//===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS /// algorithm. /// /// The SCC iterator has the important property that if a node in SCC S1 has an /// edge to a node in SCC S2, then it visits S1 *after* S2. /// /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: /// This requires some simple wrappers and is not supported yet.) /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SCCITERATOR_H #define LLVM_ADT_SCCITERATOR_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include namespace llvm { /// \brief Enumerate the SCCs of a directed graph in reverse topological order /// of the SCC DAG. /// /// This is implemented using Tarjan's DFS algorithm using an internal stack to /// build up a vector of nodes in a particular SCC. Note that it is a forward /// iterator and thus you cannot backtrack or re-visit nodes. template > class scc_iterator : public std::iterator, ptrdiff_t> { typedef typename GT::NodeType NodeType; typedef typename GT::ChildIteratorType ChildItTy; typedef std::vector SccTy; typedef std::iterator, ptrdiff_t> super; typedef typename super::reference reference; typedef typename super::pointer pointer; // The visit counters used to detect when a complete SCC is on the stack. // visitNum is the global counter. // nodeVisitNumbers are per-node visit numbers, also used as DFS flags. unsigned visitNum; DenseMap nodeVisitNumbers; // Stack holding nodes of the SCC. std::vector SCCNodeStack; // The current SCC, retrieved using operator*(). SccTy CurrentSCC; // Used to maintain the ordering. The top is the current block, the first // element is basic block pointer, second is the 'next child' to visit. std::vector > VisitStack; // Stack holding the "min" values for each node in the DFS. This is used to // track the minimum uplink values for all children of the corresponding node // on the VisitStack. std::vector MinVisitNumStack; // A single "visit" within the non-recursive DFS traversal. void DFSVisitOne(NodeType *N) { ++visitNum; nodeVisitNumbers[N] = visitNum; SCCNodeStack.push_back(N); MinVisitNumStack.push_back(visitNum); VisitStack.push_back(std::make_pair(N, GT::child_begin(N))); #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Node " << N << " : visitNum = " << visitNum << "\n"; #endif } // The stack-based DFS traversal; defined below. void DFSVisitChildren() { assert(!VisitStack.empty()); while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { // TOS has at least one more child so continue DFS NodeType *childN = *VisitStack.back().second++; if (!nodeVisitNumbers.count(childN)) { // this node has never been seen. DFSVisitOne(childN); continue; } unsigned childNum = nodeVisitNumbers[childN]; if (MinVisitNumStack.back() > childNum) MinVisitNumStack.back() = childNum; } } // Compute the next SCC using the DFS traversal. void GetNextSCC() { assert(VisitStack.size() == MinVisitNumStack.size()); CurrentSCC.clear(); // Prepare to compute the next SCC while (!VisitStack.empty()) { DFSVisitChildren(); assert(VisitStack.back().second == GT::child_end(VisitStack.back().first)); NodeType *visitingN = VisitStack.back().first; unsigned minVisitNum = MinVisitNumStack.back(); VisitStack.pop_back(); MinVisitNumStack.pop_back(); if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum) MinVisitNumStack.back() = minVisitNum; #if 0 // Enable if needed when debugging. dbgs() << "TarjanSCC: Popped node " << visitingN << " : minVisitNum = " << minVisitNum << "; Node visit num = " << nodeVisitNumbers[visitingN] << "\n"; #endif if (minVisitNum != nodeVisitNumbers[visitingN]) continue; // A full SCC is on the SCCNodeStack! It includes all nodes below // visitingN on the stack. Copy those nodes to CurrentSCC, // reset their minVisit values, and return (this suspends // the DFS traversal till the next ++). do { CurrentSCC.push_back(SCCNodeStack.back()); SCCNodeStack.pop_back(); nodeVisitNumbers[CurrentSCC.back()] = ~0U; } while (CurrentSCC.back() != visitingN); return; } } inline scc_iterator(NodeType *entryN) : visitNum(0) { DFSVisitOne(entryN); GetNextSCC(); } // End is when the DFS stack is empty. inline scc_iterator() {} public: static inline scc_iterator begin(const GraphT &G) { return scc_iterator(GT::getEntryNode(G)); } static inline scc_iterator end(const GraphT &) { return scc_iterator(); } /// \brief Direct loop termination test which is more efficient than /// comparison with \c end(). inline bool isAtEnd() const { assert(!CurrentSCC.empty() || VisitStack.empty()); return CurrentSCC.empty(); } inline bool operator==(const scc_iterator &x) const { return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; } inline bool operator!=(const scc_iterator &x) const { return !operator==(x); } inline scc_iterator &operator++() { GetNextSCC(); return *this; } inline scc_iterator operator++(int) { scc_iterator tmp = *this; ++*this; return tmp; } inline const SccTy &operator*() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } inline SccTy &operator*() { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); return CurrentSCC; } /// \brief Test if the current SCC has a loop. /// /// If the SCC has more than one node, this is trivially true. If not, it may /// still contain a loop if the node has an edge back to itself. bool hasLoop() const { assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); if (CurrentSCC.size() > 1) return true; NodeType *N = CurrentSCC.front(); for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; ++CI) if (*CI == N) return true; return false; } /// This informs the \c scc_iterator that the specified \c Old node /// has been deleted, and \c New is to be used in its place. void ReplaceNode(NodeType *Old, NodeType *New) { assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); nodeVisitNumbers[New] = nodeVisitNumbers[Old]; nodeVisitNumbers.erase(Old); } }; /// \brief Construct the begin iterator for a deduced graph type T. template scc_iterator scc_begin(const T &G) { return scc_iterator::begin(G); } /// \brief Construct the end iterator for a deduced graph type T. template scc_iterator scc_end(const T &G) { return scc_iterator::end(G); } /// \brief Construct the begin iterator for a deduced graph type T's Inverse. template scc_iterator > scc_begin(const Inverse &G) { return scc_iterator >::begin(G); } /// \brief Construct the end iterator for a deduced graph type T's Inverse. template scc_iterator > scc_end(const Inverse &G) { return scc_iterator >::end(G); } } // End llvm namespace #endif