//===-- llvm/MC/MCObjectDisassembler.h --------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MCObjectDisassembler class, which // can be used to construct an MCModule and an MC CFG from an ObjectFile. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCOBJECTDISASSEMBLER_H #define LLVM_MC_MCOBJECTDISASSEMBLER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/MemoryObject.h" #include namespace llvm { namespace object { class ObjectFile; class MachOObjectFile; } class MCBasicBlock; class MCDisassembler; class MCFunction; class MCInstrAnalysis; class MCModule; class MCObjectSymbolizer; /// \brief Disassemble an ObjectFile to an MCModule and MCFunctions. /// This class builds on MCDisassembler to disassemble whole sections, creating /// MCAtom (MCTextAtom for disassembled sections and MCDataAtom for raw data). /// It can also be used to create a control flow graph consisting of MCFunctions /// and MCBasicBlocks. class MCObjectDisassembler { public: MCObjectDisassembler(const object::ObjectFile &Obj, const MCDisassembler &Dis, const MCInstrAnalysis &MIA); virtual ~MCObjectDisassembler() {} /// \brief Build an MCModule, creating atoms and optionally functions. /// \param withCFG Also build a CFG by adding MCFunctions to the Module. /// If withCFG is false, the MCModule built only contains atoms, representing /// what was found in the object file. If withCFG is true, MCFunctions are /// created, containing MCBasicBlocks. All text atoms are split to form basic /// block atoms, which then each back an MCBasicBlock. MCModule *buildModule(bool withCFG = false); MCModule *buildEmptyModule(); typedef std::vector AddressSetTy; /// \name Create a new MCFunction. MCFunction *createFunction(MCModule *Module, uint64_t BeginAddr, AddressSetTy &CallTargets, AddressSetTy &TailCallTargets); /// \brief Set the region on which to fallback if disassembly was requested /// somewhere not accessible in the object file. /// This is used for dynamic disassembly (see RawMemoryObject). void setFallbackRegion(OwningPtr &Region) { FallbackRegion.reset(Region.take()); } /// \brief Set the symbolizer to use to get information on external functions. /// Note that this isn't used to do instruction-level symbolization (that is, /// plugged into MCDisassembler), but to symbolize function call targets. void setSymbolizer(MCObjectSymbolizer *ObjectSymbolizer) { MOS = ObjectSymbolizer; } /// \brief Get the effective address of the entrypoint, or 0 if there is none. virtual uint64_t getEntrypoint(); /// \name Get the addresses of static constructors/destructors in the object. /// The caller is expected to know how to interpret the addresses; /// for example, Mach-O init functions expect 5 arguments, not for ELF. /// The addresses are original object file load addresses, not effective. /// @{ virtual ArrayRef getStaticInitFunctions(); virtual ArrayRef getStaticExitFunctions(); /// @} /// \name Translation between effective and objectfile load address. /// @{ /// \brief Compute the effective load address, from an objectfile virtual /// address. This is implemented in a format-specific way, to take into /// account things like PIE/ASLR when doing dynamic disassembly. /// For example, on Mach-O this would be done by adding the VM addr slide, /// on glibc ELF by keeping a map between segment load addresses, filled /// using dl_iterate_phdr, etc.. /// In most static situations and in the default impl., this returns \p Addr. virtual uint64_t getEffectiveLoadAddr(uint64_t Addr); /// \brief Compute the original load address, as specified in the objectfile. /// This is the inverse of getEffectiveLoadAddr. virtual uint64_t getOriginalLoadAddr(uint64_t EffectiveAddr); /// @} protected: const object::ObjectFile &Obj; const MCDisassembler &Dis; const MCInstrAnalysis &MIA; MCObjectSymbolizer *MOS; /// \brief The fallback memory region, outside the object file. OwningPtr FallbackRegion; /// \brief Return a memory region suitable for reading starting at \p Addr. /// In most cases, this returns a StringRefMemoryObject backed by the /// containing section. When no section was found, this returns the /// FallbackRegion, if it is suitable. /// If it is not, or if there is no fallback region, this returns 0. MemoryObject *getRegionFor(uint64_t Addr); private: /// \brief Fill \p Module by creating an atom for each section. /// This could be made much smarter, using information like symbols, but also /// format-specific features, like mach-o function_start or data_in_code LCs. void buildSectionAtoms(MCModule *Module); /// \brief Enrich \p Module with a CFG consisting of MCFunctions. /// \param Module An MCModule returned by buildModule, with no CFG. /// NOTE: Each MCBasicBlock in a MCFunction is backed by a single MCTextAtom. /// When the CFG is built, contiguous instructions that were previously in a /// single MCTextAtom will be split in multiple basic block atoms. void buildCFG(MCModule *Module); MCBasicBlock *getBBAt(MCModule *Module, MCFunction *MCFN, uint64_t BeginAddr, AddressSetTy &CallTargets, AddressSetTy &TailCallTargets); }; class MCMachOObjectDisassembler : public MCObjectDisassembler { const object::MachOObjectFile &MOOF; uint64_t VMAddrSlide; uint64_t HeaderLoadAddress; // __DATA;__mod_init_func support. llvm::StringRef ModInitContents; // __DATA;__mod_exit_func support. llvm::StringRef ModExitContents; public: /// \brief Construct a Mach-O specific object disassembler. /// \param VMAddrSlide The virtual address slide applied by dyld. /// \param HeaderLoadAddress The load address of the mach_header for this /// object. MCMachOObjectDisassembler(const object::MachOObjectFile &MOOF, const MCDisassembler &Dis, const MCInstrAnalysis &MIA, uint64_t VMAddrSlide, uint64_t HeaderLoadAddress); protected: uint64_t getEffectiveLoadAddr(uint64_t Addr) LLVM_OVERRIDE; uint64_t getOriginalLoadAddr(uint64_t EffectiveAddr) LLVM_OVERRIDE; uint64_t getEntrypoint() LLVM_OVERRIDE; ArrayRef getStaticInitFunctions() LLVM_OVERRIDE; ArrayRef getStaticExitFunctions() LLVM_OVERRIDE; }; } #endif