//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ImutAVLTree and ImmutableSet classes. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_IMSET_H #define LLVM_ADT_IMSET_H #include "llvm/Support/Allocator.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { //===----------------------------------------------------------------------===// // Immutable AVL-Tree Definition. //===----------------------------------------------------------------------===// template class ImutAVLFactory; template class ImutAVLTreeInOrderIterator; template class ImutAVLTreeGenericIterator; template class ImutAVLTree : public FoldingSetNode { public: typedef typename ImutInfo::key_type_ref key_type_ref; typedef typename ImutInfo::value_type value_type; typedef typename ImutInfo::value_type_ref value_type_ref; typedef ImutAVLFactory Factory; friend class ImutAVLFactory; friend class ImutAVLTreeGenericIterator; friend class FoldingSet; typedef ImutAVLTreeInOrderIterator iterator; //===----------------------------------------------------===// // Public Interface. //===----------------------------------------------------===// /// getLeft - Returns a pointer to the left subtree. This value /// is NULL if there is no left subtree. ImutAVLTree *getLeft() const { return reinterpret_cast(Left & ~LeftFlags); } /// getRight - Returns a pointer to the right subtree. This value is /// NULL if there is no right subtree. ImutAVLTree* getRight() const { return Right; } /// getHeight - Returns the height of the tree. A tree with no subtrees /// has a height of 1. unsigned getHeight() const { return Height; } /// getValue - Returns the data value associated with the tree node. const value_type& getValue() const { return Value; } /// find - Finds the subtree associated with the specified key value. /// This method returns NULL if no matching subtree is found. ImutAVLTree* find(key_type_ref K) { ImutAVLTree *T = this; while (T) { key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); if (ImutInfo::isEqual(K,CurrentKey)) return T; else if (ImutInfo::isLess(K,CurrentKey)) T = T->getLeft(); else T = T->getRight(); } return NULL; } /// getMaxElement - Find the subtree associated with the highest ranged /// key value. ImutAVLTree* getMaxElement() { ImutAVLTree *T = this; ImutAVLTree *Right = T->getRight(); while (Right) { T = Right; Right = T->getRight(); } return T; } /// size - Returns the number of nodes in the tree, which includes /// both leaves and non-leaf nodes. unsigned size() const { unsigned n = 1; if (const ImutAVLTree* L = getLeft()) n += L->size(); if (const ImutAVLTree* R = getRight()) n += R->size(); return n; } /// begin - Returns an iterator that iterates over the nodes of the tree /// in an inorder traversal. The returned iterator thus refers to the /// the tree node with the minimum data element. iterator begin() const { return iterator(this); } /// end - Returns an iterator for the tree that denotes the end of an /// inorder traversal. iterator end() const { return iterator(); } bool ElementEqual(value_type_ref V) const { // Compare the keys. if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), ImutInfo::KeyOfValue(V))) return false; // Also compare the data values. if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), ImutInfo::DataOfValue(V))) return false; return true; } bool ElementEqual(const ImutAVLTree* RHS) const { return ElementEqual(RHS->getValue()); } /// isEqual - Compares two trees for structural equality and returns true /// if they are equal. This worst case performance of this operation is // linear in the sizes of the trees. bool isEqual(const ImutAVLTree& RHS) const { if (&RHS == this) return true; iterator LItr = begin(), LEnd = end(); iterator RItr = RHS.begin(), REnd = RHS.end(); while (LItr != LEnd && RItr != REnd) { if (*LItr == *RItr) { LItr.SkipSubTree(); RItr.SkipSubTree(); continue; } if (!LItr->ElementEqual(*RItr)) return false; ++LItr; ++RItr; } return LItr == LEnd && RItr == REnd; } /// isNotEqual - Compares two trees for structural inequality. Performance /// is the same is isEqual. bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } /// contains - Returns true if this tree contains a subtree (node) that /// has an data element that matches the specified key. Complexity /// is logarithmic in the size of the tree. bool contains(key_type_ref K) { return (bool) find(K); } /// foreach - A member template the accepts invokes operator() on a functor /// object (specifed by Callback) for every node/subtree in the tree. /// Nodes are visited using an inorder traversal. template void foreach(Callback& C) { if (ImutAVLTree* L = getLeft()) L->foreach(C); C(Value); if (ImutAVLTree* R = getRight()) R->foreach(C); } /// verify - A utility method that checks that the balancing and /// ordering invariants of the tree are satisifed. It is a recursive /// method that returns the height of the tree, which is then consumed /// by the enclosing verify call. External callers should ignore the /// return value. An invalid tree will cause an assertion to fire in /// a debug build. unsigned verify() const { unsigned HL = getLeft() ? getLeft()->verify() : 0; unsigned HR = getRight() ? getRight()->verify() : 0; assert (getHeight() == ( HL > HR ? HL : HR ) + 1 && "Height calculation wrong."); assert ((HL > HR ? HL-HR : HR-HL) <= 2 && "Balancing invariant violated."); assert (!getLeft() || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), ImutInfo::KeyOfValue(getValue())) && "Value in left child is not less that current value."); assert (!getRight() || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), ImutInfo::KeyOfValue(getRight()->getValue())) && "Current value is not less that value of right child."); return getHeight(); } /// Profile - Profiling for ImutAVLTree. void Profile(llvm::FoldingSetNodeID& ID) { ID.AddInteger(ComputeDigest()); } //===----------------------------------------------------===// // Internal Values. //===----------------------------------------------------===// private: uintptr_t Left; ImutAVLTree* Right; unsigned Height; value_type Value; uint32_t Digest; //===----------------------------------------------------===// // Internal methods (node manipulation; used by Factory). //===----------------------------------------------------===// private: enum { Mutable = 0x1, NoCachedDigest = 0x2, LeftFlags = 0x3 }; /// ImutAVLTree - Internal constructor that is only called by /// ImutAVLFactory. ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height) : Left(reinterpret_cast(l) | (Mutable | NoCachedDigest)), Right(r), Height(height), Value(v), Digest(0) {} /// isMutable - Returns true if the left and right subtree references /// (as well as height) can be changed. If this method returns false, /// the tree is truly immutable. Trees returned from an ImutAVLFactory /// object should always have this method return true. Further, if this /// method returns false for an instance of ImutAVLTree, all subtrees /// will also have this method return false. The converse is not true. bool isMutable() const { return Left & Mutable; } /// hasCachedDigest - Returns true if the digest for this tree is cached. /// This can only be true if the tree is immutable. bool hasCachedDigest() const { return !(Left & NoCachedDigest); } //===----------------------------------------------------===// // Mutating operations. A tree root can be manipulated as // long as its reference has not "escaped" from internal // methods of a factory object (see below). When a tree // pointer is externally viewable by client code, the // internal "mutable bit" is cleared to mark the tree // immutable. Note that a tree that still has its mutable // bit set may have children (subtrees) that are themselves // immutable. //===----------------------------------------------------===// /// MarkImmutable - Clears the mutable flag for a tree. After this happens, /// it is an error to call setLeft(), setRight(), and setHeight(). void MarkImmutable() { assert(isMutable() && "Mutable flag already removed."); Left &= ~Mutable; } /// MarkedCachedDigest - Clears the NoCachedDigest flag for a tree. void MarkedCachedDigest() { assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); Left &= ~NoCachedDigest; } /// setLeft - Changes the reference of the left subtree. Used internally /// by ImutAVLFactory. void setLeft(ImutAVLTree* NewLeft) { assert(isMutable() && "Only a mutable tree can have its left subtree changed."); Left = reinterpret_cast(NewLeft) | LeftFlags; } /// setRight - Changes the reference of the right subtree. Used internally /// by ImutAVLFactory. void setRight(ImutAVLTree* NewRight) { assert(isMutable() && "Only a mutable tree can have its right subtree changed."); Right = NewRight; // Set the NoCachedDigest flag. Left = Left | NoCachedDigest; } /// setHeight - Changes the height of the tree. Used internally by /// ImutAVLFactory. void setHeight(unsigned h) { assert(isMutable() && "Only a mutable tree can have its height changed."); Height = h; } static inline uint32_t ComputeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) { uint32_t digest = 0; if (L) digest += L->ComputeDigest(); // Compute digest of stored data. FoldingSetNodeID ID; ImutInfo::Profile(ID,V); digest += ID.ComputeHash(); if (R) digest += R->ComputeDigest(); return digest; } inline uint32_t ComputeDigest() { // Check the lowest bit to determine if digest has actually been // pre-computed. if (hasCachedDigest()) return Digest; uint32_t X = ComputeDigest(getLeft(), getRight(), getValue()); Digest = X; MarkedCachedDigest(); return X; } }; //===----------------------------------------------------------------------===// // Immutable AVL-Tree Factory class. //===----------------------------------------------------------------------===// template class ImutAVLFactory { typedef ImutAVLTree TreeTy; typedef typename TreeTy::value_type_ref value_type_ref; typedef typename TreeTy::key_type_ref key_type_ref; typedef FoldingSet CacheTy; CacheTy Cache; uintptr_t Allocator; bool ownsAllocator() const { return Allocator & 0x1 ? false : true; } BumpPtrAllocator& getAllocator() const { return *reinterpret_cast(Allocator & ~0x1); } //===--------------------------------------------------===// // Public interface. //===--------------------------------------------------===// public: ImutAVLFactory() : Allocator(reinterpret_cast(new BumpPtrAllocator())) {} ImutAVLFactory(BumpPtrAllocator& Alloc) : Allocator(reinterpret_cast(&Alloc) | 0x1) {} ~ImutAVLFactory() { if (ownsAllocator()) delete &getAllocator(); } TreeTy* Add(TreeTy* T, value_type_ref V) { T = Add_internal(V,T); MarkImmutable(T); return T; } TreeTy* Remove(TreeTy* T, key_type_ref V) { T = Remove_internal(V,T); MarkImmutable(T); return T; } TreeTy* GetEmptyTree() const { return NULL; } //===--------------------------------------------------===// // A bunch of quick helper functions used for reasoning // about the properties of trees and their children. // These have succinct names so that the balancing code // is as terse (and readable) as possible. //===--------------------------------------------------===// private: bool isEmpty(TreeTy* T) const { return !T; } unsigned Height(TreeTy* T) const { return T ? T->getHeight() : 0; } TreeTy* Left(TreeTy* T) const { return T->getLeft(); } TreeTy* Right(TreeTy* T) const { return T->getRight(); } value_type_ref Value(TreeTy* T) const { return T->Value; } unsigned IncrementHeight(TreeTy* L, TreeTy* R) const { unsigned hl = Height(L); unsigned hr = Height(R); return ( hl > hr ? hl : hr ) + 1; } static bool CompareTreeWithSection(TreeTy* T, typename TreeTy::iterator& TI, typename TreeTy::iterator& TE) { typename TreeTy::iterator I = T->begin(), E = T->end(); for ( ; I!=E ; ++I, ++TI) if (TI == TE || !I->ElementEqual(*TI)) return false; return true; } //===--------------------------------------------------===// // "CreateNode" is used to generate new tree roots that link // to other trees. The functon may also simply move links // in an existing root if that root is still marked mutable. // This is necessary because otherwise our balancing code // would leak memory as it would create nodes that are // then discarded later before the finished tree is // returned to the caller. //===--------------------------------------------------===// TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) { BumpPtrAllocator& A = getAllocator(); TreeTy* T = (TreeTy*) A.Allocate(); new (T) TreeTy(L,R,V,IncrementHeight(L,R)); return T; } TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) { assert (!isEmpty(OldTree)); if (OldTree->isMutable()) { OldTree->setLeft(L); OldTree->setRight(R); OldTree->setHeight(IncrementHeight(L,R)); return OldTree; } else return CreateNode(L, Value(OldTree), R); } /// Balance - Used by Add_internal and Remove_internal to /// balance a newly created tree. TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) { unsigned hl = Height(L); unsigned hr = Height(R); if (hl > hr + 2) { assert (!isEmpty(L) && "Left tree cannot be empty to have a height >= 2."); TreeTy* LL = Left(L); TreeTy* LR = Right(L); if (Height(LL) >= Height(LR)) return CreateNode(LL, L, CreateNode(LR,V,R)); assert (!isEmpty(LR) && "LR cannot be empty because it has a height >= 1."); TreeTy* LRL = Left(LR); TreeTy* LRR = Right(LR); return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R)); } else if (hr > hl + 2) { assert (!isEmpty(R) && "Right tree cannot be empty to have a height >= 2."); TreeTy* RL = Left(R); TreeTy* RR = Right(R); if (Height(RR) >= Height(RL)) return CreateNode(CreateNode(L,V,RL), R, RR); assert (!isEmpty(RL) && "RL cannot be empty because it has a height >= 1."); TreeTy* RLL = Left(RL); TreeTy* RLR = Right(RL); return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR)); } else return CreateNode(L,V,R); } /// Add_internal - Creates a new tree that includes the specified /// data and the data from the original tree. If the original tree /// already contained the data item, the original tree is returned. TreeTy* Add_internal(value_type_ref V, TreeTy* T) { if (isEmpty(T)) return CreateNode(T, V, T); assert (!T->isMutable()); key_type_ref K = ImutInfo::KeyOfValue(V); key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); if (ImutInfo::isEqual(K,KCurrent)) return CreateNode(Left(T), V, Right(T)); else if (ImutInfo::isLess(K,KCurrent)) return Balance(Add_internal(V,Left(T)), Value(T), Right(T)); else return Balance(Left(T), Value(T), Add_internal(V,Right(T))); } /// Remove_internal - Creates a new tree that includes all the data /// from the original tree except the specified data. If the /// specified data did not exist in the original tree, the original /// tree is returned. TreeTy* Remove_internal(key_type_ref K, TreeTy* T) { if (isEmpty(T)) return T; assert (!T->isMutable()); key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); if (ImutInfo::isEqual(K,KCurrent)) return CombineLeftRightTrees(Left(T),Right(T)); else if (ImutInfo::isLess(K,KCurrent)) return Balance(Remove_internal(K,Left(T)), Value(T), Right(T)); else return Balance(Left(T), Value(T), Remove_internal(K,Right(T))); } TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) { if (isEmpty(L)) return R; if (isEmpty(R)) return L; TreeTy* OldNode; TreeTy* NewRight = RemoveMinBinding(R,OldNode); return Balance(L,Value(OldNode),NewRight); } TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) { assert (!isEmpty(T)); if (isEmpty(Left(T))) { NodeRemoved = T; return Right(T); } return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T)); } /// MarkImmutable - Clears the mutable bits of a root and all of its /// descendants. void MarkImmutable(TreeTy* T) { if (!T || !T->isMutable()) return; T->MarkImmutable(); MarkImmutable(Left(T)); MarkImmutable(Right(T)); } public: TreeTy *GetCanonicalTree(TreeTy *TNew) { if (!TNew) return NULL; // Search the FoldingSet bucket for a Tree with the same digest. FoldingSetNodeID ID; unsigned digest = TNew->ComputeDigest(); ID.AddInteger(digest); unsigned hash = ID.ComputeHash(); typename CacheTy::bucket_iterator I = Cache.bucket_begin(hash); typename CacheTy::bucket_iterator E = Cache.bucket_end(hash); for (; I != E; ++I) { TreeTy *T = &*I; if (T->ComputeDigest() != digest) continue; // We found a collision. Perform a comparison of Contents('T') // with Contents('L')+'V'+Contents('R'). typename TreeTy::iterator TI = T->begin(), TE = T->end(); // First compare Contents('L') with the (initial) contents of T. if (!CompareTreeWithSection(TNew->getLeft(), TI, TE)) continue; // Now compare the new data element. if (TI == TE || !TI->ElementEqual(TNew->getValue())) continue; ++TI; // Now compare the remainder of 'T' with 'R'. if (!CompareTreeWithSection(TNew->getRight(), TI, TE)) continue; if (TI != TE) continue; // Contents('R') did not match suffix of 'T'. // Trees did match! Return 'T'. return T; } // 'TNew' is the only tree of its kind. Return it. Cache.InsertNode(TNew, (void*) &*Cache.bucket_end(hash)); return TNew; } }; //===----------------------------------------------------------------------===// // Immutable AVL-Tree Iterators. //===----------------------------------------------------------------------===// template class ImutAVLTreeGenericIterator { SmallVector stack; public: enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, Flags=0x3 }; typedef ImutAVLTree TreeTy; typedef ImutAVLTreeGenericIterator _Self; inline ImutAVLTreeGenericIterator() {} inline ImutAVLTreeGenericIterator(const TreeTy* Root) { if (Root) stack.push_back(reinterpret_cast(Root)); } TreeTy* operator*() const { assert (!stack.empty()); return reinterpret_cast(stack.back() & ~Flags); } uintptr_t getVisitState() { assert (!stack.empty()); return stack.back() & Flags; } bool AtEnd() const { return stack.empty(); } bool AtBeginning() const { return stack.size() == 1 && getVisitState() == VisitedNone; } void SkipToParent() { assert (!stack.empty()); stack.pop_back(); if (stack.empty()) return; switch (getVisitState()) { case VisitedNone: stack.back() |= VisitedLeft; break; case VisitedLeft: stack.back() |= VisitedRight; break; default: assert (false && "Unreachable."); } } inline bool operator==(const _Self& x) const { if (stack.size() != x.stack.size()) return false; for (unsigned i = 0 ; i < stack.size(); i++) if (stack[i] != x.stack[i]) return false; return true; } inline bool operator!=(const _Self& x) const { return !operator==(x); } _Self& operator++() { assert (!stack.empty()); TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); assert (Current); switch (getVisitState()) { case VisitedNone: if (TreeTy* L = Current->getLeft()) stack.push_back(reinterpret_cast(L)); else stack.back() |= VisitedLeft; break; case VisitedLeft: if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast(R)); else stack.back() |= VisitedRight; break; case VisitedRight: SkipToParent(); break; default: assert (false && "Unreachable."); } return *this; } _Self& operator--() { assert (!stack.empty()); TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); assert (Current); switch (getVisitState()) { case VisitedNone: stack.pop_back(); break; case VisitedLeft: stack.back() &= ~Flags; // Set state to "VisitedNone." if (TreeTy* L = Current->getLeft()) stack.push_back(reinterpret_cast(L) | VisitedRight); break; case VisitedRight: stack.back() &= ~Flags; stack.back() |= VisitedLeft; if (TreeTy* R = Current->getRight()) stack.push_back(reinterpret_cast(R) | VisitedRight); break; default: assert (false && "Unreachable."); } return *this; } }; template class ImutAVLTreeInOrderIterator { typedef ImutAVLTreeGenericIterator InternalIteratorTy; InternalIteratorTy InternalItr; public: typedef ImutAVLTree TreeTy; typedef ImutAVLTreeInOrderIterator _Self; ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { if (Root) operator++(); // Advance to first element. } ImutAVLTreeInOrderIterator() : InternalItr() {} inline bool operator==(const _Self& x) const { return InternalItr == x.InternalItr; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline TreeTy* operator*() const { return *InternalItr; } inline TreeTy* operator->() const { return *InternalItr; } inline _Self& operator++() { do ++InternalItr; while (!InternalItr.AtEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); return *this; } inline _Self& operator--() { do --InternalItr; while (!InternalItr.AtBeginning() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); return *this; } inline void SkipSubTree() { InternalItr.SkipToParent(); while (!InternalItr.AtEnd() && InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) ++InternalItr; } }; //===----------------------------------------------------------------------===// // Trait classes for Profile information. //===----------------------------------------------------------------------===// /// Generic profile template. The default behavior is to invoke the /// profile method of an object. Specializations for primitive integers /// and generic handling of pointers is done below. template struct ImutProfileInfo { typedef const T value_type; typedef const T& value_type_ref; static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { FoldingSetTrait::Profile(X,ID); } }; /// Profile traits for integers. template struct ImutProfileInteger { typedef const T value_type; typedef const T& value_type_ref; static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { ID.AddInteger(X); } }; #define PROFILE_INTEGER_INFO(X)\ template<> struct ImutProfileInfo : ImutProfileInteger {}; PROFILE_INTEGER_INFO(char) PROFILE_INTEGER_INFO(unsigned char) PROFILE_INTEGER_INFO(short) PROFILE_INTEGER_INFO(unsigned short) PROFILE_INTEGER_INFO(unsigned) PROFILE_INTEGER_INFO(signed) PROFILE_INTEGER_INFO(long) PROFILE_INTEGER_INFO(unsigned long) PROFILE_INTEGER_INFO(long long) PROFILE_INTEGER_INFO(unsigned long long) #undef PROFILE_INTEGER_INFO /// Generic profile trait for pointer types. We treat pointers as /// references to unique objects. template struct ImutProfileInfo { typedef const T* value_type; typedef value_type value_type_ref; static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddPointer(X); } }; //===----------------------------------------------------------------------===// // Trait classes that contain element comparison operators and type // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These // inherit from the profile traits (ImutProfileInfo) to include operations // for element profiling. //===----------------------------------------------------------------------===// /// ImutContainerInfo - Generic definition of comparison operations for /// elements of immutable containers that defaults to using /// std::equal_to<> and std::less<> to perform comparison of elements. template struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type value_type; typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; typedef bool data_type; typedef bool data_type_ref; static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } static inline data_type_ref DataOfValue(value_type_ref) { return true; } static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return std::equal_to()(LHS,RHS); } static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return std::less()(LHS,RHS); } static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; /// ImutContainerInfo - Specialization for pointer values to treat pointers /// as references to unique objects. Pointers are thus compared by /// their addresses. template struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type value_type; typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; typedef bool data_type; typedef bool data_type_ref; static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } static inline data_type_ref DataOfValue(value_type_ref) { return true; } static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; //===----------------------------------------------------------------------===// // Immutable Set //===----------------------------------------------------------------------===// template > class ImmutableSet { public: typedef typename ValInfo::value_type value_type; typedef typename ValInfo::value_type_ref value_type_ref; typedef ImutAVLTree TreeTy; private: TreeTy *Root; public: /// Constructs a set from a pointer to a tree root. In general one /// should use a Factory object to create sets instead of directly /// invoking the constructor, but there are cases where make this /// constructor public is useful. explicit ImmutableSet(TreeTy* R) : Root(R) {} class Factory { typename TreeTy::Factory F; public: Factory() {} Factory(BumpPtrAllocator& Alloc) : F(Alloc) {} /// GetEmptySet - Returns an immutable set that contains no elements. ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); } /// Add - Creates a new immutable set that contains all of the values /// of the original set with the addition of the specified value. If /// the original set already included the value, then the original set is /// returned and no memory is allocated. The time and space complexity /// of this operation is logarithmic in the size of the original set. /// The memory allocated to represent the set is released when the /// factory object that created the set is destroyed. ImmutableSet Add(ImmutableSet Old, value_type_ref V) { return ImmutableSet(F.GetCanonicalTree(F.Add(Old.Root,V))); } /// Remove - Creates a new immutable set that contains all of the values /// of the original set with the exception of the specified value. If /// the original set did not contain the value, the original set is /// returned and no memory is allocated. The time and space complexity /// of this operation is logarithmic in the size of the original set. /// The memory allocated to represent the set is released when the /// factory object that created the set is destroyed. ImmutableSet Remove(ImmutableSet Old, value_type_ref V) { return ImmutableSet(F.GetCanonicalTree(F.Remove(Old.Root,V))); } BumpPtrAllocator& getAllocator() { return F.getAllocator(); } private: Factory(const Factory& RHS) {}; void operator=(const Factory& RHS) {}; }; friend class Factory; /// contains - Returns true if the set contains the specified value. bool contains(value_type_ref V) const { return Root ? Root->contains(V) : false; } bool operator==(ImmutableSet RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; } bool operator!=(ImmutableSet RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; } TreeTy *getRoot() { return Root; } /// isEmpty - Return true if the set contains no elements. bool isEmpty() const { return !Root; } /// isSingleton - Return true if the set contains exactly one element. /// This method runs in constant time. bool isSingleton() const { return getHeight() == 1; } template void foreach(Callback& C) { if (Root) Root->foreach(C); } template void foreach() { if (Root) { Callback C; Root->foreach(C); } } //===--------------------------------------------------===// // Iterators. //===--------------------------------------------------===// class iterator { typename TreeTy::iterator itr; iterator(TreeTy* t) : itr(t) {} friend class ImmutableSet; public: iterator() {} inline value_type_ref operator*() const { return itr->getValue(); } inline iterator& operator++() { ++itr; return *this; } inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } inline iterator& operator--() { --itr; return *this; } inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } inline value_type *operator->() const { return &(operator*()); } }; iterator begin() const { return iterator(Root); } iterator end() const { return iterator(); } //===--------------------------------------------------===// // Utility methods. //===--------------------------------------------------===// inline unsigned getHeight() const { return Root ? Root->getHeight() : 0; } static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) { ID.AddPointer(S.Root); } inline void Profile(FoldingSetNodeID& ID) const { return Profile(ID,*this); } //===--------------------------------------------------===// // For testing. //===--------------------------------------------------===// void verify() const { if (Root) Root->verify(); } }; } // end namespace llvm #endif