//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file /// This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constant's are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTS_H #define LLVM_CONSTANTS_H #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/OperandTraits.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallVector.h" namespace llvm { class ArrayType; class StructType; class PointerType; class VectorType; template struct ConstantCreator; template struct ConvertConstantType; //===----------------------------------------------------------------------===// /// This is the shared class of boolean and integer constants. This class /// represents both boolean and integral constants. /// @brief Class for constant integers. class ConstantInt : public Constant { static ConstantInt *TheTrueVal, *TheFalseVal; void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT ConstantInt(const IntegerType *Ty, const APInt& V); APInt Val; protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: static ConstantInt* getTrue(LLVMContext &Context); static ConstantInt* getFalse(LLVMContext &Context); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant* get(const Type* Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified integer value for the specified /// type. If the type is wider than 64 bits, the value will be zero-extended /// to fit the type, unless isSigned is true, in which case the value will /// be interpreted as a 64-bit signed integer and sign-extended to fit /// the type. /// @brief Get a ConstantInt for a specific value. static ConstantInt* get(const IntegerType* Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// @brief Get a ConstantInt for a specific signed value. static ConstantInt* getSigned(const IntegerType* Ty, int64_t V); static Constant *getSigned(const Type *Ty, int64_t V); /// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. static ConstantInt* get(LLVMContext &Context, const APInt& V); /// Return a ConstantInt constructed from the string strStart with the given /// radix. static ConstantInt* get(const IntegerType* Ty, const StringRef& Str, uint8_t radix); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant* get(const Type* Ty, const APInt& V); /// Return the constant as an APInt value reference. This allows clients to /// obtain a copy of the value, with all its precision in tact. /// @brief Return the constant's value. inline const APInt& getValue() const { return Val; } /// getBitWidth - Return the bitwidth of this constant. unsigned getBitWidth() const { return Val.getBitWidth(); } /// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. Note /// that this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the zero extended value. inline uint64_t getZExtValue() const { return Val.getZExtValue(); } /// Return the constant as a 64-bit integer value after it has been sign /// extended as appropriate for the type of this constant. Note that /// this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the sign extended value. inline int64_t getSExtValue() const { return Val.getSExtValue(); } /// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// @brief Determine if this constant's value is same as an unsigned char. bool equalsInt(uint64_t V) const { return Val == V; } /// getType - Specialize the getType() method to always return an IntegerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const IntegerType *getType() const { return reinterpret_cast(Value::getType()); } /// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. Note that there are two /// versions of this method, one for unsigned and one for signed integers. /// Although ConstantInt canonicalizes everything to an unsigned integer, /// the signed version avoids callers having to convert a signed quantity /// to the appropriate unsigned type before calling the method. /// @returns true if V is a valid value for type Ty /// @brief Determine if the value is in range for the given type. static bool isValueValidForType(const Type *Ty, uint64_t V); static bool isValueValidForType(const Type *Ty, int64_t V); /// This function will return true iff this constant represents the "null" /// value that would be returned by the getNullValue method. /// @returns true if this is the null integer value. /// @brief Determine if the value is null. virtual bool isNullValue() const { return Val == 0; } /// This is just a convenience method to make client code smaller for a /// common code. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). bool isZero() const { return Val == 0; } /// This is just a convenience method to make client code smaller for a /// common case. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). /// @brief Determine if the value is one. bool isOne() const { return Val == 1; } /// This function will return true iff every bit in this constant is set /// to true. /// @returns true iff this constant's bits are all set to true. /// @brief Determine if the value is all ones. bool isAllOnesValue() const { return Val.isAllOnesValue(); } /// This function will return true iff this constant represents the largest /// value that may be represented by the constant's type. /// @returns true iff this is the largest value that may be represented /// by this type. /// @brief Determine if the value is maximal. bool isMaxValue(bool isSigned) const { if (isSigned) return Val.isMaxSignedValue(); else return Val.isMaxValue(); } /// This function will return true iff this constant represents the smallest /// value that may be represented by this constant's type. /// @returns true if this is the smallest value that may be represented by /// this type. /// @brief Determine if the value is minimal. bool isMinValue(bool isSigned) const { if (isSigned) return Val.isMinSignedValue(); else return Val.isMinValue(); } /// This function will return true iff this constant represents a value with /// active bits bigger than 64 bits or a value greater than the given uint64_t /// value. /// @returns true iff this constant is greater or equal to the given number. /// @brief Determine if the value is greater or equal to the given number. bool uge(uint64_t Num) { return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num; } /// getLimitedValue - If the value is smaller than the specified limit, /// return it, otherwise return the limit value. This causes the value /// to saturate to the limit. /// @returns the min of the value of the constant and the specified value /// @brief Get the constant's value with a saturation limit uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return Val.getLimitedValue(Limit); } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const ConstantInt *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP : public Constant { APFloat Val; void *operator new(size_t, unsigned);// DO NOT IMPLEMENT ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT friend class LLVMContextImpl; protected: ConstantFP(const Type *Ty, const APFloat& V); protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// Floating point negation must be implemented with f(x) = -0.0 - x. This /// method returns the negative zero constant for floating point or vector /// floating point types; for all other types, it returns the null value. static Constant* getZeroValueForNegation(const Type* Ty); /// get() - This returns a ConstantFP, or a vector containing a splat of a /// ConstantFP, for the specified value in the specified type. This should /// only be used for simple constant values like 2.0/1.0 etc, that are /// known-valid both as host double and as the target format. static Constant* get(const Type* Ty, double V); static Constant* get(const Type* Ty, const StringRef& Str); static ConstantFP* get(LLVMContext &Context, const APFloat& V); static ConstantFP* getNegativeZero(const Type* Ty); /// isValueValidForType - return true if Ty is big enough to represent V. static bool isValueValidForType(const Type *Ty, const APFloat& V); inline const APFloat& getValueAPF() const { return Val; } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. Don't depend on == for doubles to tell us it's zero, it /// considers -0.0 to be null as well as 0.0. :( virtual bool isNullValue() const; /// isNegativeZeroValue - Return true if the value is what would be returned /// by getZeroValueForNegation. virtual bool isNegativeZeroValue() const { return Val.isZero() && Val.isNegative(); } /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. The version with a double operand is retained /// because it's so convenient to write isExactlyValue(2.0), but please use /// it only for simple constants. bool isExactlyValue(const APFloat& V) const; bool isExactlyValue(double V) const { bool ignored; // convert is not supported on this type if (&Val.getSemantics() == &APFloat::PPCDoubleDouble) return false; APFloat FV(V); FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(FV); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantFP *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// ConstantAggregateZero - All zero aggregate value /// class ConstantAggregateZero : public Constant { friend struct ConstantCreator; void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT protected: explicit ConstantAggregateZero(const Type *ty) : Constant(ty, ConstantAggregateZeroVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: static ConstantAggregateZero* get(const Type* Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantAggregateZero *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantAggregateZeroVal; } }; //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray : public Constant { friend struct ConstantCreator >; ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT protected: ConstantArray(const ArrayType *T, const std::vector &Val); public: // ConstantArray accessors static Constant* get(const ArrayType* T, const std::vector& V); static Constant* get(const ArrayType* T, Constant* const* Vals, unsigned NumVals); /// This method constructs a ConstantArray and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array. This effectively increases the length /// of the array by one (you've been warned). However, in some situations /// this is not desired so if AddNull==false then the string is copied without /// null termination. static Constant* get(LLVMContext &Context, const StringRef &Initializer, bool AddNull = true); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const ArrayType *getType() const { return reinterpret_cast(Value::getType()); } /// isString - This method returns true if the array is an array of i8 and /// the elements of the array are all ConstantInt's. bool isString() const; /// isCString - This method returns true if the array is a string (see /// @verbatim /// isString) and it ends in a null byte \0 and does not contains any other /// @endverbatim /// null bytes except its terminator. bool isCString() const; /// getAsString - If this array is isString(), then this method converts the /// array to an std::string and returns it. Otherwise, it asserts out. /// std::string getAsString() const; /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantArray *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantArrayVal; } }; template <> struct OperandTraits : public VariadicOperandTraits<> { }; DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant) //===----------------------------------------------------------------------===// // ConstantStruct - Constant Struct Declarations // class ConstantStruct : public Constant { friend struct ConstantCreator >; ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT protected: ConstantStruct(const StructType *T, const std::vector &Val); public: // ConstantStruct accessors static Constant* get(const StructType* T, const std::vector& V); static Constant* get(LLVMContext &Context, const std::vector& V, bool Packed = false); static Constant* get(LLVMContext &Context, Constant* const *Vals, unsigned NumVals, bool Packed = false); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType() specialization - Reduce amount of casting... /// inline const StructType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero structs are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantStruct *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantStructVal; } }; template <> struct OperandTraits : public VariadicOperandTraits<> { }; DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant) //===----------------------------------------------------------------------===// /// ConstantVector - Constant Vector Declarations /// class ConstantVector : public Constant { friend struct ConstantCreator >; ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT protected: ConstantVector(const VectorType *T, const std::vector &Val); public: // ConstantVector accessors static Constant* get(const VectorType* T, const std::vector& V); static Constant* get(const std::vector& V); static Constant* get(Constant* const* Vals, unsigned NumVals); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType - Specialize the getType() method to always return a VectorType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const VectorType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero vectors are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } /// This function will return true iff every element in this vector constant /// is set to all ones. /// @returns true iff this constant's emements are all set to all ones. /// @brief Determine if the value is all ones. bool isAllOnesValue() const; /// getSplatValue - If this is a splat constant, meaning that all of the /// elements have the same value, return that value. Otherwise return NULL. Constant *getSplatValue(); virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantVector *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantVectorVal; } }; template <> struct OperandTraits : public VariadicOperandTraits<> { }; DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant) //===----------------------------------------------------------------------===// /// ConstantPointerNull - a constant pointer value that points to null /// class ConstantPointerNull : public Constant { friend struct ConstantCreator; void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT protected: explicit ConstantPointerNull(const PointerType *T) : Constant(reinterpret_cast(T), Value::ConstantPointerNullVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() - Static factory methods - Return objects of the specified value static ConstantPointerNull *get(const PointerType *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// getType - Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPointerNull *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantPointerNullVal; } }; /// ConstantExpr - a constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantCreator > >; friend struct ConvertConstantType; protected: ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. SubclassData = Opcode; } // These private methods are used by the type resolution code to create // ConstantExprs in intermediate forms. static Constant *getTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags = 0); static Constant *getCompareTy(unsigned short pred, Constant *C1, Constant *C2); static Constant *getSelectTy(const Type *Ty, Constant *C1, Constant *C2, Constant *C3); static Constant *getGetElementPtrTy(const Type *Ty, Constant *C, Value* const *Idxs, unsigned NumIdxs); static Constant *getInBoundsGetElementPtrTy(const Type *Ty, Constant *C, Value* const *Idxs, unsigned NumIdxs); static Constant *getExtractElementTy(const Type *Ty, Constant *Val, Constant *Idx); static Constant *getInsertElementTy(const Type *Ty, Constant *Val, Constant *Elt, Constant *Idx); static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1, Constant *V2, Constant *Mask); static Constant *getExtractValueTy(const Type *Ty, Constant *Agg, const unsigned *Idxs, unsigned NumIdxs); static Constant *getInsertValueTy(const Type *Ty, Constant *Agg, Constant *Val, const unsigned *Idxs, unsigned NumIdxs); public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// Cast constant expr /// /// getAlignOf constant expr - computes the alignment of a type in a target /// independent way (Note: the return type is an i32; Note: assumes that i8 /// is byte aligned). static Constant* getAlignOf(const Type* Ty); /// getSizeOf constant expr - computes the size of a type in a target /// independent way (Note: the return type is an i64). /// static Constant* getSizeOf(const Type* Ty); /// getOffsetOf constant expr - computes the offset of a field in a target /// independent way (Note: the return type is an i64). /// static Constant* getOffsetOf(const StructType* Ty, unsigned FieldNo); static Constant* getNeg(Constant* C); static Constant* getFNeg(Constant* C); static Constant* getNot(Constant* C); static Constant* getAdd(Constant* C1, Constant* C2); static Constant* getFAdd(Constant* C1, Constant* C2); static Constant* getSub(Constant* C1, Constant* C2); static Constant* getFSub(Constant* C1, Constant* C2); static Constant* getMul(Constant* C1, Constant* C2); static Constant* getFMul(Constant* C1, Constant* C2); static Constant* getUDiv(Constant* C1, Constant* C2); static Constant* getSDiv(Constant* C1, Constant* C2); static Constant* getFDiv(Constant* C1, Constant* C2); static Constant* getURem(Constant* C1, Constant* C2); static Constant* getSRem(Constant* C1, Constant* C2); static Constant* getFRem(Constant* C1, Constant* C2); static Constant* getAnd(Constant* C1, Constant* C2); static Constant* getOr(Constant* C1, Constant* C2); static Constant* getXor(Constant* C1, Constant* C2); static Constant* getShl(Constant* C1, Constant* C2); static Constant* getLShr(Constant* C1, Constant* C2); static Constant* getAShr(Constant* C1, Constant* C2); static Constant *getTrunc (Constant *C, const Type *Ty); static Constant *getSExt (Constant *C, const Type *Ty); static Constant *getZExt (Constant *C, const Type *Ty); static Constant *getFPTrunc (Constant *C, const Type *Ty); static Constant *getFPExtend(Constant *C, const Type *Ty); static Constant *getUIToFP (Constant *C, const Type *Ty); static Constant *getSIToFP (Constant *C, const Type *Ty); static Constant *getFPToUI (Constant *C, const Type *Ty); static Constant *getFPToSI (Constant *C, const Type *Ty); static Constant *getPtrToInt(Constant *C, const Type *Ty); static Constant *getIntToPtr(Constant *C, const Type *Ty); static Constant *getBitCast (Constant *C, const Type *Ty); static Constant* getNSWAdd(Constant* C1, Constant* C2); static Constant* getExactSDiv(Constant* C1, Constant* C2); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); // @brief Convenience function for getting one of the casting operations // using a CastOps opcode. static Constant *getCast( unsigned ops, ///< The opcode for the conversion Constant *C, ///< The constant to be converted const Type *Ty ///< The type to which the constant is converted ); // @brief Create a ZExt or BitCast cast constant expression static Constant *getZExtOrBitCast( Constant *C, ///< The constant to zext or bitcast const Type *Ty ///< The type to zext or bitcast C to ); // @brief Create a SExt or BitCast cast constant expression static Constant *getSExtOrBitCast( Constant *C, ///< The constant to sext or bitcast const Type *Ty ///< The type to sext or bitcast C to ); // @brief Create a Trunc or BitCast cast constant expression static Constant *getTruncOrBitCast( Constant *C, ///< The constant to trunc or bitcast const Type *Ty ///< The type to trunc or bitcast C to ); /// @brief Create a BitCast or a PtrToInt cast constant expression static Constant *getPointerCast( Constant *C, ///< The pointer value to be casted (operand 0) const Type *Ty ///< The type to which cast should be made ); /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts static Constant *getIntegerCast( Constant *C, ///< The integer constant to be casted const Type *Ty, ///< The integer type to cast to bool isSigned ///< Whether C should be treated as signed or not ); /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts static Constant *getFPCast( Constant *C, ///< The integer constant to be casted const Type *Ty ///< The integer type to cast to ); /// @brief Return true if this is a convert constant expression bool isCast() const; /// @brief Return true if this is a compare constant expression bool isCompare() const; /// @brief Return true if this is an insertvalue or extractvalue expression, /// and the getIndices() method may be used. bool hasIndices() const; /// @brief Return true if this is a getelementptr expression and all /// the index operands are compile-time known integers within the /// corresponding notional static array extents. Note that this is /// not equivalant to, a subset of, or a superset of the "inbounds" /// property. bool isGEPWithNoNotionalOverIndexing() const; /// Select constant expr /// static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) { return getSelectTy(V1->getType(), C, V1, V2); } /// get - Return a binary or shift operator constant expression, /// folding if possible. /// static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags = 0); /// @brief Return an ICmp or FCmp comparison operator constant expression. static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2); /// get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS); static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS); /// Getelementptr form. std::vector is only accepted for convenience: /// all elements must be Constant's. /// static Constant *getGetElementPtr(Constant *C, Constant* const *IdxList, unsigned NumIdx); static Constant *getGetElementPtr(Constant *C, Value* const *IdxList, unsigned NumIdx); /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static Constant *getInBoundsGetElementPtr(Constant *C, Constant* const *IdxList, unsigned NumIdx); static Constant *getInBoundsGetElementPtr(Constant *C, Value* const *IdxList, unsigned NumIdx); static Constant *getExtractElement(Constant *Vec, Constant *Idx); static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); static Constant *getExtractValue(Constant *Agg, const unsigned *IdxList, unsigned NumIdx); static Constant *getInsertValue(Constant *Agg, Constant *Val, const unsigned *IdxList, unsigned NumIdx); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } /// getOpcode - Return the opcode at the root of this constant expression unsigned getOpcode() const { return SubclassData; } /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is /// not an ICMP or FCMP constant expression. unsigned getPredicate() const; /// getIndices - Assert that this is an insertvalue or exactvalue /// expression and return the list of indices. const SmallVector &getIndices() const; /// getOpcodeName - Return a string representation for an opcode. const char *getOpcodeName() const; /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified operands must /// match count and type with the existing ones. Constant *getWithOperands(const std::vector &Ops) const { return getWithOperands(&Ops[0], (unsigned)Ops.size()); } Constant *getWithOperands(Constant* const *Ops, unsigned NumOps) const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() == ConstantExprVal; } }; template <> struct OperandTraits : public VariadicOperandTraits<1> { }; DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant) //===----------------------------------------------------------------------===// /// UndefValue - 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any type. /// class UndefValue : public Constant { friend struct ConstantCreator; void *operator new(size_t, unsigned); // DO NOT IMPLEMENT UndefValue(const UndefValue &); // DO NOT IMPLEMENT protected: explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() - Static factory methods - Return an 'undef' object of the specified /// type. /// static UndefValue *get(const Type *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UndefValue *) { return true; } static bool classof(const Value *V) { return V->getValueID() == UndefValueVal; } }; } // End llvm namespace #endif