//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to represent and build scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPRESSIONS_H #include "llvm/Analysis/ScalarEvolution.h" namespace llvm { class ConstantInt; class ConstantRange; class APInt; enum SCEVTypes { // These should be ordered in terms of increasing complexity to make the // folders simpler. scConstant, scTruncate, scZeroExtend, scAddExpr, scMulExpr, scSDivExpr, scAddRecExpr, scUnknown, scCouldNotCompute }; //===--------------------------------------------------------------------===// /// SCEVConstant - This class represents a constant integer value. /// class SCEVConstant : public SCEV { ConstantInt *V; SCEVConstant(ConstantInt *v) : SCEV(scConstant), V(v) {} virtual ~SCEVConstant(); public: /// get method - This just gets and returns a new SCEVConstant object. /// static SCEVHandle get(ConstantInt *V); ConstantInt *getValue() const { return V; } /// getValueRange - Return the tightest constant bounds that this value is /// known to have. This method is only valid on integer SCEV objects. virtual ConstantRange getValueRange() const; virtual bool isLoopInvariant(const Loop *L) const { return true; } virtual bool hasComputableLoopEvolution(const Loop *L) const { return false; // Not loop variant } virtual const Type *getType() const; SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const { return this; } virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVConstant *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } }; //===--------------------------------------------------------------------===// /// SCEVTruncateExpr - This class represents a truncation of an integer value /// to a smaller integer value. /// class SCEVTruncateExpr : public SCEV { SCEVHandle Op; const Type *Ty; SCEVTruncateExpr(const SCEVHandle &op, const Type *ty); virtual ~SCEVTruncateExpr(); public: /// get method - This just gets and returns a new SCEVTruncate object /// static SCEVHandle get(const SCEVHandle &Op, const Type *Ty); const SCEVHandle &getOperand() const { return Op; } virtual const Type *getType() const { return Ty; } virtual bool isLoopInvariant(const Loop *L) const { return Op->isLoopInvariant(L); } virtual bool hasComputableLoopEvolution(const Loop *L) const { return Op->hasComputableLoopEvolution(L); } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const { SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc); if (H == Op) return this; return get(H, Ty); } /// getValueRange - Return the tightest constant bounds that this value is /// known to have. This method is only valid on integer SCEV objects. virtual ConstantRange getValueRange() const; virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVTruncateExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } }; //===--------------------------------------------------------------------===// /// SCEVZeroExtendExpr - This class represents a zero extension of a small /// integer value to a larger integer value. /// class SCEVZeroExtendExpr : public SCEV { SCEVHandle Op; const Type *Ty; SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty); virtual ~SCEVZeroExtendExpr(); public: /// get method - This just gets and returns a new SCEVZeroExtend object /// static SCEVHandle get(const SCEVHandle &Op, const Type *Ty); const SCEVHandle &getOperand() const { return Op; } virtual const Type *getType() const { return Ty; } virtual bool isLoopInvariant(const Loop *L) const { return Op->isLoopInvariant(L); } virtual bool hasComputableLoopEvolution(const Loop *L) const { return Op->hasComputableLoopEvolution(L); } /// getValueRange - Return the tightest constant bounds that this value is /// known to have. This method is only valid on integer SCEV objects. virtual ConstantRange getValueRange() const; SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const { SCEVHandle H = Op->replaceSymbolicValuesWithConcrete(Sym, Conc); if (H == Op) return this; return get(H, Ty); } virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVZeroExtendExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scZeroExtend; } }; //===--------------------------------------------------------------------===// /// SCEVCommutativeExpr - This node is the base class for n'ary commutative /// operators. /// class SCEVCommutativeExpr : public SCEV { std::vector Operands; protected: SCEVCommutativeExpr(enum SCEVTypes T, const std::vector &ops) : SCEV(T) { Operands.reserve(ops.size()); Operands.insert(Operands.end(), ops.begin(), ops.end()); } ~SCEVCommutativeExpr(); public: unsigned getNumOperands() const { return Operands.size(); } const SCEVHandle &getOperand(unsigned i) const { assert(i < Operands.size() && "Operand index out of range!"); return Operands[i]; } const std::vector &getOperands() const { return Operands; } typedef std::vector::const_iterator op_iterator; op_iterator op_begin() const { return Operands.begin(); } op_iterator op_end() const { return Operands.end(); } virtual bool isLoopInvariant(const Loop *L) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!getOperand(i)->isLoopInvariant(L)) return false; return true; } // hasComputableLoopEvolution - Commutative expressions have computable loop // evolutions iff they have at least one operand that varies with the loop, // but that all varying operands are computable. virtual bool hasComputableLoopEvolution(const Loop *L) const { bool HasVarying = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!getOperand(i)->isLoopInvariant(L)) if (getOperand(i)->hasComputableLoopEvolution(L)) HasVarying = true; else return false; return HasVarying; } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const; virtual const char *getOperationStr() const = 0; virtual const Type *getType() const { return getOperand(0)->getType(); } virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCommutativeExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr; } }; //===--------------------------------------------------------------------===// /// SCEVAddExpr - This node represents an addition of some number of SCEVs. /// class SCEVAddExpr : public SCEVCommutativeExpr { SCEVAddExpr(const std::vector &ops) : SCEVCommutativeExpr(scAddExpr, ops) { } public: static SCEVHandle get(std::vector &Ops); static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) { std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return get(Ops); } static SCEVHandle get(const SCEVHandle &Op0, const SCEVHandle &Op1, const SCEVHandle &Op2) { std::vector Ops; Ops.push_back(Op0); Ops.push_back(Op1); Ops.push_back(Op2); return get(Ops); } virtual const char *getOperationStr() const { return " + "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVAddExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } }; //===--------------------------------------------------------------------===// /// SCEVMulExpr - This node represents multiplication of some number of SCEVs. /// class SCEVMulExpr : public SCEVCommutativeExpr { SCEVMulExpr(const std::vector &ops) : SCEVCommutativeExpr(scMulExpr, ops) { } public: static SCEVHandle get(std::vector &Ops); static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS) { std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return get(Ops); } virtual const char *getOperationStr() const { return " * "; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVMulExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } }; //===--------------------------------------------------------------------===// /// SCEVSDivExpr - This class represents a binary signed division operation. /// class SCEVSDivExpr : public SCEV { SCEVHandle LHS, RHS; SCEVSDivExpr(const SCEVHandle &lhs, const SCEVHandle &rhs) : SCEV(scSDivExpr), LHS(lhs), RHS(rhs) {} virtual ~SCEVSDivExpr(); public: /// get method - This just gets and returns a new SCEVSDiv object. /// static SCEVHandle get(const SCEVHandle &LHS, const SCEVHandle &RHS); const SCEVHandle &getLHS() const { return LHS; } const SCEVHandle &getRHS() const { return RHS; } virtual bool isLoopInvariant(const Loop *L) const { return LHS->isLoopInvariant(L) && RHS->isLoopInvariant(L); } virtual bool hasComputableLoopEvolution(const Loop *L) const { return LHS->hasComputableLoopEvolution(L) && RHS->hasComputableLoopEvolution(L); } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const { SCEVHandle L = LHS->replaceSymbolicValuesWithConcrete(Sym, Conc); SCEVHandle R = RHS->replaceSymbolicValuesWithConcrete(Sym, Conc); if (L == LHS && R == RHS) return this; else return get(L, R); } virtual const Type *getType() const; void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVSDivExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSDivExpr; } }; //===--------------------------------------------------------------------===// /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip /// count of the specified loop. /// /// All operands of an AddRec are required to be loop invariant. /// class SCEVAddRecExpr : public SCEV { std::vector Operands; const Loop *L; SCEVAddRecExpr(const std::vector &ops, const Loop *l) : SCEV(scAddRecExpr), Operands(ops), L(l) { for (unsigned i = 0, e = Operands.size(); i != e; ++i) assert(Operands[i]->isLoopInvariant(l) && "Operands of AddRec must be loop-invariant!"); } ~SCEVAddRecExpr(); public: static SCEVHandle get(const SCEVHandle &Start, const SCEVHandle &Step, const Loop *); static SCEVHandle get(std::vector &Operands, const Loop *); static SCEVHandle get(const std::vector &Operands, const Loop *L) { std::vector NewOp(Operands); return get(NewOp, L); } typedef std::vector::const_iterator op_iterator; op_iterator op_begin() const { return Operands.begin(); } op_iterator op_end() const { return Operands.end(); } unsigned getNumOperands() const { return Operands.size(); } const SCEVHandle &getOperand(unsigned i) const { return Operands[i]; } const SCEVHandle &getStart() const { return Operands[0]; } const Loop *getLoop() const { return L; } /// getStepRecurrence - This method constructs and returns the recurrence /// indicating how much this expression steps by. If this is a polynomial /// of degree N, it returns a chrec of degree N-1. SCEVHandle getStepRecurrence() const { if (getNumOperands() == 2) return getOperand(1); return SCEVAddRecExpr::get(std::vector(op_begin()+1,op_end()), getLoop()); } virtual bool hasComputableLoopEvolution(const Loop *QL) const { if (L == QL) return true; return false; } virtual bool isLoopInvariant(const Loop *QueryLoop) const; virtual const Type *getType() const { return Operands[0]->getType(); } /// isAffine - Return true if this is an affine AddRec (i.e., it represents /// an expressions A+B*x where A and B are loop invariant values. bool isAffine() const { // We know that the start value is invariant. This expression is thus // affine iff the step is also invariant. return getNumOperands() == 2; } /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it /// represents an expressions A+B*x+C*x^2 where A, B and C are loop /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} bool isQuadratic() const { return getNumOperands() == 3; } /// evaluateAtIteration - Return the value of this chain of recurrences at /// the specified iteration number. SCEVHandle evaluateAtIteration(SCEVHandle It) const; /// getNumIterationsInRange - Return the number of iterations of this loop /// that produce values in the specified constant range. Another way of /// looking at this is that it returns the first iteration number where the /// value is not in the condition, thus computing the exit count. If the /// iteration count can't be computed, an instance of SCEVCouldNotCompute is /// returned. The isSigned parameter indicates whether the ConstantRange /// should be treated as signed or unsigned. SCEVHandle getNumIterationsInRange(ConstantRange Range, bool isSigned) const; SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const; virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVAddRecExpr *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddRecExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV /// value, and only represent it as it's LLVM Value. This is the "bottom" /// value for the analysis. /// class SCEVUnknown : public SCEV { Value *V; SCEVUnknown(Value *v) : SCEV(scUnknown), V(v) {} protected: ~SCEVUnknown(); public: /// get method - For SCEVUnknown, this just gets and returns a new /// SCEVUnknown. static SCEVHandle get(Value *V); /// getIntegerSCEV - Given an integer or FP type, create a constant for the /// specified signed integer value and return a SCEV for the constant. static SCEVHandle getIntegerSCEV(int Val, const Type *Ty); static SCEVHandle getIntegerSCEV(const APInt& Val); Value *getValue() const { return V; } virtual bool isLoopInvariant(const Loop *L) const; virtual bool hasComputableLoopEvolution(const Loop *QL) const { return false; // not computable } SCEVHandle replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, const SCEVHandle &Conc) const { if (&*Sym == this) return Conc; return this; } virtual const Type *getType() const; virtual void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVUnknown *S) { return true; } static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } }; /// SCEVVisitor - This class defines a simple visitor class that may be used /// for various SCEV analysis purposes. template struct SCEVVisitor { RetVal visit(SCEV *S) { switch (S->getSCEVType()) { case scConstant: return ((SC*)this)->visitConstant((SCEVConstant*)S); case scTruncate: return ((SC*)this)->visitTruncateExpr((SCEVTruncateExpr*)S); case scZeroExtend: return ((SC*)this)->visitZeroExtendExpr((SCEVZeroExtendExpr*)S); case scAddExpr: return ((SC*)this)->visitAddExpr((SCEVAddExpr*)S); case scMulExpr: return ((SC*)this)->visitMulExpr((SCEVMulExpr*)S); case scSDivExpr: return ((SC*)this)->visitSDivExpr((SCEVSDivExpr*)S); case scAddRecExpr: return ((SC*)this)->visitAddRecExpr((SCEVAddRecExpr*)S); case scUnknown: return ((SC*)this)->visitUnknown((SCEVUnknown*)S); case scCouldNotCompute: return ((SC*)this)->visitCouldNotCompute((SCEVCouldNotCompute*)S); default: assert(0 && "Unknown SCEV type!"); abort(); } } RetVal visitCouldNotCompute(SCEVCouldNotCompute *S) { assert(0 && "Invalid use of SCEVCouldNotCompute!"); abort(); return RetVal(); } }; } #endif