//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// // // This file defines the generic AliasAnalysis interface, which is used as the // common interface used by all clients of alias analysis information, and // implemented by all alias analysis implementations. Mod/Ref information is // also captured by this interface. // // Implementations of this interface must implement the various virtual methods, // which automatically provides functionality for the entire suite of client // APIs. // // This API represents memory as a (Pointer, Size) pair. The Pointer component // specifies the base memory address of the region, the Size specifies how large // of an area is being queried. If Size is 0, two pointers only alias if they // are exactly equal. If size is greater than zero, but small, the two pointers // alias if the areas pointed to overlap. If the size is very large (ie, ~0U), // then the two pointers alias if they may be pointing to components of the same // memory object. Pointers that point to two completely different objects in // memory never alias, regardless of the value of the Size component. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H #include "llvm/Support/CallSite.h" class LoadInst; class StoreInst; class TargetData; class AnalysisUsage; class Pass; class AliasAnalysis { const TargetData *TD; protected: /// InitializeAliasAnalysis - Subclasses must call this method to initialize /// the AliasAnalysis interface before any other methods are called. This is /// typically called by the run* methods of these subclasses. This may be /// called multiple times. /// void InitializeAliasAnalysis(Pass *P); // getAnalysisUsage - All alias analysis implementations should invoke this // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that // TargetData is required by the pass. virtual void getAnalysisUsage(AnalysisUsage &AU) const; public: AliasAnalysis() : TD(0) {} virtual ~AliasAnalysis(); // We want to be subclassed /// getTargetData - Every alias analysis implementation depends on the size of /// data items in the current Target. This provides a uniform way to handle /// it. const TargetData &getTargetData() const { return *TD; } //===--------------------------------------------------------------------===// /// Alias Queries... /// /// Alias analysis result - Either we know for sure that it does not alias, we /// know for sure it must alias, or we don't know anything: The two pointers /// _might_ alias. This enum is designed so you can do things like: /// if (AA.alias(P1, P2)) { ... } /// to check to see if two pointers might alias. /// enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 }; /// alias - The main low level interface to the alias analysis implementation. /// Returns a Result indicating whether the two pointers are aliased to each /// other. This is the interface that must be implemented by specific alias /// analysis implementations. /// virtual AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { return MayAlias; } /// getMustAliases - If there are any pointers known that must alias this /// pointer, return them now. This allows alias-set based alias analyses to /// perform a form a value numbering (which is exposed by load-vn). If an /// alias analysis supports this, it should ADD any must aliased pointers to /// the specified vector. /// virtual void getMustAliases(Value *P, std::vector &RetVals) {} //===--------------------------------------------------------------------===// /// Simple mod/ref information... /// /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are /// bits which may be or'd together. /// enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 }; /// getModRefInfo - Return information about whether or not an instruction may /// read or write memory specified by the pointer operand. An instruction /// that doesn't read or write memory may be trivially LICM'd for example. /// getModRefInfo (for call sites) - Return whether information about whether /// a particular call site modifies or reads the memory specified by the /// pointer. /// virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { return ModRef; } /// getModRefInfo - Return information about whether two call sites may refer /// to the same set of memory locations. This function returns NoModRef if /// the two calls refer to disjoint memory locations, Ref if they both read /// some of the same memory, Mod if they both write to some of the same /// memory, and ModRef if they read and write to the same memory. /// virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { return ModRef; } /// Convenience functions... ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size); ModRefResult getModRefInfo(StoreInst*S, Value *P, unsigned Size); ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) { return getModRefInfo(CallSite(C), P, Size); } ModRefResult getModRefInfo(InvokeInst*I, Value *P, unsigned Size) { return getModRefInfo(CallSite(I), P, Size); } ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) { switch (I->getOpcode()) { case Instruction::Load: return getModRefInfo((LoadInst*)I, P, Size); case Instruction::Store: return getModRefInfo((StoreInst*)I, P, Size); case Instruction::Call: return getModRefInfo((CallInst*)I, P, Size); case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size); default: return NoModRef; } } /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the value pointed to by Ptr. /// bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size); /// canInstructionRangeModify - Return true if it is possible for the /// execution of the specified instructions to modify the value pointed to by /// Ptr. The instructions to consider are all of the instructions in the /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. /// bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, const Value *Ptr, unsigned Size); }; #endif