//===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the AbstractTypeUser class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ABSTRACT_TYPE_USER_H #define LLVM_ABSTRACT_TYPE_USER_H #if !defined(LLVM_TYPE_H) && !defined(LLVM_VALUE_H) #error Do not include this file directly. Include Type.h instead. #error Some versions of GCC (e.g. 3.4 and 4.1) can not handle the inlined method #error PATypeHolder::dropRef() correctly otherwise. #endif // This is the "master" include for Whether this file needs it or not, // it must always include for the files which include // llvm/AbstractTypeUser.h // // In this way, most every LLVM source file will have access to the assert() // macro without having to #include directly. // #include namespace llvm { class Type; class DerivedType; template struct simplify_type; /// The AbstractTypeUser class is an interface to be implemented by classes who /// could possibly use an abstract type. Abstract types are denoted by the /// isAbstract flag set to true in the Type class. These are classes that /// contain an Opaque type in their structure somewhere. /// /// Classes must implement this interface so that they may be notified when an /// abstract type is resolved. Abstract types may be resolved into more /// concrete types through: linking, parsing, and bitcode reading. When this /// happens, all of the users of the type must be updated to reference the new, /// more concrete type. They are notified through the AbstractTypeUser /// interface. /// /// In addition to this, AbstractTypeUsers must keep the use list of the /// potentially abstract type that they reference up-to-date. To do this in a /// nice, transparent way, the PATypeHandle class is used to hold "Potentially /// Abstract Types", and keep the use list of the abstract types up-to-date. /// @brief LLVM Abstract Type User Representation class AbstractTypeUser { protected: virtual ~AbstractTypeUser(); // Derive from me public: /// refineAbstractType - The callback method invoked when an abstract type is /// resolved to another type. An object must override this method to update /// its internal state to reference NewType instead of OldType. /// virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) = 0; /// The other case which AbstractTypeUsers must be aware of is when a type /// makes the transition from being abstract (where it has clients on it's /// AbstractTypeUsers list) to concrete (where it does not). This method /// notifies ATU's when this occurs for a type. /// virtual void typeBecameConcrete(const DerivedType *AbsTy) = 0; // for debugging... virtual void dump() const = 0; }; /// PATypeHandle - Handle to a Type subclass. This class is used to keep the /// use list of abstract types up-to-date. /// class PATypeHandle { const Type *Ty; AbstractTypeUser * const User; // These functions are defined at the bottom of Type.h. See the comment there // for justification. void addUser(); void removeUser(); public: // ctor - Add use to type if abstract. Note that Ty must not be null inline PATypeHandle(const Type *ty, AbstractTypeUser *user) : Ty(ty), User(user) { addUser(); } // ctor - Add use to type if abstract. inline PATypeHandle(const PATypeHandle &T) : Ty(T.Ty), User(T.User) { addUser(); } // dtor - Remove reference to type... inline ~PATypeHandle() { removeUser(); } // Automatic casting operator so that the handle may be used naturally inline operator Type *() const { return const_cast(Ty); } inline Type *get() const { return const_cast(Ty); } // operator= - Allow assignment to handle inline Type *operator=(const Type *ty) { if (Ty != ty) { // Ensure we don't accidentally drop last ref to Ty removeUser(); Ty = ty; addUser(); } return get(); } // operator= - Allow assignment to handle inline const Type *operator=(const PATypeHandle &T) { return operator=(T.Ty); } inline bool operator==(const Type *ty) { return Ty == ty; } // operator-> - Allow user to dereference handle naturally... inline const Type *operator->() const { return Ty; } }; /// PATypeHolder - Holder class for a potentially abstract type. This uses /// efficient union-find techniques to handle dynamic type resolution. Unless /// you need to do custom processing when types are resolved, you should always /// use PATypeHolders in preference to PATypeHandles. /// class PATypeHolder { mutable const Type *Ty; void destroy(); public: PATypeHolder(const Type *ty) : Ty(ty) { addRef(); } PATypeHolder(const PATypeHolder &T) : Ty(T.Ty) { addRef(); } ~PATypeHolder() { if (Ty) dropRef(); } operator Type *() const { return get(); } Type *get() const; // operator-> - Allow user to dereference handle naturally... Type *operator->() const { return get(); } // operator= - Allow assignment to handle Type *operator=(const Type *ty) { if (Ty != ty) { // Don't accidentally drop last ref to Ty. dropRef(); Ty = ty; addRef(); } return get(); } Type *operator=(const PATypeHolder &H) { return operator=(H.Ty); } /// getRawType - This should only be used to implement the vmcore library. /// const Type *getRawType() const { return Ty; } private: void addRef(); void dropRef(); friend class TypeMapBase; }; // simplify_type - Allow clients to treat uses just like values when using // casting operators. template<> struct simplify_type { typedef const Type* SimpleType; static SimpleType getSimplifiedValue(const PATypeHolder &Val) { return static_cast(Val.get()); } }; template<> struct simplify_type { typedef const Type* SimpleType; static SimpleType getSimplifiedValue(const PATypeHolder &Val) { return static_cast(Val.get()); } }; } // End llvm namespace #endif