//===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECT_ELF_TYPES_H #define LLVM_OBJECT_ELF_TYPES_H #include "llvm/Support/AlignOf.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ELF.h" #include "llvm/Support/Endian.h" namespace llvm { namespace object { using support::endianness; template struct ELFType { static const endianness TargetEndianness = target_endianness; static const std::size_t MaxAlignment = max_alignment; static const bool Is64Bits = is64Bits; }; template struct MaximumAlignment { enum { value = AlignOf::Alignment > max_align ? max_align : AlignOf::Alignment }; }; // Templates to choose Elf_Addr and Elf_Off depending on is64Bits. template struct ELFDataTypeTypedefHelperCommon { typedef support::detail::packed_endian_specific_integral< uint16_t, target_endianness, MaximumAlignment::value> Elf_Half; typedef support::detail::packed_endian_specific_integral< uint32_t, target_endianness, MaximumAlignment::value> Elf_Word; typedef support::detail::packed_endian_specific_integral< int32_t, target_endianness, MaximumAlignment::value> Elf_Sword; typedef support::detail::packed_endian_specific_integral< uint64_t, target_endianness, MaximumAlignment::value> Elf_Xword; typedef support::detail::packed_endian_specific_integral< int64_t, target_endianness, MaximumAlignment::value> Elf_Sxword; }; template struct ELFDataTypeTypedefHelper; /// ELF 32bit types. template struct ELFDataTypeTypedefHelper > : ELFDataTypeTypedefHelperCommon { typedef uint32_t value_type; typedef support::detail::packed_endian_specific_integral< value_type, TargetEndianness, MaximumAlignment::value> Elf_Addr; typedef support::detail::packed_endian_specific_integral< value_type, TargetEndianness, MaximumAlignment::value> Elf_Off; }; /// ELF 64bit types. template struct ELFDataTypeTypedefHelper > : ELFDataTypeTypedefHelperCommon { typedef uint64_t value_type; typedef support::detail::packed_endian_specific_integral< value_type, TargetEndianness, MaximumAlignment::value> Elf_Addr; typedef support::detail::packed_endian_specific_integral< value_type, TargetEndianness, MaximumAlignment::value> Elf_Off; }; // I really don't like doing this, but the alternative is copypasta. #define LLVM_ELF_IMPORT_TYPES(E, M, W) \ typedef typename ELFDataTypeTypedefHelper >::Elf_Addr \ Elf_Addr; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Off \ Elf_Off; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Half \ Elf_Half; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Word \ Elf_Word; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Sword \ Elf_Sword; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Xword \ Elf_Xword; \ typedef typename ELFDataTypeTypedefHelper >::Elf_Sxword \ Elf_Sxword; #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \ LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::MaxAlignment, \ ELFT::Is64Bits) // Section header. template struct Elf_Shdr_Base; template struct Elf_Shdr_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Word sh_name; // Section name (index into string table) Elf_Word sh_type; // Section type (SHT_*) Elf_Word sh_flags; // Section flags (SHF_*) Elf_Addr sh_addr; // Address where section is to be loaded Elf_Off sh_offset; // File offset of section data, in bytes Elf_Word sh_size; // Size of section, in bytes Elf_Word sh_link; // Section type-specific header table index link Elf_Word sh_info; // Section type-specific extra information Elf_Word sh_addralign; // Section address alignment Elf_Word sh_entsize; // Size of records contained within the section }; template struct Elf_Shdr_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Word sh_name; // Section name (index into string table) Elf_Word sh_type; // Section type (SHT_*) Elf_Xword sh_flags; // Section flags (SHF_*) Elf_Addr sh_addr; // Address where section is to be loaded Elf_Off sh_offset; // File offset of section data, in bytes Elf_Xword sh_size; // Size of section, in bytes Elf_Word sh_link; // Section type-specific header table index link Elf_Word sh_info; // Section type-specific extra information Elf_Xword sh_addralign; // Section address alignment Elf_Xword sh_entsize; // Size of records contained within the section }; template struct Elf_Shdr_Impl : Elf_Shdr_Base { using Elf_Shdr_Base::sh_entsize; using Elf_Shdr_Base::sh_size; /// @brief Get the number of entities this section contains if it has any. unsigned getEntityCount() const { if (sh_entsize == 0) return 0; return sh_size / sh_entsize; } }; template struct Elf_Sym_Base; template struct Elf_Sym_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Word st_name; // Symbol name (index into string table) Elf_Addr st_value; // Value or address associated with the symbol Elf_Word st_size; // Size of the symbol unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf_Half st_shndx; // Which section (header table index) it's defined in }; template struct Elf_Sym_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Word st_name; // Symbol name (index into string table) unsigned char st_info; // Symbol's type and binding attributes unsigned char st_other; // Must be zero; reserved Elf_Half st_shndx; // Which section (header table index) it's defined in Elf_Addr st_value; // Value or address associated with the symbol Elf_Xword st_size; // Size of the symbol }; template struct Elf_Sym_Impl : Elf_Sym_Base { using Elf_Sym_Base::st_info; // These accessors and mutators correspond to the ELF32_ST_BIND, // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: unsigned char getBinding() const { return st_info >> 4; } unsigned char getType() const { return st_info & 0x0f; } void setBinding(unsigned char b) { setBindingAndType(b, getType()); } void setType(unsigned char t) { setBindingAndType(getBinding(), t); } void setBindingAndType(unsigned char b, unsigned char t) { st_info = (b << 4) + (t & 0x0f); } }; /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section /// (.gnu.version). This structure is identical for ELF32 and ELF64. template struct Elf_Versym_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN) }; template struct Elf_Verdaux_Impl; /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section /// (.gnu.version_d). This structure is identical for ELF32 and ELF64. template struct Elf_Verdef_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) typedef Elf_Verdaux_Impl Elf_Verdaux; Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT) Elf_Half vd_flags; // Bitwise flags (VER_DEF_*) Elf_Half vd_ndx; // Version index, used in .gnu.version entries Elf_Half vd_cnt; // Number of Verdaux entries Elf_Word vd_hash; // Hash of name Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes) Elf_Word vd_next; // Offset to the next Verdef entry (in bytes) /// Get the first Verdaux entry for this Verdef. const Elf_Verdaux *getAux() const { return reinterpret_cast((const char *)this + vd_aux); } }; /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64. template struct Elf_Verdaux_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) Elf_Word vda_name; // Version name (offset in string table) Elf_Word vda_next; // Offset to next Verdaux entry (in bytes) }; /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. template struct Elf_Verneed_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT) Elf_Half vn_cnt; // Number of associated Vernaux entries Elf_Word vn_file; // Library name (string table offset) Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes) Elf_Word vn_next; // Offset to next Verneed entry (in bytes) }; /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. template struct Elf_Vernaux_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) Elf_Word vna_hash; // Hash of dependency name Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*) Elf_Half vna_other; // Version index, used in .gnu.version entries Elf_Word vna_name; // Dependency name Elf_Word vna_next; // Offset to next Vernaux entry (in bytes) }; /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic /// table section (.dynamic) look like. template struct Elf_Dyn_Base; template struct Elf_Dyn_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Sword d_tag; union { Elf_Word d_val; Elf_Addr d_ptr; } d_un; }; template struct Elf_Dyn_Base > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Sxword d_tag; union { Elf_Xword d_val; Elf_Addr d_ptr; } d_un; }; /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters. template struct Elf_Dyn_Impl : Elf_Dyn_Base { using Elf_Dyn_Base::d_tag; using Elf_Dyn_Base::d_un; int64_t getTag() const { return d_tag; } uint64_t getVal() const { return d_un.d_val; } uint64_t getPtr() const { return d_un.ptr; } }; // Elf_Rel: Elf Relocation template struct Elf_Rel_Base; template struct Elf_Rel_Base, false> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf_Word r_info; // Symbol table index and type of relocation to apply uint32_t getRInfo(bool isMips64EL) const { assert(!isMips64EL); return r_info; } void setRInfo(uint32_t R) { r_info = R; } }; template struct Elf_Rel_Base, false> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf_Xword r_info; // Symbol table index and type of relocation to apply uint64_t getRInfo(bool isMips64EL) const { uint64_t t = r_info; if (!isMips64EL) return t; // Mips64 little endian has a "special" encoding of r_info. Instead of one // 64 bit little endian number, it is a little endian 32 bit number followed // by a 32 bit big endian number. return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) | ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff); } void setRInfo(uint64_t R) { // FIXME: Add mips64el support. r_info = R; } }; template struct Elf_Rel_Base, true> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf_Word r_info; // Symbol table index and type of relocation to apply Elf_Sword r_addend; // Compute value for relocatable field by adding this uint32_t getRInfo(bool isMips64EL) const { assert(!isMips64EL); return r_info; } void setRInfo(uint32_t R) { r_info = R; } }; template struct Elf_Rel_Base, true> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) Elf_Xword r_info; // Symbol table index and type of relocation to apply Elf_Sxword r_addend; // Compute value for relocatable field by adding this. uint64_t getRInfo(bool isMips64EL) const { // Mips64 little endian has a "special" encoding of r_info. Instead of one // 64 bit little endian number, it is a little endian 32 bit number followed // by a 32 bit big endian number. uint64_t t = r_info; if (!isMips64EL) return t; return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) | ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff); } void setRInfo(uint64_t R) { // FIXME: Add mips64el support. r_info = R; } }; template struct Elf_Rel_Impl; template struct Elf_Rel_Impl, isRela> : Elf_Rel_Base< ELFType, isRela> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, // and ELF64_R_INFO macros defined in the ELF specification: uint32_t getSymbol(bool isMips64EL) const { return (uint32_t)(this->getRInfo(isMips64EL) >> 32); } uint32_t getType(bool isMips64EL) const { return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL); } void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); } void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(uint32_t s, uint32_t t) { this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL)); } }; template struct Elf_Rel_Impl, isRela> : Elf_Rel_Base< ELFType, isRela> { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, // and ELF32_R_INFO macros defined in the ELF specification: uint32_t getSymbol(bool isMips64EL) const { return this->getRInfo(isMips64EL) >> 8; } unsigned char getType(bool isMips64EL) const { return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff); } void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); } void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } void setSymbolAndType(uint32_t s, unsigned char t) { this->setRInfo((s << 8) + t); } }; template struct Elf_Ehdr_Impl { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes Elf_Half e_type; // Type of file (see ET_*) Elf_Half e_machine; // Required architecture for this file (see EM_*) Elf_Word e_version; // Must be equal to 1 Elf_Addr e_entry; // Address to jump to in order to start program Elf_Off e_phoff; // Program header table's file offset, in bytes Elf_Off e_shoff; // Section header table's file offset, in bytes Elf_Word e_flags; // Processor-specific flags Elf_Half e_ehsize; // Size of ELF header, in bytes Elf_Half e_phentsize; // Size of an entry in the program header table Elf_Half e_phnum; // Number of entries in the program header table Elf_Half e_shentsize; // Size of an entry in the section header table Elf_Half e_shnum; // Number of entries in the section header table Elf_Half e_shstrndx; // Section header table index of section name // string table bool checkMagic() const { return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; } unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; } unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; } }; template struct Elf_Phdr_Impl; template struct Elf_Phdr_Impl > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false) Elf_Word p_type; // Type of segment Elf_Off p_offset; // FileOffset where segment is located, in bytes Elf_Addr p_vaddr; // Virtual Address of beginning of segment Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero) Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf_Word p_flags; // Segment flags Elf_Word p_align; // Segment alignment constraint }; template struct Elf_Phdr_Impl > { LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true) Elf_Word p_type; // Type of segment Elf_Word p_flags; // Segment flags Elf_Off p_offset; // FileOffset where segment is located, in bytes Elf_Addr p_vaddr; // Virtual Address of beginning of segment Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) Elf_Xword p_align; // Segment alignment constraint }; } // end namespace object. } // end namespace llvm. #endif