//===-- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*--=// // // This file contains the declaration of the BasicBlock class, which represents // a single basic block in the VM. // // Note that basic blocks themselves are Def's, because they are referenced // by instructions like branches and can go in switch tables and stuff... // // This may see wierd at first, but it's really pretty cool. :) // //===----------------------------------------------------------------------===// // // Note that well formed basic blocks are formed of a list of instructions // followed by a single TerminatorInst instruction. TerminatorInst's may not // occur in the middle of basic blocks, and must terminate the blocks. // // This code allows malformed basic blocks to occur, because it may be useful // in the intermediate stage of analysis or modification of a program. // //===----------------------------------------------------------------------===// #ifndef LLVM_BASICBLOCK_H #define LLVM_BASICBLOCK_H #include "llvm/Value.h" // Get the definition of Value #include "llvm/ValueHolder.h" #include "llvm/InstrTypes.h" #include class Instruction; class Method; class BasicBlock; class TerminatorInst; typedef UseTy BasicBlockUse; class BasicBlock : public Value { // Basic blocks are data objects also public: typedef ValueHolder InstListType; private : InstListType InstList; friend class ValueHolder; void setParent(Method *parent); public: BasicBlock(const string &Name = "", Method *Parent = 0); ~BasicBlock(); // Specialize setName to take care of symbol table majik virtual void setName(const string &name); const Method *getParent() const { return (const Method*)InstList.getParent();} Method *getParent() { return (Method*)InstList.getParent(); } const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } // getTerminator() - If this is a well formed basic block, then this returns // a pointer to the terminator instruction. If it is not, then you get a null // pointer back. // TerminatorInst *getTerminator(); const TerminatorInst *const getTerminator() const; // hasConstantPoolReferences() - This predicate is true if there is a // reference to this basic block in the constant pool for this method. For // example, if a block is reached through a switch table, that table resides // in the constant pool, and the basic block is reference from it. // bool hasConstantPoolReferences() const; // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is delete'd for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void dropAllReferences(); // splitBasicBlock - This splits a basic block into two at the specified // instruction. Note that all instructions BEFORE the specified iterator stay // as part of the original basic block, an unconditional branch is added to // the new BB, and the rest of the instructions in the BB are moved to the new // BB, including the old terminator. The newly formed BasicBlock is returned. // This function invalidates the specified iterator. // // Note that this only works on well formed basic blocks (must have a // terminator), and 'I' must not be the end of instruction list (which would // cause a degenerate basic block to be formed, having a terminator inside of // the basic block). // BasicBlock *splitBasicBlock(InstListType::iterator I); //===--------------------------------------------------------------------===// // Predecessor iterator code //===--------------------------------------------------------------------===// // // This is used to figure out what basic blocks we could be coming from. // // Forward declare iterator class template... template class PredIterator; typedef PredIterator pred_iterator; typedef PredIterator pred_const_iterator; inline pred_iterator pred_begin() ; inline pred_const_iterator pred_begin() const; inline pred_iterator pred_end() ; inline pred_const_iterator pred_end() const; //===--------------------------------------------------------------------===// // Successor iterator code //===--------------------------------------------------------------------===// // // This is used to figure out what basic blocks we could be going to... // // Forward declare iterator class template... template class SuccIterator; typedef SuccIterator succ_iterator; typedef SuccIterator succ_const_iterator; inline succ_iterator succ_begin() ; inline succ_const_iterator succ_begin() const; inline succ_iterator succ_end() ; inline succ_const_iterator succ_end() const; //===--------------------------------------------------------------------===// // END of interesting code... //===--------------------------------------------------------------------===// // // Thank god C++ compilers are good at stomping out tons of templated code... // template // Predecessor Iterator class PredIterator { const _Ptr ThisBB; _USE_iterator It; public: typedef PredIterator<_Ptr,_USE_iterator> _Self; typedef bidirectional_iterator_tag iterator_category; typedef _Ptr pointer; inline PredIterator(_Ptr BB) : ThisBB(BB), It(BB->use_begin()) {} inline PredIterator(_Ptr BB, bool) : ThisBB(BB), It(BB->use_end()) {} inline bool operator==(const _Self& x) const { return It == x.It; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { assert ((*It)->getValueType() == Value::InstructionVal); return ((Instruction *)(*It))->getParent(); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { // Preincrement do { // Loop to ignore constant pool references ++It; } while (It != ThisBB->use_end() && ((*It)->getValueType() != Value::ConstantVal)); // DOES THIS WORK??? //((*It)->getValueType() != Value::BasicBlockVal)); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --It; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; template // Successor Iterator class SuccIterator { const _Term Term; unsigned idx; public: typedef SuccIterator<_Term, _BB> _Self; typedef forward_iterator_tag iterator_category; typedef _BB pointer; inline SuccIterator(_Term T) : Term(T), idx(0) {} // begin iterator inline SuccIterator(_Term T, bool) : Term(T), idx(Term->getNumSuccessors()) {} // end iterator inline bool operator==(const _Self& x) const { return idx == x.idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Term->getSuccessor(idx); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { ++idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; }; //===--------------------------------------------------------------------===// // Implement some stuff prototyped above... //===--------------------------------------------------------------------===// inline BasicBlock::pred_iterator BasicBlock::pred_begin() { return pred_iterator(this); } inline BasicBlock::pred_const_iterator BasicBlock::pred_begin() const { return pred_const_iterator(this); } inline BasicBlock::pred_iterator BasicBlock::pred_end() { return pred_iterator(this,true); } inline BasicBlock::pred_const_iterator BasicBlock::pred_end() const { return pred_const_iterator(this,true); } inline BasicBlock::succ_iterator BasicBlock::succ_begin() { return succ_iterator(getTerminator()); } inline BasicBlock::succ_const_iterator BasicBlock::succ_begin() const { return succ_const_iterator(getTerminator()); } inline BasicBlock::succ_iterator BasicBlock::succ_end() { return succ_iterator(getTerminator(),true); } inline BasicBlock::succ_const_iterator BasicBlock::succ_end() const { return succ_const_iterator(getTerminator(),true); } #endif