//===-- llvm/CodeGen/MachineFunction.h --------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code for a function. This class contains a list of // MachineBasicBlock instances that make up the current compiled function. // // This class also contains pointers to various classes which hold // target-specific information about the generated code. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H #define LLVM_CODEGEN_MACHINEFUNCTION_H #include "llvm/ADT/ilist.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/DebugLoc.h" #include "llvm/Support/Recycler.h" namespace llvm { class Value; class Function; class GCModuleInfo; class MachineRegisterInfo; class MachineFrameInfo; class MachineConstantPool; class MachineJumpTableInfo; class MachineModuleInfo; class MCContext; class Pass; class TargetMachine; class TargetRegisterClass; struct MachinePointerInfo; template <> struct ilist_traits : public ilist_default_traits { mutable ilist_half_node Sentinel; public: MachineBasicBlock *createSentinel() const { return static_cast(&Sentinel); } void destroySentinel(MachineBasicBlock *) const {} MachineBasicBlock *provideInitialHead() const { return createSentinel(); } MachineBasicBlock *ensureHead(MachineBasicBlock*) const { return createSentinel(); } static void noteHead(MachineBasicBlock*, MachineBasicBlock*) {} void addNodeToList(MachineBasicBlock* MBB); void removeNodeFromList(MachineBasicBlock* MBB); void deleteNode(MachineBasicBlock *MBB); private: void createNode(const MachineBasicBlock &); }; /// MachineFunctionInfo - This class can be derived from and used by targets to /// hold private target-specific information for each MachineFunction. Objects /// of type are accessed/created with MF::getInfo and destroyed when the /// MachineFunction is destroyed. struct MachineFunctionInfo { virtual ~MachineFunctionInfo(); }; class MachineFunction { const Function *Fn; const TargetMachine &Target; MCContext &Ctx; MachineModuleInfo &MMI; GCModuleInfo *GMI; // RegInfo - Information about each register in use in the function. MachineRegisterInfo *RegInfo; // Used to keep track of target-specific per-machine function information for // the target implementation. MachineFunctionInfo *MFInfo; // Keep track of objects allocated on the stack. MachineFrameInfo *FrameInfo; // Keep track of constants which are spilled to memory MachineConstantPool *ConstantPool; // Keep track of jump tables for switch instructions MachineJumpTableInfo *JumpTableInfo; // Function-level unique numbering for MachineBasicBlocks. When a // MachineBasicBlock is inserted into a MachineFunction is it automatically // numbered and this vector keeps track of the mapping from ID's to MBB's. std::vector MBBNumbering; // Pool-allocate MachineFunction-lifetime and IR objects. BumpPtrAllocator Allocator; // Allocation management for instructions in function. Recycler InstructionRecycler; // Allocation management for operand arrays on instructions. ArrayRecycler OperandRecycler; // Allocation management for basic blocks in function. Recycler BasicBlockRecycler; // List of machine basic blocks in function typedef ilist BasicBlockListType; BasicBlockListType BasicBlocks; /// FunctionNumber - This provides a unique ID for each function emitted in /// this translation unit. /// unsigned FunctionNumber; /// Alignment - The alignment of the function. unsigned Alignment; /// ExposesReturnsTwice - True if the function calls setjmp or related /// functions with attribute "returns twice", but doesn't have /// the attribute itself. /// This is used to limit optimizations which cannot reason /// about the control flow of such functions. bool ExposesReturnsTwice; /// True if the function includes MS-style inline assembly. bool HasMSInlineAsm; MachineFunction(const MachineFunction &) LLVM_DELETED_FUNCTION; void operator=(const MachineFunction&) LLVM_DELETED_FUNCTION; public: MachineFunction(const Function *Fn, const TargetMachine &TM, unsigned FunctionNum, MachineModuleInfo &MMI, GCModuleInfo* GMI); ~MachineFunction(); MachineModuleInfo &getMMI() const { return MMI; } GCModuleInfo *getGMI() const { return GMI; } MCContext &getContext() const { return Ctx; } /// getFunction - Return the LLVM function that this machine code represents /// const Function *getFunction() const { return Fn; } /// getName - Return the name of the corresponding LLVM function. /// StringRef getName() const; /// getFunctionNumber - Return a unique ID for the current function. /// unsigned getFunctionNumber() const { return FunctionNumber; } /// getTarget - Return the target machine this machine code is compiled with /// const TargetMachine &getTarget() const { return Target; } /// getRegInfo - Return information about the registers currently in use. /// MachineRegisterInfo &getRegInfo() { return *RegInfo; } const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } /// getFrameInfo - Return the frame info object for the current function. /// This object contains information about objects allocated on the stack /// frame of the current function in an abstract way. /// MachineFrameInfo *getFrameInfo() { return FrameInfo; } const MachineFrameInfo *getFrameInfo() const { return FrameInfo; } /// getJumpTableInfo - Return the jump table info object for the current /// function. This object contains information about jump tables in the /// current function. If the current function has no jump tables, this will /// return null. const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it /// does already exist, allocate one. MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); /// getConstantPool - Return the constant pool object for the current /// function. /// MachineConstantPool *getConstantPool() { return ConstantPool; } const MachineConstantPool *getConstantPool() const { return ConstantPool; } /// getAlignment - Return the alignment (log2, not bytes) of the function. /// unsigned getAlignment() const { return Alignment; } /// setAlignment - Set the alignment (log2, not bytes) of the function. /// void setAlignment(unsigned A) { Alignment = A; } /// ensureAlignment - Make sure the function is at least 1 << A bytes aligned. void ensureAlignment(unsigned A) { if (Alignment < A) Alignment = A; } /// exposesReturnsTwice - Returns true if the function calls setjmp or /// any other similar functions with attribute "returns twice" without /// having the attribute itself. bool exposesReturnsTwice() const { return ExposesReturnsTwice; } /// setCallsSetJmp - Set a flag that indicates if there's a call to /// a "returns twice" function. void setExposesReturnsTwice(bool B) { ExposesReturnsTwice = B; } /// Returns true if the function contains any MS-style inline assembly. bool hasMSInlineAsm() const { return HasMSInlineAsm; } /// Set a flag that indicates that the function contains MS-style inline /// assembly. void setHasMSInlineAsm(bool B) { HasMSInlineAsm = B; } /// getInfo - Keep track of various per-function pieces of information for /// backends that would like to do so. /// template Ty *getInfo() { if (!MFInfo) { // This should be just `new (Allocator.Allocate()) Ty(*this)', but // that apparently breaks GCC 3.3. Ty *Loc = static_cast(Allocator.Allocate(sizeof(Ty), AlignOf::Alignment)); MFInfo = new (Loc) Ty(*this); } return static_cast(MFInfo); } template const Ty *getInfo() const { return const_cast(this)->getInfo(); } /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they /// are inserted into the machine function. The block number for a machine /// basic block can be found by using the MBB::getBlockNumber method, this /// method provides the inverse mapping. /// MachineBasicBlock *getBlockNumbered(unsigned N) const { assert(N < MBBNumbering.size() && "Illegal block number"); assert(MBBNumbering[N] && "Block was removed from the machine function!"); return MBBNumbering[N]; } /// getNumBlockIDs - Return the number of MBB ID's allocated. /// unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and /// recomputes them. This guarantees that the MBB numbers are sequential, /// dense, and match the ordering of the blocks within the function. If a /// specific MachineBasicBlock is specified, only that block and those after /// it are renumbered. void RenumberBlocks(MachineBasicBlock *MBBFrom = 0); /// print - Print out the MachineFunction in a format suitable for debugging /// to the specified stream. /// void print(raw_ostream &OS, SlotIndexes* = 0) const; /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function with the code for each /// basic block inside. This depends on there being a 'dot' and 'gv' program /// in your path. /// void viewCFG() const; /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void viewCFGOnly() const; /// dump - Print the current MachineFunction to cerr, useful for debugger use. /// void dump() const; /// verify - Run the current MachineFunction through the machine code /// verifier, useful for debugger use. void verify(Pass *p = NULL, const char *Banner = NULL) const; // Provide accessors for the MachineBasicBlock list... typedef BasicBlockListType::iterator iterator; typedef BasicBlockListType::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; /// addLiveIn - Add the specified physical register as a live-in value and /// create a corresponding virtual register for it. unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC); //===--------------------------------------------------------------------===// // BasicBlock accessor functions. // iterator begin() { return BasicBlocks.begin(); } const_iterator begin() const { return BasicBlocks.begin(); } iterator end () { return BasicBlocks.end(); } const_iterator end () const { return BasicBlocks.end(); } reverse_iterator rbegin() { return BasicBlocks.rbegin(); } const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } reverse_iterator rend () { return BasicBlocks.rend(); } const_reverse_iterator rend () const { return BasicBlocks.rend(); } unsigned size() const { return (unsigned)BasicBlocks.size();} bool empty() const { return BasicBlocks.empty(); } const MachineBasicBlock &front() const { return BasicBlocks.front(); } MachineBasicBlock &front() { return BasicBlocks.front(); } const MachineBasicBlock & back() const { return BasicBlocks.back(); } MachineBasicBlock & back() { return BasicBlocks.back(); } void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } void insert(iterator MBBI, MachineBasicBlock *MBB) { BasicBlocks.insert(MBBI, MBB); } void splice(iterator InsertPt, iterator MBBI) { BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); } void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); } void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } //===--------------------------------------------------------------------===// // Internal functions used to automatically number MachineBasicBlocks // /// \brief Adds the MBB to the internal numbering. Returns the unique number /// assigned to the MBB. /// unsigned addToMBBNumbering(MachineBasicBlock *MBB) { MBBNumbering.push_back(MBB); return (unsigned)MBBNumbering.size()-1; } /// removeFromMBBNumbering - Remove the specific machine basic block from our /// tracker, this is only really to be used by the MachineBasicBlock /// implementation. void removeFromMBBNumbering(unsigned N) { assert(N < MBBNumbering.size() && "Illegal basic block #"); MBBNumbering[N] = 0; } /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead /// of `new MachineInstr'. /// MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImp = false); /// CloneMachineInstr - Create a new MachineInstr which is a copy of the /// 'Orig' instruction, identical in all ways except the instruction /// has no parent, prev, or next. /// /// See also TargetInstrInfo::duplicate() for target-specific fixes to cloned /// instructions. MachineInstr *CloneMachineInstr(const MachineInstr *Orig); /// DeleteMachineInstr - Delete the given MachineInstr. /// void DeleteMachineInstr(MachineInstr *MI); /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this /// instead of `new MachineBasicBlock'. /// MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = 0); /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. /// void DeleteMachineBasicBlock(MachineBasicBlock *MBB); /// getMachineMemOperand - Allocate a new MachineMemOperand. /// MachineMemOperands are owned by the MachineFunction and need not be /// explicitly deallocated. MachineMemOperand *getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, uint64_t s, unsigned base_alignment, const MDNode *TBAAInfo = 0, const MDNode *Ranges = 0); /// getMachineMemOperand - Allocate a new MachineMemOperand by copying /// an existing one, adjusting by an offset and using the given size. /// MachineMemOperands are owned by the MachineFunction and need not be /// explicitly deallocated. MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, int64_t Offset, uint64_t Size); typedef ArrayRecycler::Capacity OperandCapacity; /// Allocate an array of MachineOperands. This is only intended for use by /// internal MachineInstr functions. MachineOperand *allocateOperandArray(OperandCapacity Cap) { return OperandRecycler.allocate(Cap, Allocator); } /// Dellocate an array of MachineOperands and recycle the memory. This is /// only intended for use by internal MachineInstr functions. /// Cap must be the same capacity that was used to allocate the array. void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { OperandRecycler.deallocate(Cap, Array); } /// allocateMemRefsArray - Allocate an array to hold MachineMemOperand /// pointers. This array is owned by the MachineFunction. MachineInstr::mmo_iterator allocateMemRefsArray(unsigned long Num); /// extractLoadMemRefs - Allocate an array and populate it with just the /// load information from the given MachineMemOperand sequence. std::pair extractLoadMemRefs(MachineInstr::mmo_iterator Begin, MachineInstr::mmo_iterator End); /// extractStoreMemRefs - Allocate an array and populate it with just the /// store information from the given MachineMemOperand sequence. std::pair extractStoreMemRefs(MachineInstr::mmo_iterator Begin, MachineInstr::mmo_iterator End); //===--------------------------------------------------------------------===// // Label Manipulation. // /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a /// normal 'L' label is returned. MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate = false) const; /// getPICBaseSymbol - Return a function-local symbol to represent the PIC /// base. MCSymbol *getPICBaseSymbol() const; }; //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // machine function as a graph of machine basic blocks... these are // the same as the machine basic block iterators, except that the root // node is implicitly the first node of the function. // template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef MachineFunction::iterator nodes_iterator; static nodes_iterator nodes_begin(MachineFunction *F) { return F->begin(); } static nodes_iterator nodes_end (MachineFunction *F) { return F->end(); } static unsigned size (MachineFunction *F) { return F->size(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(const MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef MachineFunction::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const MachineFunction *F) { return F->begin(); } static nodes_iterator nodes_end (const MachineFunction *F) { return F->end(); } static unsigned size (const MachineFunction *F) { return F->size(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->front(); } }; template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->front(); } }; } // End llvm namespace #endif