//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the set of low-level target independent types which various // values in the code generator are. This allows the target specific behavior // of instructions to be described to target independent passes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_VALUETYPES_H #define LLVM_CODEGEN_VALUETYPES_H #include #include #include "llvm/Support/DataTypes.h" #include "llvm/Support/MathExtras.h" namespace llvm { class Type; class LLVMContext; struct EVT { // EVT = Machine Value Type public: enum SimpleValueType { // If you change this numbering, you must change the values in // ValueTypes.td as well! Other = 0, // This is a non-standard value i1 = 1, // This is a 1 bit integer value i8 = 2, // This is an 8 bit integer value i16 = 3, // This is a 16 bit integer value i32 = 4, // This is a 32 bit integer value i64 = 5, // This is a 64 bit integer value i128 = 6, // This is a 128 bit integer value FIRST_INTEGER_VALUETYPE = i1, LAST_INTEGER_VALUETYPE = i128, f32 = 7, // This is a 32 bit floating point value f64 = 8, // This is a 64 bit floating point value f80 = 9, // This is a 80 bit floating point value f128 = 10, // This is a 128 bit floating point value ppcf128 = 11, // This is a PPC 128-bit floating point value Flag = 12, // This is a condition code or machine flag. isVoid = 13, // This has no value v2i8 = 14, // 2 x i8 v4i8 = 15, // 4 x i8 v8i8 = 16, // 8 x i8 v16i8 = 17, // 16 x i8 v32i8 = 18, // 32 x i8 v2i16 = 19, // 2 x i16 v4i16 = 20, // 4 x i16 v8i16 = 21, // 8 x i16 v16i16 = 22, // 16 x i16 v2i32 = 23, // 2 x i32 v4i32 = 24, // 4 x i32 v8i32 = 25, // 8 x i32 v1i64 = 26, // 1 x i64 v2i64 = 27, // 2 x i64 v4i64 = 28, // 4 x i64 v2f32 = 29, // 2 x f32 v4f32 = 30, // 4 x f32 v8f32 = 31, // 8 x f32 v2f64 = 32, // 2 x f64 v4f64 = 33, // 4 x f64 FIRST_VECTOR_VALUETYPE = v2i8, LAST_VECTOR_VALUETYPE = v4f64, LAST_VALUETYPE = 34, // This always remains at the end of the list. // This is the current maximum for LAST_VALUETYPE. // EVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors // This value must be a multiple of 32. MAX_ALLOWED_VALUETYPE = 64, // Metadata - This is MDNode or MDString. Metadata = 250, // iPTRAny - An int value the size of the pointer of the current // target to any address space. This must only be used internal to // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR. iPTRAny = 251, // vAny - A vector with any length and element size. This is used // for intrinsics that have overloadings based on vector types. // This is only for tblgen's consumption! vAny = 252, // fAny - Any floating-point or vector floating-point value. This is used // for intrinsics that have overloadings based on floating-point types. // This is only for tblgen's consumption! fAny = 253, // iAny - An integer or vector integer value of any bit width. This is // used for intrinsics that have overloadings based on integer bit widths. // This is only for tblgen's consumption! iAny = 254, // iPTR - An int value the size of the pointer of the current // target. This should only be used internal to tblgen! iPTR = 255, // LastSimpleValueType - The greatest valid SimpleValueType value. LastSimpleValueType = 255 }; private: /// This union holds low-level value types. Valid values include any of /// the values in the SimpleValueType enum, or any value returned from one /// of the EVT methods. Any value type equal to one of the SimpleValueType /// enum values is a "simple" value type. All others are "extended". /// /// Note that simple doesn't necessary mean legal for the target machine. /// All legal value types must be simple, but often there are some simple /// value types that are not legal. /// union { uintptr_t V; const Type *LLVMTy; }; public: EVT() {} EVT(SimpleValueType S) : V(S) {} bool operator==(const EVT VT) const { return getRawBits() == VT.getRawBits(); } bool operator!=(const EVT VT) const { return getRawBits() != VT.getRawBits(); } /// getFloatingPointVT - Returns the EVT that represents a floating point /// type with the given number of bits. There are two floating point types /// with 128 bits - this returns f128 rather than ppcf128. static EVT getFloatingPointVT(unsigned BitWidth) { switch (BitWidth) { default: assert(false && "Bad bit width!"); case 32: return f32; case 64: return f64; case 80: return f80; case 128: return f128; } } /// getIntegerVT - Returns the EVT that represents an integer with the given /// number of bits. static EVT getIntegerVT(unsigned BitWidth) { switch (BitWidth) { default: break; case 1: return i1; case 8: return i8; case 16: return i16; case 32: return i32; case 64: return i64; case 128: return i128; } return getExtendedIntegerVT(BitWidth); } /// getVectorVT - Returns the EVT that represents a vector NumElements in /// length, where each element is of type VT. static EVT getVectorVT(EVT VT, unsigned NumElements) { switch (VT.V) { default: break; case i8: if (NumElements == 2) return v2i8; if (NumElements == 4) return v4i8; if (NumElements == 8) return v8i8; if (NumElements == 16) return v16i8; if (NumElements == 32) return v32i8; break; case i16: if (NumElements == 2) return v2i16; if (NumElements == 4) return v4i16; if (NumElements == 8) return v8i16; if (NumElements == 16) return v16i16; break; case i32: if (NumElements == 2) return v2i32; if (NumElements == 4) return v4i32; if (NumElements == 8) return v8i32; break; case i64: if (NumElements == 1) return v1i64; if (NumElements == 2) return v2i64; if (NumElements == 4) return v4i64; break; case f32: if (NumElements == 2) return v2f32; if (NumElements == 4) return v4f32; if (NumElements == 8) return v8f32; break; case f64: if (NumElements == 2) return v2f64; if (NumElements == 4) return v4f64; break; } return getExtendedVectorVT(VT, NumElements); } /// getIntVectorWithNumElements - Return any integer vector type that has /// the specified number of elements. static EVT getIntVectorWithNumElements(unsigned NumElts) { switch (NumElts) { default: return getVectorVT(i8, NumElts); case 1: return v1i64; case 2: return v2i32; case 4: return v4i16; case 8: return v8i8; case 16: return v16i8; } } /// isSimple - Test if the given EVT is simple (as opposed to being /// extended). bool isSimple() const { return V <= LastSimpleValueType; } /// isExtended - Test if the given EVT is extended (as opposed to /// being simple). bool isExtended() const { return !isSimple(); } /// isFloatingPoint - Return true if this is a FP, or a vector FP type. bool isFloatingPoint() const { return isSimple() ? ((V >= f32 && V <= ppcf128) || (V >= v2f32 && V <= v4f64)) : isExtendedFloatingPoint(); } /// isInteger - Return true if this is an integer, or a vector integer type. bool isInteger() const { return isSimple() ? ((V >= FIRST_INTEGER_VALUETYPE && V <= LAST_INTEGER_VALUETYPE) || (V >= v2i8 && V <= v4i64)) : isExtendedInteger(); } /// isVector - Return true if this is a vector value type. bool isVector() const { return isSimple() ? (V >= FIRST_VECTOR_VALUETYPE && V <= LAST_VECTOR_VALUETYPE) : isExtendedVector(); } /// is64BitVector - Return true if this is a 64-bit vector type. bool is64BitVector() const { return isSimple() ? (V==v8i8 || V==v4i16 || V==v2i32 || V==v1i64 || V==v2f32) : isExtended64BitVector(); } /// is128BitVector - Return true if this is a 128-bit vector type. bool is128BitVector() const { return isSimple() ? (V==v16i8 || V==v8i16 || V==v4i32 || V==v2i64 || V==v4f32 || V==v2f64) : isExtended128BitVector(); } /// is256BitVector - Return true if this is a 256-bit vector type. inline bool is256BitVector() const { return isSimple() ? (V==v8f32 || V==v4f64 || V==v32i8 || V==v16i16 || V==v8i32 || V==v4i64) : isExtended256BitVector(); } /// isOverloaded - Return true if this is an overloaded type for TableGen. bool isOverloaded() const { return (V==iAny || V==fAny || V==vAny || V==iPTRAny); } /// isByteSized - Return true if the bit size is a multiple of 8. bool isByteSized() const { return (getSizeInBits() & 7) == 0; } /// isRound - Return true if the size is a power-of-two number of bytes. bool isRound() const { unsigned BitSize = getSizeInBits(); return BitSize >= 8 && !(BitSize & (BitSize - 1)); } /// bitsEq - Return true if this has the same number of bits as VT. bool bitsEq(EVT VT) const { return getSizeInBits() == VT.getSizeInBits(); } /// bitsGT - Return true if this has more bits than VT. bool bitsGT(EVT VT) const { return getSizeInBits() > VT.getSizeInBits(); } /// bitsGE - Return true if this has no less bits than VT. bool bitsGE(EVT VT) const { return getSizeInBits() >= VT.getSizeInBits(); } /// bitsLT - Return true if this has less bits than VT. bool bitsLT(EVT VT) const { return getSizeInBits() < VT.getSizeInBits(); } /// bitsLE - Return true if this has no more bits than VT. bool bitsLE(EVT VT) const { return getSizeInBits() <= VT.getSizeInBits(); } /// getSimpleVT - Return the SimpleValueType held in the specified /// simple EVT. SimpleValueType getSimpleVT() const { assert(isSimple() && "Expected a SimpleValueType!"); return SimpleValueType(V); } /// getVectorElementType - Given a vector type, return the type of /// each element. EVT getVectorElementType() const { assert(isVector() && "Invalid vector type!"); switch (V) { default: return getExtendedVectorElementType(); case v2i8 : case v4i8 : case v8i8 : case v16i8: case v32i8: return i8; case v2i16: case v4i16: case v8i16: case v16i16: return i16; case v2i32: case v4i32: case v8i32: return i32; case v1i64: case v2i64: case v4i64: return i64; case v2f32: case v4f32: case v8f32: return f32; case v2f64: case v4f64: return f64; } } /// getVectorNumElements - Given a vector type, return the number of /// elements it contains. unsigned getVectorNumElements() const { assert(isVector() && "Invalid vector type!"); switch (V) { default: return getExtendedVectorNumElements(); case v32i8: return 32; case v16i8: case v16i16: return 16; case v8i8 : case v8i16: case v8i32: case v8f32: return 8; case v4i8: case v4i16: case v4i32: case v4i64: case v4f32: case v4f64: return 4; case v2i8: case v2i16: case v2i32: case v2i64: case v2f32: case v2f64: return 2; case v1i64: return 1; } } /// getSizeInBits - Return the size of the specified value type in bits. unsigned getSizeInBits() const { switch (V) { case iPTR: assert(0 && "Value type size is target-dependent. Ask TLI."); case iPTRAny: case iAny: case fAny: case vAny: assert(0 && "Value type is overloaded."); default: return getExtendedSizeInBits(); case i1 : return 1; case i8 : return 8; case i16 : case v2i8: return 16; case f32 : case i32 : case v4i8: case v2i16: return 32; case f64 : case i64 : case v8i8: case v4i16: case v2i32: case v1i64: case v2f32: return 64; case f80 : return 80; case f128: case ppcf128: case i128: case v16i8: case v8i16: case v4i32: case v2i64: case v4f32: case v2f64: return 128; case v32i8: case v16i16: case v8i32: case v4i64: case v8f32: case v4f64: return 256; } } /// getStoreSizeInBits - Return the number of bits overwritten by a store /// of the specified value type. unsigned getStoreSizeInBits() const { return (getSizeInBits() + 7)/8*8; } /// getRoundIntegerType - Rounds the bit-width of the given integer EVT up /// to the nearest power of two (and at least to eight), and returns the /// integer EVT with that number of bits. EVT getRoundIntegerType() const { assert(isInteger() && !isVector() && "Invalid integer type!"); unsigned BitWidth = getSizeInBits(); if (BitWidth <= 8) return i8; else return getIntegerVT(1 << Log2_32_Ceil(BitWidth)); } /// isPow2VectorType - Retuns true if the given vector is a power of 2. bool isPow2VectorType() const { unsigned NElts = getVectorNumElements(); return !(NElts & (NElts - 1)); } /// getPow2VectorType - Widens the length of the given vector EVT up to /// the nearest power of 2 and returns that type. EVT getPow2VectorType() const { if (!isPow2VectorType()) { unsigned NElts = getVectorNumElements(); unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts); return EVT::getVectorVT(getVectorElementType(), Pow2NElts); } else { return *this; } } /// getEVTString - This function returns value type as a string, /// e.g. "i32". std::string getEVTString() const; /// getTypeForEVT - This method returns an LLVM type corresponding to the /// specified EVT. For integer types, this returns an unsigned type. Note /// that this will abort for types that cannot be represented. const Type *getTypeForEVT() const; /// getEVT - Return the value type corresponding to the specified type. /// This returns all pointers as iPTR. If HandleUnknown is true, unknown /// types are returned as Other, otherwise they are invalid. static EVT getEVT(const Type *Ty, bool HandleUnknown = false); /// getRawBits - Represent the type as a bunch of bits. uintptr_t getRawBits() const { return V; } /// compareRawBits - A meaningless but well-behaved order, useful for /// constructing containers. struct compareRawBits { bool operator()(EVT L, EVT R) const { return L.getRawBits() < R.getRawBits(); } }; private: // Methods for handling the Extended-type case in functions above. // These are all out-of-line to prevent users of this header file // from having a dependency on Type.h. static EVT getExtendedIntegerVT(unsigned BitWidth); static EVT getExtendedVectorVT(EVT VT, unsigned NumElements); bool isExtendedFloatingPoint() const; bool isExtendedInteger() const; bool isExtendedVector() const; bool isExtended64BitVector() const; bool isExtended128BitVector() const; bool isExtended256BitVector() const; EVT getExtendedVectorElementType() const; unsigned getExtendedVectorNumElements() const; unsigned getExtendedSizeInBits() const; }; } // End llvm namespace #endif