//===- BitstreamWriter.h - Low-level bitstream writer interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitstreamWriter class. This class can be used to // write an arbitrary bitstream, regardless of its contents. // //===----------------------------------------------------------------------===// #ifndef BITSTREAM_WRITER_H #define BITSTREAM_WRITER_H #include "llvm/Bitcode/BitCodes.h" #include namespace llvm { class BitstreamWriter { std::vector &Out; /// CurBit - Always between 0 and 31 inclusive, specifies the next bit to use. unsigned CurBit; /// CurValue - The current value. Only bits < CurBit are valid. uint32_t CurValue; // CurCodeSize - This is the declared size of code values used for the current // block, in bits. unsigned CurCodeSize; /// CurAbbrevs - Abbrevs installed at in this block. std::vector CurAbbrevs; struct Block { unsigned PrevCodeSize; unsigned StartSizeWord; std::vector PrevAbbrevs; Block(unsigned PCS, unsigned SSW) : PrevCodeSize(PCS), StartSizeWord(SSW) {} }; /// BlockScope - This tracks the current blocks that we have entered. std::vector BlockScope; public: BitstreamWriter(std::vector &O) : Out(O), CurBit(0), CurValue(0), CurCodeSize(2) {} ~BitstreamWriter() { assert(CurBit == 0 && "Unflused data remaining"); assert(BlockScope.empty() && CurAbbrevs.empty() && "Block imbalance"); } //===--------------------------------------------------------------------===// // Basic Primitives for emitting bits to the stream. //===--------------------------------------------------------------------===// void Emit(uint32_t Val, unsigned NumBits) { assert(NumBits <= 32 && "Invalid value size!"); assert((Val & ~(~0U >> (32-NumBits))) == 0 && "High bits set!"); CurValue |= Val << CurBit; if (CurBit + NumBits < 32) { CurBit += NumBits; return; } // Add the current word. unsigned V = CurValue; Out.push_back((unsigned char)(V >> 0)); Out.push_back((unsigned char)(V >> 8)); Out.push_back((unsigned char)(V >> 16)); Out.push_back((unsigned char)(V >> 24)); if (CurBit) CurValue = Val >> (32-CurBit); else CurValue = 0; CurBit = (CurBit+NumBits) & 31; } void Emit64(uint64_t Val, unsigned NumBits) { if (NumBits <= 32) Emit((uint32_t)Val, NumBits); else { Emit((uint32_t)Val, 32); Emit((uint32_t)(Val >> 32), NumBits-32); } } void FlushToWord() { if (CurBit) { unsigned V = CurValue; Out.push_back((unsigned char)(V >> 0)); Out.push_back((unsigned char)(V >> 8)); Out.push_back((unsigned char)(V >> 16)); Out.push_back((unsigned char)(V >> 24)); CurBit = 0; CurValue = 0; } } void EmitVBR(uint32_t Val, unsigned NumBits) { uint32_t Threshold = 1U << (NumBits-1); // Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit((Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits); Val >>= NumBits-1; } Emit(Val, NumBits); } void EmitVBR64(uint64_t Val, unsigned NumBits) { if ((uint32_t)Val == Val) return EmitVBR((uint32_t)Val, NumBits); uint64_t Threshold = 1U << (NumBits-1); // Emit the bits with VBR encoding, NumBits-1 bits at a time. while (Val >= Threshold) { Emit(((uint32_t)Val & ((1 << (NumBits-1))-1)) | (1 << (NumBits-1)), NumBits); Val >>= NumBits-1; } Emit((uint32_t)Val, NumBits); } /// EmitCode - Emit the specified code. void EmitCode(unsigned Val) { Emit(Val, CurCodeSize); } //===--------------------------------------------------------------------===// // Block Manipulation //===--------------------------------------------------------------------===// void EnterSubblock(unsigned BlockID, unsigned CodeLen) { // Block header: // [ENTER_SUBBLOCK, blockid, newcodelen, , blocklen] EmitCode(bitc::ENTER_SUBBLOCK); EmitVBR(BlockID, bitc::BlockIDWidth); EmitVBR(CodeLen, bitc::CodeLenWidth); FlushToWord(); BlockScope.push_back(Block(CurCodeSize, Out.size()/4)); BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); // Emit a placeholder, which will be replaced when the block is popped. Emit(0, bitc::BlockSizeWidth); CurCodeSize = CodeLen; } void ExitBlock() { assert(!BlockScope.empty() && "Block scope imbalance!"); // Delete all abbrevs. for (unsigned i = 0, e = CurAbbrevs.size(); i != e; ++i) delete CurAbbrevs[i]; const Block &B = BlockScope.back(); // Block tail: // [END_BLOCK, ] EmitCode(bitc::END_BLOCK); FlushToWord(); // Compute the size of the block, in words, not counting the size field. unsigned SizeInWords = Out.size()/4-B.StartSizeWord - 1; unsigned ByteNo = B.StartSizeWord*4; // Update the block size field in the header of this sub-block. Out[ByteNo++] = (unsigned char)(SizeInWords >> 0); Out[ByteNo++] = (unsigned char)(SizeInWords >> 8); Out[ByteNo++] = (unsigned char)(SizeInWords >> 16); Out[ByteNo++] = (unsigned char)(SizeInWords >> 24); // Restore the inner block's code size and abbrev table. CurCodeSize = B.PrevCodeSize; BlockScope.back().PrevAbbrevs.swap(CurAbbrevs); BlockScope.pop_back(); } //===--------------------------------------------------------------------===// // Record Emission //===--------------------------------------------------------------------===// /// EmitRecord - Emit the specified record to the stream, using an abbrev if /// we have one to compress the output. void EmitRecord(unsigned Code, SmallVectorImpl &Vals, unsigned Abbrev = 0) { if (Abbrev) { unsigned AbbrevNo = Abbrev-bitc::FIRST_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo]; EmitCode(Abbrev); // Insert the code into Vals to treat it uniformly. Vals.insert(Vals.begin(), Code); unsigned RecordIdx = 0; for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) { assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); uint64_t RecordVal = Vals[RecordIdx]; if (Op.isLiteral()) { // If the abbrev specifies the literal value to use, don't emit // anything. assert(RecordVal == Op.getLiteralValue() && "Invalid abbrev for record!"); ++RecordIdx; } else { // Encode the value as we are commanded. switch (Op.getEncoding()) { default: assert(0 && "Unknown encoding!"); case BitCodeAbbrevOp::FixedWidth: Emit64(RecordVal, Op.getEncodingData()); ++RecordIdx; break; case BitCodeAbbrevOp::VBR: EmitVBR64(RecordVal, Op.getEncodingData()); ++RecordIdx; break; } } } assert(RecordIdx == Vals.size() && "Not all record operands emitted!"); } else { // If we don't have an abbrev to use, emit this in its fully unabbreviated // form. EmitCode(bitc::UNABBREV_RECORD); EmitVBR(Code, 6); EmitVBR(Vals.size(), 6); for (unsigned i = 0, e = Vals.size(); i != e; ++i) EmitVBR64(Vals[i], 6); } } /// EmitRecord - Emit the specified record to the stream, using an abbrev if /// we have one to compress the output. void EmitRecord(unsigned Code, SmallVectorImpl &Vals, unsigned Abbrev = 0) { if (Abbrev) { unsigned AbbrevNo = Abbrev-bitc::FIRST_ABBREV; assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); BitCodeAbbrev *Abbv = CurAbbrevs[AbbrevNo]; EmitCode(Abbrev); // Insert the code into Vals to treat it uniformly. Vals.insert(Vals.begin(), Code); unsigned RecordIdx = 0; for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) { assert(RecordIdx < Vals.size() && "Invalid abbrev/record"); const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); unsigned RecordVal = Vals[RecordIdx]; if (Op.isLiteral()) { // If the abbrev specifies the literal value to use, don't emit // anything. assert(RecordVal == Op.getLiteralValue() && "Invalid abbrev for record!"); ++RecordIdx; } else { // Encode the value as we are commanded. switch (Op.getEncoding()) { default: assert(0 && "Unknown encoding!"); case BitCodeAbbrevOp::FixedWidth: Emit(RecordVal, Op.getEncodingData()); ++RecordIdx; break; case BitCodeAbbrevOp::VBR: EmitVBR(RecordVal, Op.getEncodingData()); ++RecordIdx; break; } } } assert(RecordIdx == Vals.size() && "Not all record operands emitted!"); } else { // If we don't have an abbrev to use, emit this in its fully unabbreviated // form. EmitCode(bitc::UNABBREV_RECORD); EmitVBR(Code, 6); EmitVBR(Vals.size(), 6); for (unsigned i = 0, e = Vals.size(); i != e; ++i) EmitVBR(Vals[i], 6); } } //===--------------------------------------------------------------------===// // Abbrev Emission //===--------------------------------------------------------------------===// /// EmitAbbrev - This emits an abbreviation to the stream. Note that this /// method takes ownership of the specified abbrev. unsigned EmitAbbrev(BitCodeAbbrev *Abbv) { // Emit the abbreviation as a record. EmitCode(bitc::DEFINE_ABBREV); EmitVBR(Abbv->getNumOperandInfos(), 5); for (unsigned i = 0, e = Abbv->getNumOperandInfos(); i != e; ++i) { const BitCodeAbbrevOp &Op = Abbv->getOperandInfo(i); Emit(Op.isLiteral(), 1); if (Op.isLiteral()) { EmitVBR64(Op.getLiteralValue(), 8); } else { Emit(Op.getEncoding(), 3); if (Op.hasEncodingData()) EmitVBR64(Op.getEncodingData(), 5); } } CurAbbrevs.push_back(Abbv); return CurAbbrevs.size()-1+bitc::FIRST_ABBREV; } }; } // End llvm namespace #endif