//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file contains the simple types necessary to represent the /// attributes associated with functions and their calls. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ATTRIBUTES_H #define LLVM_ATTRIBUTES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/MathExtras.h" #include #include namespace llvm { class AttrBuilder; class AttributeImpl; class LLVMContext; class Type; //===----------------------------------------------------------------------===// /// \class /// \brief Functions, function parameters, and return types can have attributes /// to indicate how they should be treated by optimizations and code /// generation. This class represents one of those attributes. It's light-weight /// and should be passed around by-value. class Attribute { public: /// This enumeration lists the attributes that can be associated with /// parameters, function results or the function itself. /// /// Note: uwtable is about the ABI or the user mandating an entry in the /// unwind table. The nounwind attribute is about an exception passing by the /// function. /// /// In a theoretical system that uses tables for profiling and sjlj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrKind { // IR-Level Attributes None, ///< No attributes have been set AddressSafety, ///< Address safety checking is on. Alignment, ///< Alignment of parameter (5 bits) ///< stored as log2 of alignment with +1 bias ///< 0 means unaligned (different from align(1)) AlwaysInline, ///< inline=always ByVal, ///< Pass structure by value InlineHint, ///< Source said inlining was desirable InReg, ///< Force argument to be passed in register MinSize, ///< Function must be optimized for size first Naked, ///< Naked function Nest, ///< Nested function static chain NoAlias, ///< Considered to not alias after call NoCapture, ///< Function creates no aliases of pointer NoDuplicate, ///< Call cannot be duplicated NoImplicitFloat, ///< Disable implicit floating point insts NoInline, ///< inline=never NonLazyBind, ///< Function is called early and/or ///< often, so lazy binding isn't worthwhile NoRedZone, ///< Disable redzone NoReturn, ///< Mark the function as not returning NoUnwind, ///< Function doesn't unwind stack OptimizeForSize, ///< opt_size ReadNone, ///< Function does not access memory ReadOnly, ///< Function only reads from memory ReturnsTwice, ///< Function can return twice SExt, ///< Sign extended before/after call StackAlignment, ///< Alignment of stack for function (3 bits) ///< stored as log2 of alignment with +1 bias 0 ///< means unaligned (different from ///< alignstack=(1)) StackProtect, ///< Stack protection. StackProtectReq, ///< Stack protection required. StructRet, ///< Hidden pointer to structure to return UWTable, ///< Function must be in a unwind table ZExt ///< Zero extended before/after call }; private: AttributeImpl *pImpl; Attribute(AttributeImpl *A) : pImpl(A) {} public: Attribute() : pImpl(0) {} /// \brief Return a uniquified Attribute object. This takes the uniquified /// value from the Builder and wraps it in the Attribute class. static Attribute get(LLVMContext &Context, ArrayRef Vals); static Attribute get(LLVMContext &Context, AttrBuilder &B); /// \brief Return true if the attribute is present. bool hasAttribute(AttrKind Val) const; /// \brief Return true if attributes exist bool hasAttributes() const; /// \brief Return true if the attributes are a non-null intersection. bool hasAttributes(const Attribute &A) const; /// \brief Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// \brief Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; bool operator==(AttrKind K) const; bool operator!=(AttrKind K) const; // FIXME: Remove these 'operator' methods. bool operator==(const Attribute &A) const { return pImpl == A.pImpl; } bool operator!=(const Attribute &A) const { return pImpl != A.pImpl; } uint64_t getBitMask() const; /// \brief Which attributes cannot be applied to a type. static Attribute typeIncompatible(Type *Ty); /// \brief This returns an integer containing an encoding of all the LLVM /// attributes found in the given attribute bitset. Any change to this /// encoding is a breaking change to bitcode compatibility. static uint64_t encodeLLVMAttributesForBitcode(Attribute Attrs); /// \brief This returns an attribute bitset containing the LLVM attributes /// that have been decoded from the given integer. This function must stay in /// sync with 'encodeLLVMAttributesForBitcode'. static Attribute decodeLLVMAttributesForBitcode(LLVMContext &C, uint64_t EncodedAttrs); /// \brief The Attribute is converted to a string of equivalent mnemonic. This /// is, presumably, for writing out the mnemonics for the assembly writer. std::string getAsString() const; }; //===----------------------------------------------------------------------===// /// \class /// \brief This class is used in conjunction with the Attribute::get method to /// create an Attribute object. The object itself is uniquified. The Builder's /// value, however, is not. So this can be used as a quick way to test for /// equality, presence of attributes, etc. class AttrBuilder { uint64_t Bits; public: AttrBuilder() : Bits(0) {} explicit AttrBuilder(uint64_t B) : Bits(B) {} AttrBuilder(const Attribute &A) : Bits(A.getBitMask()) {} void clear() { Bits = 0; } /// addAttribute - Add an attribute to the builder. AttrBuilder &addAttribute(Attribute::AttrKind Val); /// removeAttribute - Remove an attribute from the builder. AttrBuilder &removeAttribute(Attribute::AttrKind Val); /// addAttribute - Add the attributes from A to the builder. AttrBuilder &addAttributes(const Attribute &A); /// removeAttribute - Remove the attributes from A from the builder. AttrBuilder &removeAttributes(const Attribute &A); /// \brief Return true if the builder has the specified attribute. bool contains(Attribute::AttrKind A) const; /// hasAttributes - Return true if the builder has IR-level attributes. bool hasAttributes() const; /// hasAttributes - Return true if the builder has any attribute that's in the /// specified attribute. bool hasAttributes(const Attribute &A) const; /// hasAlignmentAttr - Return true if the builder has an alignment attribute. bool hasAlignmentAttr() const; /// getAlignment - Retrieve the alignment attribute, if it exists. uint64_t getAlignment() const; /// getStackAlignment - Retrieve the stack alignment attribute, if it exists. uint64_t getStackAlignment() const; /// addAlignmentAttr - This turns an int alignment (which must be a power of /// 2) into the form used internally in Attribute. AttrBuilder &addAlignmentAttr(unsigned Align); /// addStackAlignmentAttr - This turns an int stack alignment (which must be a /// power of 2) into the form used internally in Attribute. AttrBuilder &addStackAlignmentAttr(unsigned Align); /// addRawValue - Add the raw value to the internal representation. /// N.B. This should be used ONLY for decoding LLVM bitcode! AttrBuilder &addRawValue(uint64_t Val); /// @brief Remove attributes that are used on functions only. void removeFunctionOnlyAttrs() { removeAttribute(Attribute::NoReturn) .removeAttribute(Attribute::NoUnwind) .removeAttribute(Attribute::ReadNone) .removeAttribute(Attribute::ReadOnly) .removeAttribute(Attribute::NoInline) .removeAttribute(Attribute::AlwaysInline) .removeAttribute(Attribute::OptimizeForSize) .removeAttribute(Attribute::StackProtect) .removeAttribute(Attribute::StackProtectReq) .removeAttribute(Attribute::NoRedZone) .removeAttribute(Attribute::NoImplicitFloat) .removeAttribute(Attribute::Naked) .removeAttribute(Attribute::InlineHint) .removeAttribute(Attribute::StackAlignment) .removeAttribute(Attribute::UWTable) .removeAttribute(Attribute::NonLazyBind) .removeAttribute(Attribute::ReturnsTwice) .removeAttribute(Attribute::AddressSafety) .removeAttribute(Attribute::MinSize) .removeAttribute(Attribute::NoDuplicate); } uint64_t getBitMask() const { return Bits; } bool operator==(const AttrBuilder &B) { return Bits == B.Bits; } bool operator!=(const AttrBuilder &B) { return Bits != B.Bits; } }; //===----------------------------------------------------------------------===// /// \class /// \brief This is just a pair of values to associate a set of attributes with /// an index. struct AttributeWithIndex { Attribute Attrs; ///< The attributes that are set, or'd together. unsigned Index; ///< Index of the parameter for which the attributes apply. ///< Index 0 is used for return value attributes. ///< Index ~0U is used for function attributes. static AttributeWithIndex get(LLVMContext &C, unsigned Idx, ArrayRef Attrs) { return get(Idx, Attribute::get(C, Attrs)); } static AttributeWithIndex get(unsigned Idx, Attribute Attrs) { AttributeWithIndex P; P.Index = Idx; P.Attrs = Attrs; return P; } }; //===----------------------------------------------------------------------===// // AttributeSet Smart Pointer //===----------------------------------------------------------------------===// class AttributeSetImpl; //===----------------------------------------------------------------------===// /// \class /// \brief This class manages the ref count for the opaque AttributeSetImpl /// object and provides accessors for it. class AttributeSet { public: enum AttrIndex { ReturnIndex = 0U, FunctionIndex = ~0U }; private: /// \brief The attributes that we are managing. This can be null to represent /// the empty attributes list. AttributeSetImpl *AttrList; /// \brief The attributes for the specified index are returned. Attributes /// for the result are denoted with Idx = 0. Attribute getAttributes(unsigned Idx) const; explicit AttributeSet(AttributeSetImpl *LI) : AttrList(LI) {} public: AttributeSet() : AttrList(0) {} AttributeSet(const AttributeSet &P) : AttrList(P.AttrList) {} const AttributeSet &operator=(const AttributeSet &RHS); //===--------------------------------------------------------------------===// // Attribute List Construction and Mutation //===--------------------------------------------------------------------===// /// \brief Return an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef Attrs); /// \brief Add the specified attribute at the specified index to this /// attribute list. Since attribute lists are immutable, this returns the new /// list. AttributeSet addAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const; /// \brief Remove the specified attribute at the specified index from this /// attribute list. Since attribute lists are immutable, this returns the new /// list. AttributeSet removeAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const; //===--------------------------------------------------------------------===// // Attribute List Accessors //===--------------------------------------------------------------------===// /// \brief The attributes for the specified index are returned. Attribute getParamAttributes(unsigned Idx) const { return getAttributes(Idx); } /// \brief The attributes for the ret value are returned. Attribute getRetAttributes() const { return getAttributes(ReturnIndex); } /// \brief The function attributes are returned. Attribute getFnAttributes() const { return getAttributes(FunctionIndex); } /// \brief Return the alignment for the specified function parameter. unsigned getParamAlignment(unsigned Idx) const { return getAttributes(Idx).getAlignment(); } /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return true if attribute exists at the given index. bool hasAttributes(unsigned Index) const; /// \brief Get the stack alignment. unsigned getStackAlignment(unsigned Index) const; /// \brief Return the attributes at the index as a string. std::string getAsString(unsigned Index) const; uint64_t getBitMask(unsigned Index) const; /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. bool hasAttrSomewhere(Attribute::AttrKind Attr) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttributeSet &RHS) const { return AttrList == RHS.AttrList; } bool operator!=(const AttributeSet &RHS) const { return AttrList != RHS.AttrList; } //===--------------------------------------------------------------------===// // Attribute List Introspection //===--------------------------------------------------------------------===// /// \brief Return a raw pointer that uniquely identifies this attribute list. void *getRawPointer() const { return AttrList; } // Attributes are stored as a dense set of slots, where there is one slot for // each argument that has an attribute. This allows walking over the dense // set instead of walking the sparse list of attributes. /// \brief Return true if there are no attributes. bool isEmpty() const { return AttrList == 0; } /// \brief Return the number of slots used in this attribute list. This is /// the number of arguments that have an attribute set on them (including the /// function itself). unsigned getNumSlots() const; /// \brief Return the AttributeWithIndex at the specified slot. This holds a /// index number plus a set of attributes. const AttributeWithIndex &getSlot(unsigned Slot) const; void dump() const; }; } // end llvm namespace #endif