//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This header defines various interfaces for pass management in LLVM. There /// is no "pass" interface in LLVM per se. Instead, an instance of any class /// which supports a method to 'run' it over a unit of IR can be used as /// a pass. A pass manager is generally a tool to collect a sequence of passes /// which run over a particular IR construct, and run each of them in sequence /// over each such construct in the containing IR construct. As there is no /// containing IR construct for a Module, a manager for passes over modules /// forms the base case which runs its managed passes in sequence over the /// single module provided. /// /// The core IR library provides managers for running passes over /// modules and functions. /// /// * FunctionPassManager can run over a Module, runs each pass over /// a Function. /// * ModulePassManager must be directly run, runs each pass over the Module. /// /// Note that the implementations of the pass managers use concept-based /// polymorphism as outlined in the "Value Semantics and Concept-based /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base /// Class of Evil") by Sean Parent: /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations /// * http://www.youtube.com/watch?v=_BpMYeUFXv8 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_PASS_MANAGER_H #define LLVM_IR_PASS_MANAGER_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/polymorphic_ptr.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/Support/type_traits.h" #include #include namespace llvm { class Module; class Function; /// \brief An abstract set of preserved analyses following a transformation pass /// run. /// /// When a transformation pass is run, it can return a set of analyses whose /// results were preserved by that transformation. The default set is "none", /// and preserving analyses must be done explicitly. /// /// There is also an explicit all state which can be used (for example) when /// the IR is not mutated at all. class PreservedAnalyses { public: /// \brief Convenience factory function for the empty preserved set. static PreservedAnalyses none() { return PreservedAnalyses(); } /// \brief Construct a special preserved set that preserves all passes. static PreservedAnalyses all() { PreservedAnalyses PA; PA.PreservedPassIDs.insert((void *)AllPassesID); return PA; } PreservedAnalyses &operator=(PreservedAnalyses Arg) { swap(Arg); return *this; } void swap(PreservedAnalyses &Arg) { PreservedPassIDs.swap(Arg.PreservedPassIDs); } /// \brief Mark a particular pass as preserved, adding it to the set. template void preserve() { if (!areAllPreserved()) PreservedPassIDs.insert(PassT::ID()); } /// \brief Intersect this set with another in place. /// /// This is a mutating operation on this preserved set, removing all /// preserved passes which are not also preserved in the argument. void intersect(const PreservedAnalyses &Arg) { if (Arg.areAllPreserved()) return; if (areAllPreserved()) { PreservedPassIDs = Arg.PreservedPassIDs; return; } for (SmallPtrSet::const_iterator I = PreservedPassIDs.begin(), E = PreservedPassIDs.end(); I != E; ++I) if (!Arg.PreservedPassIDs.count(*I)) PreservedPassIDs.erase(*I); } /// \brief Intersect this set with a temporary other set in place. /// /// This is a mutating operation on this preserved set, removing all /// preserved passes which are not also preserved in the argument. void intersect(PreservedAnalyses &&Arg) { if (Arg.areAllPreserved()) return; if (areAllPreserved()) { PreservedPassIDs = std::move(Arg.PreservedPassIDs); return; } for (SmallPtrSet::const_iterator I = PreservedPassIDs.begin(), E = PreservedPassIDs.end(); I != E; ++I) if (!Arg.PreservedPassIDs.count(*I)) PreservedPassIDs.erase(*I); } /// \brief Query whether a pass is marked as preserved by this set. template bool preserved() const { return preserved(PassT::ID()); } /// \brief Query whether an abstract pass ID is marked as preserved by this /// set. bool preserved(void *PassID) const { return PreservedPassIDs.count((void *)AllPassesID) || PreservedPassIDs.count(PassID); } private: // Note that this must not be -1 or -2 as those are already used by the // SmallPtrSet. static const uintptr_t AllPassesID = (intptr_t)-3; bool areAllPreserved() const { return PreservedPassIDs.count((void *)AllPassesID); } SmallPtrSet PreservedPassIDs; }; inline void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) { LHS.swap(RHS); } /// \brief Implementation details of the pass manager interfaces. namespace detail { /// \brief Template for the abstract base class used to dispatch /// polymorphically over pass objects. template struct PassConcept { // Boiler plate necessary for the container of derived classes. virtual ~PassConcept() {} virtual PassConcept *clone() = 0; /// \brief The polymorphic API which runs the pass over a given IR entity. /// /// Note that actual pass object can omit the analysis manager argument if /// desired. Also that the analysis manager may be null if there is no /// analysis manager in the pass pipeline. virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) = 0; /// \brief Polymorphic method to access the name of a pass. virtual StringRef name() = 0; }; /// \brief SFINAE metafunction for computing whether \c PassT has a run method /// accepting an \c AnalysisManagerT. template class PassRunAcceptsAnalysisManager { typedef char SmallType; struct BigType { char a, b; }; template struct Checker; template static SmallType f(Checker *); template static BigType f(...); public: enum { Value = sizeof(f(0)) == sizeof(SmallType) }; }; /// \brief A template wrapper used to implement the polymorphic API. /// /// Can be instantiated for any object which provides a \c run method accepting /// an \c IRUnitT. It requires the pass to be a copyable object. When the /// \c run method also accepts an \c AnalysisManagerT*, we pass it along. template ::Value> struct PassModel; /// \brief Specialization of \c PassModel for passes that accept an analyis /// manager. template struct PassModel : PassConcept { PassModel(PassT Pass) : Pass(std::move(Pass)) {} virtual PassModel *clone() { return new PassModel(Pass); } virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) { return Pass.run(IR, AM); } virtual StringRef name() { return PassT::name(); } PassT Pass; }; /// \brief Specialization of \c PassModel for passes that accept an analyis /// manager. template struct PassModel : PassConcept { PassModel(PassT Pass) : Pass(std::move(Pass)) {} virtual PassModel *clone() { return new PassModel(Pass); } virtual PreservedAnalyses run(IRUnitT IR, AnalysisManagerT *AM) { return Pass.run(IR); } virtual StringRef name() { return PassT::name(); } PassT Pass; }; /// \brief Abstract concept of an analysis result. /// /// This concept is parameterized over the IR unit that this result pertains /// to. template struct AnalysisResultConcept { virtual ~AnalysisResultConcept() {} virtual AnalysisResultConcept *clone() = 0; /// \brief Method to try and mark a result as invalid. /// /// When the outer analysis manager detects a change in some underlying /// unit of the IR, it will call this method on all of the results cached. /// /// This method also receives a set of preserved analyses which can be used /// to avoid invalidation because the pass which changed the underlying IR /// took care to update or preserve the analysis result in some way. /// /// \returns true if the result is indeed invalid (the default). virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) = 0; }; /// \brief SFINAE metafunction for computing whether \c ResultT provides an /// \c invalidate member function. template class ResultHasInvalidateMethod { typedef char SmallType; struct BigType { char a, b; }; template struct Checker; template static SmallType f(Checker *); template static BigType f(...); public: enum { Value = sizeof(f(0)) == sizeof(SmallType) }; }; /// \brief Wrapper to model the analysis result concept. /// /// By default, this will implement the invalidate method with a trivial /// implementation so that the actual analysis result doesn't need to provide /// an invalidation handler. It is only selected when the invalidation handler /// is not part of the ResultT's interface. template ::Value> struct AnalysisResultModel; /// \brief Specialization of \c AnalysisResultModel which provides the default /// invalidate functionality. template struct AnalysisResultModel : AnalysisResultConcept { AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {} AnalysisResultModel *clone() override { return new AnalysisResultModel(Result); } /// \brief The model bases invalidation solely on being in the preserved set. // // FIXME: We should actually use two different concepts for analysis results // rather than two different models, and avoid the indirect function call for // ones that use the trivial behavior. bool invalidate(IRUnitT, const PreservedAnalyses &PA) override { return !PA.preserved(PassT::ID()); } ResultT Result; }; /// \brief Specialization of \c AnalysisResultModel which delegates invalidate /// handling to \c ResultT. template struct AnalysisResultModel : AnalysisResultConcept { AnalysisResultModel(ResultT Result) : Result(std::move(Result)) {} virtual AnalysisResultModel *clone() { return new AnalysisResultModel(Result); } /// \brief The model delegates to the \c ResultT method. virtual bool invalidate(IRUnitT IR, const PreservedAnalyses &PA) { return Result.invalidate(IR, PA); } ResultT Result; }; /// \brief Abstract concept of an analysis pass. /// /// This concept is parameterized over the IR unit that it can run over and /// produce an analysis result. template struct AnalysisPassConcept { virtual ~AnalysisPassConcept() {} virtual AnalysisPassConcept *clone() = 0; /// \brief Method to run this analysis over a unit of IR. /// \returns The analysis result object to be queried by users, the caller /// takes ownership. virtual AnalysisResultConcept *run(IRUnitT IR, AnalysisManagerT *AM) = 0; }; /// \brief Wrapper to model the analysis pass concept. /// /// Can wrap any type which implements a suitable \c run method. The method /// must accept the IRUnitT as an argument and produce an object which can be /// wrapped in a \c AnalysisResultModel. template ::Value> struct AnalysisPassModel; /// \brief Specialization of \c AnalysisPassModel which passes an /// \c AnalysisManager to PassT's run method. template struct AnalysisPassModel : AnalysisPassConcept { AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {} virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); } // FIXME: Replace PassT::Result with type traits when we use C++11. typedef AnalysisResultModel ResultModelT; /// \brief The model delegates to the \c PassT::run method. /// /// The return is wrapped in an \c AnalysisResultModel. virtual ResultModelT *run(IRUnitT IR, AnalysisManagerT *AM) { return new ResultModelT(Pass.run(IR, AM)); } PassT Pass; }; /// \brief Specialization of \c AnalysisPassModel which does not pass an /// \c AnalysisManager to PassT's run method. template struct AnalysisPassModel : AnalysisPassConcept { AnalysisPassModel(PassT Pass) : Pass(std::move(Pass)) {} virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); } // FIXME: Replace PassT::Result with type traits when we use C++11. typedef AnalysisResultModel ResultModelT; /// \brief The model delegates to the \c PassT::run method. /// /// The return is wrapped in an \c AnalysisResultModel. virtual ResultModelT *run(IRUnitT IR, AnalysisManagerT *) { return new ResultModelT(Pass.run(IR)); } PassT Pass; }; } class ModuleAnalysisManager; class ModulePassManager { public: explicit ModulePassManager() {} /// \brief Run all of the module passes in this module pass manager over /// a module. /// /// This method should only be called for a single module as there is the /// expectation that the lifetime of a pass is bounded to that of a module. PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM = 0); template void addPass(ModulePassT Pass) { Passes.push_back(new ModulePassModel(std::move(Pass))); } static StringRef name() { return "ModulePassManager"; } private: // Pull in the concept type and model template specialized for modules. typedef detail::PassConcept ModulePassConcept; template struct ModulePassModel : detail::PassModel { ModulePassModel(PassT Pass) : detail::PassModel(Pass) {} }; std::vector > Passes; }; class FunctionAnalysisManager; class FunctionPassManager { public: explicit FunctionPassManager() {} template void addPass(FunctionPassT Pass) { Passes.push_back(new FunctionPassModel(std::move(Pass))); } PreservedAnalyses run(Function *F, FunctionAnalysisManager *AM = 0); static StringRef name() { return "FunctionPassManager"; } private: // Pull in the concept type and model template specialized for functions. typedef detail::PassConcept FunctionPassConcept; template struct FunctionPassModel : detail::PassModel { FunctionPassModel(PassT Pass) : detail::PassModel(Pass) {} }; std::vector > Passes; }; namespace detail { /// \brief A CRTP base used to implement analysis managers. /// /// This class template serves as the boiler plate of an analysis manager. Any /// analysis manager can be implemented on top of this base class. Any /// implementation will be required to provide specific hooks: /// /// - getResultImpl /// - getCachedResultImpl /// - invalidateImpl /// /// The details of the call pattern are within. template class AnalysisManagerBase { DerivedT *derived_this() { return static_cast(this); } const DerivedT *derived_this() const { return static_cast(this); } protected: typedef detail::AnalysisResultConcept ResultConceptT; typedef detail::AnalysisPassConcept PassConceptT; // FIXME: Provide template aliases for the models when we're using C++11 in // a mode supporting them. public: /// \brief Get the result of an analysis pass for this module. /// /// If there is not a valid cached result in the manager already, this will /// re-run the analysis to produce a valid result. template typename PassT::Result &getResult(IRUnitT IR) { assert(AnalysisPasses.count(PassT::ID()) && "This analysis pass was not registered prior to being queried"); ResultConceptT &ResultConcept = derived_this()->getResultImpl(PassT::ID(), IR); typedef detail::AnalysisResultModel ResultModelT; return static_cast(ResultConcept).Result; } /// \brief Get the cached result of an analysis pass for this module. /// /// This method never runs the analysis. /// /// \returns null if there is no cached result. template typename PassT::Result *getCachedResult(IRUnitT IR) const { assert(AnalysisPasses.count(PassT::ID()) && "This analysis pass was not registered prior to being queried"); ResultConceptT *ResultConcept = derived_this()->getCachedResultImpl(PassT::ID(), IR); if (!ResultConcept) return 0; typedef detail::AnalysisResultModel ResultModelT; return &static_cast(ResultConcept)->Result; } /// \brief Register an analysis pass with the manager. /// /// This provides an initialized and set-up analysis pass to the analysis /// manager. Whomever is setting up analysis passes must use this to populate /// the manager with all of the analysis passes available. template void registerPass(PassT Pass) { assert(!AnalysisPasses.count(PassT::ID()) && "Registered the same analysis pass twice!"); typedef detail::AnalysisPassModel PassModelT; AnalysisPasses[PassT::ID()] = new PassModelT(std::move(Pass)); } /// \brief Invalidate a specific analysis pass for an IR module. /// /// Note that the analysis result can disregard invalidation. template void invalidate(Module *M) { assert(AnalysisPasses.count(PassT::ID()) && "This analysis pass was not registered prior to being invalidated"); derived_this()->invalidateImpl(PassT::ID(), M); } /// \brief Invalidate analyses cached for an IR unit. /// /// Walk through all of the analyses pertaining to this unit of IR and /// invalidate them unless they are preserved by the PreservedAnalyses set. void invalidate(IRUnitT IR, const PreservedAnalyses &PA) { derived_this()->invalidateImpl(IR, PA); } protected: /// \brief Lookup a registered analysis pass. PassConceptT &lookupPass(void *PassID) { typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID); assert(PI != AnalysisPasses.end() && "Analysis passes must be registered prior to being queried!"); return *PI->second; } /// \brief Lookup a registered analysis pass. const PassConceptT &lookupPass(void *PassID) const { typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID); assert(PI != AnalysisPasses.end() && "Analysis passes must be registered prior to being queried!"); return *PI->second; } private: /// \brief Map type from module analysis pass ID to pass concept pointer. typedef DenseMap > AnalysisPassMapT; /// \brief Collection of module analysis passes, indexed by ID. AnalysisPassMapT AnalysisPasses; }; } /// \brief A module analysis pass manager with lazy running and caching of /// results. class ModuleAnalysisManager : public detail::AnalysisManagerBase { friend class detail::AnalysisManagerBase; typedef detail::AnalysisManagerBase BaseT; typedef BaseT::ResultConceptT ResultConceptT; typedef BaseT::PassConceptT PassConceptT; public: // Public methods provided by the base class. private: /// \brief Get a module pass result, running the pass if necessary. ResultConceptT &getResultImpl(void *PassID, Module *M); /// \brief Get a cached module pass result or return null. ResultConceptT *getCachedResultImpl(void *PassID, Module *M) const; /// \brief Invalidate a module pass result. void invalidateImpl(void *PassID, Module *M); /// \brief Invalidate results across a module. void invalidateImpl(Module *M, const PreservedAnalyses &PA); /// \brief Map type from module analysis pass ID to pass result concept pointer. typedef DenseMap > > ModuleAnalysisResultMapT; /// \brief Cache of computed module analysis results for this module. ModuleAnalysisResultMapT ModuleAnalysisResults; }; /// \brief A function analysis manager to coordinate and cache analyses run over /// a module. class FunctionAnalysisManager : public detail::AnalysisManagerBase { friend class detail::AnalysisManagerBase; typedef detail::AnalysisManagerBase BaseT; typedef BaseT::ResultConceptT ResultConceptT; typedef BaseT::PassConceptT PassConceptT; public: // Most public APIs are inherited from the CRTP base class. /// \brief Returns true if the analysis manager has an empty results cache. bool empty() const; /// \brief Clear the function analysis result cache. /// /// This routine allows cleaning up when the set of functions itself has /// potentially changed, and thus we can't even look up a a result and /// invalidate it directly. Notably, this does *not* call invalidate /// functions as there is nothing to be done for them. void clear(); private: /// \brief Get a function pass result, running the pass if necessary. ResultConceptT &getResultImpl(void *PassID, Function *F); /// \brief Get a cached function pass result or return null. ResultConceptT *getCachedResultImpl(void *PassID, Function *F) const; /// \brief Invalidate a function pass result. void invalidateImpl(void *PassID, Function *F); /// \brief Invalidate the results for a function.. void invalidateImpl(Function *F, const PreservedAnalyses &PA); /// \brief List of function analysis pass IDs and associated concept pointers. /// /// Requires iterators to be valid across appending new entries and arbitrary /// erases. Provides both the pass ID and concept pointer such that it is /// half of a bijection and provides storage for the actual result concept. typedef std::list > > > FunctionAnalysisResultListT; /// \brief Map type from function pointer to our custom list type. typedef DenseMap FunctionAnalysisResultListMapT; /// \brief Map from function to a list of function analysis results. /// /// Provides linear time removal of all analysis results for a function and /// the ultimate storage for a particular cached analysis result. FunctionAnalysisResultListMapT FunctionAnalysisResultLists; /// \brief Map type from a pair of analysis ID and function pointer to an /// iterator into a particular result list. typedef DenseMap, FunctionAnalysisResultListT::iterator> FunctionAnalysisResultMapT; /// \brief Map from an analysis ID and function to a particular cached /// analysis result. FunctionAnalysisResultMapT FunctionAnalysisResults; }; /// \brief A module analysis which acts as a proxy for a function analysis /// manager. /// /// This primarily proxies invalidation information from the module analysis /// manager and module pass manager to a function analysis manager. You should /// never use a function analysis manager from within (transitively) a module /// pass manager unless your parent module pass has received a proxy result /// object for it. class FunctionAnalysisManagerModuleProxy { public: class Result; static void *ID() { return (void *)&PassID; } FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM) : FAM(FAM) {} /// \brief Run the analysis pass and create our proxy result object. /// /// This doesn't do any interesting work, it is primarily used to insert our /// proxy result object into the module analysis cache so that we can proxy /// invalidation to the function analysis manager. /// /// In debug builds, it will also assert that the analysis manager is empty /// as no queries should arrive at the function analysis manager prior to /// this analysis being requested. Result run(Module *M); private: static char PassID; FunctionAnalysisManager &FAM; }; /// \brief The result proxy object for the /// \c FunctionAnalysisManagerModuleProxy. /// /// See its documentation for more information. class FunctionAnalysisManagerModuleProxy::Result { public: Result(FunctionAnalysisManager &FAM) : FAM(FAM) {} ~Result(); /// \brief Accessor for the \c FunctionAnalysisManager. FunctionAnalysisManager &getManager() { return FAM; } /// \brief Handler for invalidation of the module. /// /// If this analysis itself is preserved, then we assume that the set of \c /// Function objects in the \c Module hasn't changed and thus we don't need /// to invalidate *all* cached data associated with a \c Function* in the \c /// FunctionAnalysisManager. /// /// Regardless of whether this analysis is marked as preserved, all of the /// analyses in the \c FunctionAnalysisManager are potentially invalidated /// based on the set of preserved analyses. bool invalidate(Module *M, const PreservedAnalyses &PA); private: FunctionAnalysisManager &FAM; }; /// \brief A function analysis which acts as a proxy for a module analysis /// manager. /// /// This primarily provides an accessor to a parent module analysis manager to /// function passes. Only the const interface of the module analysis manager is /// provided to indicate that once inside of a function analysis pass you /// cannot request a module analysis to actually run. Instead, the user must /// rely on the \c getCachedResult API. /// /// This proxy *doesn't* manage the invalidation in any way. That is handled by /// the recursive return path of each layer of the pass manager and the /// returned PreservedAnalysis set. class ModuleAnalysisManagerFunctionProxy { public: /// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy. class Result { public: Result(const ModuleAnalysisManager &MAM) : MAM(MAM) {} const ModuleAnalysisManager &getManager() const { return MAM; } /// \brief Handle invalidation by ignoring it, this pass is immutable. bool invalidate(Function *) { return false; } private: const ModuleAnalysisManager &MAM; }; static void *ID() { return (void *)&PassID; } ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM) : MAM(MAM) {} /// \brief Run the analysis pass and create our proxy result object. /// Nothing to see here, it just forwards the \c MAM reference into the /// result. Result run(Function *) { return Result(MAM); } private: static char PassID; const ModuleAnalysisManager &MAM; }; /// \brief Trivial adaptor that maps from a module to its functions. /// /// Designed to allow composition of a FunctionPass(Manager) and /// a ModulePassManager. Note that if this pass is constructed with a pointer /// to a \c ModuleAnalysisManager it will run the /// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function /// pass over the module to enable a \c FunctionAnalysisManager to be used /// within this run safely. template class ModuleToFunctionPassAdaptor { public: explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass) : Pass(std::move(Pass)) {} /// \brief Runs the function pass across every function in the module. PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM) { FunctionAnalysisManager *FAM = 0; if (AM) // Setup the function analysis manager from its proxy. FAM = &AM->getResult(M).getManager(); PreservedAnalyses PA = PreservedAnalyses::all(); for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) { PreservedAnalyses PassPA = Pass.run(I, FAM); // We know that the function pass couldn't have invalidated any other // function's analyses (that's the contract of a function pass), so // directly handle the function analysis manager's invalidation here. if (FAM) FAM->invalidate(I, PassPA); // Then intersect the preserved set so that invalidation of module // analyses will eventually occur when the module pass completes. PA.intersect(std::move(PassPA)); } // By definition we preserve the proxy. This precludes *any* invalidation // of function analyses by the proxy, but that's OK because we've taken // care to invalidate analyses in the function analysis manager // incrementally above. PA.preserve(); return PA; } static StringRef name() { return "ModuleToFunctionPassAdaptor"; } private: FunctionPassT Pass; }; /// \brief A function to deduce a function pass type and wrap it in the /// templated adaptor. template ModuleToFunctionPassAdaptor createModuleToFunctionPassAdaptor(FunctionPassT Pass) { return ModuleToFunctionPassAdaptor(std::move(Pass)); } } #endif