//===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DominatorTree class, which provides fast and efficient // dominance queries. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_DOMINATORS_H #define LLVM_IR_DOMINATORS_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Function.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase); EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase); typedef DomTreeNodeBase DomTreeNode; class BasicBlockEdge { const BasicBlock *Start; const BasicBlock *End; public: BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) : Start(Start_), End(End_) { } const BasicBlock *getStart() const { return Start; } const BasicBlock *getEnd() const { return End; } bool isSingleEdge() const; }; /// \brief Concrete subclass of DominatorTreeBase that is used to compute a /// normal dominator tree. class DominatorTree : public DominatorTreeBase { public: typedef DominatorTreeBase Base; DominatorTree() : DominatorTreeBase(false) {} // FIXME: This is no longer needed and should be removed when its uses are // cleaned up. Base& getBase() { return *this; } /// \brief Returns *false* if the other dominator tree matches this dominator /// tree. inline bool compare(const DominatorTree &Other) const { const DomTreeNode *R = getRootNode(); const DomTreeNode *OtherR = Other.getRootNode(); if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) return true; if (Base::compare(Other)) return true; return false; } // Ensure base-class overloads are visible. using Base::dominates; /// \brief Return true if Def dominates a use in User. /// /// This performs the special checks necessary if Def and User are in the same /// basic block. Note that Def doesn't dominate a use in Def itself! bool dominates(const Instruction *Def, const Use &U) const; bool dominates(const Instruction *Def, const Instruction *User) const; bool dominates(const Instruction *Def, const BasicBlock *BB) const; bool dominates(const BasicBlockEdge &BBE, const Use &U) const; bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const; inline DomTreeNode *operator[](BasicBlock *BB) const { return getNode(BB); } // Ensure base class overloads are visible. using Base::isReachableFromEntry; /// \brief Provide an overload for a Use. bool isReachableFromEntry(const Use &U) const; /// \brief Verify the correctness of the domtree by re-computing it. /// /// This should only be used for debugging as it aborts the program if the /// verification fails. void verifyDomTree() const; }; //===------------------------------------- // DominatorTree GraphTraits specializations so the DominatorTree can be // iterable by generic graph iterators. template <> struct GraphTraits { typedef DomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } typedef df_iterator nodes_iterator; static nodes_iterator nodes_begin(DomTreeNode *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DomTreeNode *N) { return df_end(getEntryNode(N)); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(DominatorTree *DT) { return DT->getRootNode(); } static nodes_iterator nodes_begin(DominatorTree *N) { return df_begin(getEntryNode(N)); } static nodes_iterator nodes_end(DominatorTree *N) { return df_end(getEntryNode(N)); } }; /// \brief Analysis pass which computes a \c DominatorTree. class DominatorTreeWrapperPass : public FunctionPass { DominatorTree DT; public: static char ID; DominatorTreeWrapperPass() : FunctionPass(ID) { initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); } DominatorTree &getDomTree() { return DT; } const DominatorTree &getDomTree() const { return DT; } virtual bool runOnFunction(Function &F); virtual void verifyAnalysis() const; virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } virtual void releaseMemory() { DT.releaseMemory(); } virtual void print(raw_ostream &OS, const Module *M = 0) const; }; } // End llvm namespace #endif