLICIT_DEF, because it is commonly used to implement + /// anyext operations on target architectures which support it. + INSERT_SUBREG = 7, + + /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef. + IMPLICIT_DEF = 8, + + /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that + /// the first operand is an immediate integer constant. This constant is + /// often zero, because it is commonly used to assert that the instruction + /// defining the register implicitly clears the high bits. + SUBREG_TO_REG = 9, + + /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain + /// register-to-register copy into a specific register class. This is only + /// used between instruction selection and MachineInstr creation, before + /// virtual registers have been created for all the instructions, and it's + /// only needed in cases where the register classes implied by the + /// instructions are insufficient. It is emitted as a COPY MachineInstr. + COPY_TO_REGCLASS = 10, + + /// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic + DBG_VALUE = 11, + + /// REG_SEQUENCE - This variadic instruction is used to form a register that + /// represents a consecutive sequence of sub-registers. It's used as a + /// register coalescing / allocation aid and must be eliminated before code + /// emission. + // In SDNode form, the first operand encodes the register class created by + // the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index + // pair. Once it has been lowered to a MachineInstr, the regclass operand + // is no longer present. + /// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5 + /// After register coalescing references of v1024 should be replace with + /// v1027:3, v1025 with v1027:4, etc. + REG_SEQUENCE = 12, + + /// COPY - Target-independent register copy. This instruction can also be + /// used to copy between subregisters of virtual registers. + COPY = 13, + + /// BUNDLE - This instruction represents an instruction bundle. Instructions + /// which immediately follow a BUNDLE instruction which are marked with + /// 'InsideBundle' flag are inside the bundle. + BUNDLE = 14, + + /// Lifetime markers. + LIFETIME_START = 15, + LIFETIME_END = 16, + + /// A Stackmap instruction captures the location of live variables at its + /// position in the instruction stream. It is followed by a shadow of bytes + /// that must lie within the function and not contain another stackmap. + STACKMAP = 17, + + /// Patchable call instruction - this instruction represents a call to a + /// constant address, followed by a series of NOPs. It is intended to + /// support optimizations for dynamic languages (such as javascript) that + /// rewrite calls to runtimes with more efficient code sequences. + /// This also implies a stack map. + PATCHPOINT = 18 +}; } // end namespace TargetOpcode } // end namespace llvm -- cgit v1.2.3