//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "function returning x taking (y,z) as parameters", etc... // // The implementations of these classes live in the Type.cpp file. // //===----------------------------------------------------------------------===// #ifndef LLVM_DERIVED_TYPES_H #define LLVM_DERIVED_TYPES_H #include "llvm/IR/Type.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DataTypes.h" namespace llvm { class Value; class APInt; class LLVMContext; template class ArrayRef; class StringRef; /// Class to represent integer types. Note that this class is also used to /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and /// Int64Ty. /// @brief Integer representation type class IntegerType : public Type { friend class LLVMContextImpl; protected: explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ setSubclassData(NumBits); } public: /// This enum is just used to hold constants we need for IntegerType. enum { MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified ///< Note that bit width is stored in the Type classes SubclassData field ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. }; /// This static method is the primary way of constructing an IntegerType. /// If an IntegerType with the same NumBits value was previously instantiated, /// that instance will be returned. Otherwise a new one will be created. Only /// one instance with a given NumBits value is ever created. /// @brief Get or create an IntegerType instance. static IntegerType *get(LLVMContext &C, unsigned NumBits); /// @brief Get the number of bits in this IntegerType unsigned getBitWidth() const { return getSubclassData(); } /// getBitMask - Return a bitmask with ones set for all of the bits /// that can be set by an unsigned version of this type. This is 0xFF for /// i8, 0xFFFF for i16, etc. uint64_t getBitMask() const { return ~uint64_t(0UL) >> (64-getBitWidth()); } /// getSignBit - Return a uint64_t with just the most significant bit set (the /// sign bit, if the value is treated as a signed number). uint64_t getSignBit() const { return 1ULL << (getBitWidth()-1); } /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. /// @returns a bit mask with ones set for all the bits of this type. /// @brief Get a bit mask for this type. APInt getMask() const; /// This method determines if the width of this IntegerType is a power-of-2 /// in terms of 8 bit bytes. /// @returns true if this is a power-of-2 byte width. /// @brief Is this a power-of-2 byte-width IntegerType ? bool isPowerOf2ByteWidth() const; // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == IntegerTyID; } }; /// FunctionType - Class to represent function types /// class FunctionType : public Type { FunctionType(const FunctionType &) LLVM_DELETED_FUNCTION; const FunctionType &operator=(const FunctionType &) LLVM_DELETED_FUNCTION; FunctionType(Type *Result, ArrayRef Params, bool IsVarArgs); public: /// FunctionType::get - This static method is the primary way of constructing /// a FunctionType. /// static FunctionType *get(Type *Result, ArrayRef Params, bool isVarArg); /// FunctionType::get - Create a FunctionType taking no parameters. /// static FunctionType *get(Type *Result, bool isVarArg); /// isValidReturnType - Return true if the specified type is valid as a return /// type. static bool isValidReturnType(Type *RetTy); /// isValidArgumentType - Return true if the specified type is valid as an /// argument type. static bool isValidArgumentType(Type *ArgTy); bool isVarArg() const { return getSubclassData(); } Type *getReturnType() const { return ContainedTys[0]; } typedef Type::subtype_iterator param_iterator; param_iterator param_begin() const { return ContainedTys + 1; } param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } // Parameter type accessors. Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } /// getNumParams - Return the number of fixed parameters this function type /// requires. This does not consider varargs. /// unsigned getNumParams() const { return NumContainedTys - 1; } // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == FunctionTyID; } }; /// CompositeType - Common super class of ArrayType, StructType, PointerType /// and VectorType. class CompositeType : public Type { protected: explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { } public: /// getTypeAtIndex - Given an index value into the type, return the type of /// the element. /// Type *getTypeAtIndex(const Value *V); Type *getTypeAtIndex(unsigned Idx); bool indexValid(const Value *V) const; bool indexValid(unsigned Idx) const; // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == StructTyID || T->getTypeID() == PointerTyID || T->getTypeID() == VectorTyID; } }; /// StructType - Class to represent struct types. There are two different kinds /// of struct types: Literal structs and Identified structs. /// /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must /// always have a body when created. You can get one of these by using one of /// the StructType::get() forms. /// /// Identified structs (e.g. %foo or %42) may optionally have a name and are not /// uniqued. The names for identified structs are managed at the LLVMContext /// level, so there can only be a single identified struct with a given name in /// a particular LLVMContext. Identified structs may also optionally be opaque /// (have no body specified). You get one of these by using one of the /// StructType::create() forms. /// /// Independent of what kind of struct you have, the body of a struct type are /// laid out in memory consequtively with the elements directly one after the /// other (if the struct is packed) or (if not packed) with padding between the /// elements as defined by DataLayout (which is required to match what the code /// generator for a target expects). /// class StructType : public CompositeType { StructType(const StructType &) LLVM_DELETED_FUNCTION; const StructType &operator=(const StructType &) LLVM_DELETED_FUNCTION; StructType(LLVMContext &C) : CompositeType(C, StructTyID), SymbolTableEntry(0) {} enum { // This is the contents of the SubClassData field. SCDB_HasBody = 1, SCDB_Packed = 2, SCDB_IsLiteral = 4, SCDB_IsSized = 8 }; /// SymbolTableEntry - For a named struct that actually has a name, this is a /// pointer to the symbol table entry (maintained by LLVMContext) for the /// struct. This is null if the type is an literal struct or if it is /// a identified type that has an empty name. /// void *SymbolTableEntry; public: ~StructType() { delete [] ContainedTys; // Delete the body. } /// StructType::create - This creates an identified struct. static StructType *create(LLVMContext &Context, StringRef Name); static StructType *create(LLVMContext &Context); static StructType *create(ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(ArrayRef Elements); static StructType *create(LLVMContext &Context, ArrayRef Elements, StringRef Name, bool isPacked = false); static StructType *create(LLVMContext &Context, ArrayRef Elements); static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL; /// StructType::get - This static method is the primary way to create a /// literal StructType. static StructType *get(LLVMContext &Context, ArrayRef Elements, bool isPacked = false); /// StructType::get - Create an empty structure type. /// static StructType *get(LLVMContext &Context, bool isPacked = false); /// StructType::get - This static method is a convenience method for creating /// structure types by specifying the elements as arguments. Note that this /// method always returns a non-packed struct, and requires at least one /// element type. static StructType *get(Type *elt1, ...) END_WITH_NULL; bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } /// isLiteral - Return true if this type is uniqued by structural /// equivalence, false if it is a struct definition. bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } /// isOpaque - Return true if this is a type with an identity that has no body /// specified yet. These prints as 'opaque' in .ll files. bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } /// isSized - Return true if this is a sized type. bool isSized() const; /// hasName - Return true if this is a named struct that has a non-empty name. bool hasName() const { return SymbolTableEntry != 0; } /// getName - Return the name for this struct type if it has an identity. /// This may return an empty string for an unnamed struct type. Do not call /// this on an literal type. StringRef getName() const; /// setName - Change the name of this type to the specified name, or to a name /// with a suffix if there is a collision. Do not call this on an literal /// type. void setName(StringRef Name); /// setBody - Specify a body for an opaque identified type. void setBody(ArrayRef Elements, bool isPacked = false); void setBody(Type *elt1, ...) END_WITH_NULL; /// isValidElementType - Return true if the specified type is valid as a /// element type. static bool isValidElementType(Type *ElemTy); // Iterator access to the elements. typedef Type::subtype_iterator element_iterator; element_iterator element_begin() const { return ContainedTys; } element_iterator element_end() const { return &ContainedTys[NumContainedTys];} /// isLayoutIdentical - Return true if this is layout identical to the /// specified struct. bool isLayoutIdentical(StructType *Other) const; // Random access to the elements unsigned getNumElements() const { return NumContainedTys; } Type *getElementType(unsigned N) const { assert(N < NumContainedTys && "Element number out of range!"); return ContainedTys[N]; } // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == StructTyID; } }; /// SequentialType - This is the superclass of the array, pointer and vector /// type classes. All of these represent "arrays" in memory. The array type /// represents a specifically sized array, pointer types are unsized/unknown /// size arrays, vector types represent specifically sized arrays that /// allow for use of SIMD instructions. SequentialType holds the common /// features of all, which stem from the fact that all three lay their /// components out in memory identically. /// class SequentialType : public CompositeType { Type *ContainedType; ///< Storage for the single contained type. SequentialType(const SequentialType &) LLVM_DELETED_FUNCTION; const SequentialType &operator=(const SequentialType &) LLVM_DELETED_FUNCTION; protected: SequentialType(TypeID TID, Type *ElType) : CompositeType(ElType->getContext(), TID), ContainedType(ElType) { ContainedTys = &ContainedType; NumContainedTys = 1; } public: Type *getElementType() const { return ContainedTys[0]; } // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == PointerTyID || T->getTypeID() == VectorTyID; } }; /// ArrayType - Class to represent array types. /// class ArrayType : public SequentialType { uint64_t NumElements; ArrayType(const ArrayType &) LLVM_DELETED_FUNCTION; const ArrayType &operator=(const ArrayType &) LLVM_DELETED_FUNCTION; ArrayType(Type *ElType, uint64_t NumEl); public: /// ArrayType::get - This static method is the primary way to construct an /// ArrayType /// static ArrayType *get(Type *ElementType, uint64_t NumElements); /// isValidElementType - Return true if the specified type is valid as a /// element type. static bool isValidElementType(Type *ElemTy); uint64_t getNumElements() const { return NumElements; } // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID; } }; /// VectorType - Class to represent vector types. /// class VectorType : public SequentialType { unsigned NumElements; VectorType(const VectorType &) LLVM_DELETED_FUNCTION; const VectorType &operator=(const VectorType &) LLVM_DELETED_FUNCTION; VectorType(Type *ElType, unsigned NumEl); public: /// VectorType::get - This static method is the primary way to construct an /// VectorType. /// static VectorType *get(Type *ElementType, unsigned NumElements); /// VectorType::getInteger - This static method gets a VectorType with the /// same number of elements as the input type, and the element type is an /// integer type of the same width as the input element type. /// static VectorType *getInteger(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert(EltBits && "Element size must be of a non-zero size"); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); return VectorType::get(EltTy, VTy->getNumElements()); } /// VectorType::getExtendedElementVectorType - This static method is like /// getInteger except that the element types are twice as wide as the /// elements in the input type. /// static VectorType *getExtendedElementVectorType(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); return VectorType::get(EltTy, VTy->getNumElements()); } /// VectorType::getTruncatedElementVectorType - This static method is like /// getInteger except that the element types are half as wide as the /// elements in the input type. /// static VectorType *getTruncatedElementVectorType(VectorType *VTy) { unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); assert((EltBits & 1) == 0 && "Cannot truncate vector element with odd bit-width"); Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); return VectorType::get(EltTy, VTy->getNumElements()); } /// isValidElementType - Return true if the specified type is valid as a /// element type. static bool isValidElementType(Type *ElemTy); /// @brief Return the number of elements in the Vector type. unsigned getNumElements() const { return NumElements; } /// @brief Return the number of bits in the Vector type. /// Returns zero when the vector is a vector of pointers. unsigned getBitWidth() const { return NumElements * getElementType()->getPrimitiveSizeInBits(); } // Methods for support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == VectorTyID; } }; /// PointerType - Class to represent pointers. /// class PointerType : public SequentialType { PointerType(const PointerType &) LLVM_DELETED_FUNCTION; const PointerType &operator=(const PointerType &) LLVM_DELETED_FUNCTION; explicit PointerType(Type *ElType, unsigned AddrSpace); public: /// PointerType::get - This constructs a pointer to an object of the specified /// type in a numbered address space. static PointerType *get(Type *ElementType, unsigned AddressSpace); /// PointerType::getUnqual - This constructs a pointer to an object of the /// specified type in the generic address space (address space zero). static PointerType *getUnqual(Type *ElementType) { return PointerType::get(ElementType, 0); } /// isValidElementType - Return true if the specified type is valid as a /// element type. static bool isValidElementType(Type *ElemTy); /// @brief Return the address space of the Pointer type. inline unsigned getAddressSpace() const { return getSubclassData(); } // Implement support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const Type *T) { return T->getTypeID() == PointerTyID; } }; } // End llvm namespace #endif