//=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines classes mirroring those in llvm/Analysis/Dominators.h, // but for target-specific code rather than target-independent IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H #define LLVM_CODEGEN_MACHINEDOMINATORS_H #include "llvm/Analysis/DominatorInternals.h" #include "llvm/Analysis/Dominators.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" namespace llvm { template<> inline void DominatorTreeBase::addRoot(MachineBasicBlock* MBB) { this->Roots.push_back(MBB); } EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase); EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase); typedef DomTreeNodeBase MachineDomTreeNode; //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class MachineDominatorTree : public MachineFunctionPass { public: static char ID; // Pass ID, replacement for typeid DominatorTreeBase* DT; MachineDominatorTree(); ~MachineDominatorTree(); DominatorTreeBase& getBase() { return *DT; } virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector &getRoots() const { return DT->getRoots(); } inline MachineBasicBlock *getRoot() const { return DT->getRoot(); } inline MachineDomTreeNode *getRootNode() const { return DT->getRootNode(); } virtual bool runOnMachineFunction(MachineFunction &F); inline bool dominates(MachineDomTreeNode* A, MachineDomTreeNode* B) const { return DT->dominates(A, B); } inline bool dominates(MachineBasicBlock* A, MachineBasicBlock* B) const { return DT->dominates(A, B); } // dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(MachineInstr *A, MachineInstr *B) const { MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return DT->dominates(BBA, BBB); // Loop through the basic block until we find A or B. MachineBasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/ ; //if(!DT.IsPostDominators) { // A dominates B if it is found first in the basic block. return &*I == A; //} else { // // A post-dominates B if B is found first in the basic block. // return &*I == B; //} } inline bool properlyDominates(const MachineDomTreeNode* A, MachineDomTreeNode* B) const { return DT->properlyDominates(A, B); } inline bool properlyDominates(MachineBasicBlock* A, MachineBasicBlock* B) const { return DT->properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B) { return DT->findNearestCommonDominator(A, B); } inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { return DT->getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { return DT->getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB) { return DT->addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// inline void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } inline void changeImmediateDominator(MachineDomTreeNode *N, MachineDomTreeNode* NewIDom) { DT->changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. inline void eraseNode(MachineBasicBlock *BB) { DT->eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. inline void splitBlock(MachineBasicBlock* NewBB) { DT->splitBlock(NewBB); } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(MachineBasicBlock *A) { return DT->isReachableFromEntry(A); } virtual void releaseMemory(); virtual void print(raw_ostream &OS, const Module*) const; }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template struct GraphTraits; template <> struct GraphTraits { typedef MachineDomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType* N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->end(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(MachineDominatorTree *DT) { return DT->getRootNode(); } }; } #endif